1
|
Feroz W, Park BS, Siripurapu M, Ntim N, Kilroy MK, Sheikh AMA, Mishra R, Garrett JT. Non-Muscle Myosin II A: Friend or Foe in Cancer? Int J Mol Sci 2024; 25:9435. [PMID: 39273383 PMCID: PMC11395477 DOI: 10.3390/ijms25179435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, which include the dimer of heavy chains, essential light chains, and regulatory light chains. NM IIA is a part of the actomyosin complex that generates mechanical force and tension to carry out essential cellular functions, including adhesion, cytokinesis, migration, and the maintenance of cell shape and polarity. These functions are regulated via light and heavy chain phosphorylation at different amino acid residues. Apart from physiological functions, NM IIA is also linked to the development of cancer and genetic and neurological disorders. MYH9 gene mutations result in the development of several autosomal dominant disorders, such as May-Hegglin anomaly (MHA) and Epstein syndrome (EPS). Multiple studies have reported NM IIA as a tumor suppressor in melanoma and head and neck squamous cell carcinoma; however, studies also indicate that NM IIA is a critical player in promoting tumorigenesis, chemoradiotherapy resistance, and stemness. The ROCK-NM IIA pathway regulates cellular movement and shape via the control of cytoskeletal dynamics. In addition, the ROCK-NM IIA pathway is dysregulated in various solid tumors and leukemia. Currently, there are very few compounds targeting NM IIA, and most of these compounds are still being studied in preclinical models. This review provides comprehensive evidence highlighting the dual role of NM IIA in multiple cancer types and summarizes the signaling networks involved in tumorigenesis. Furthermore, we also discuss the role of NM IIA as a potential therapeutic target with a focus on the ROCK-NM IIA pathway.
Collapse
Affiliation(s)
- Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Briley SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meghna Siripurapu
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Nicole Ntim
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | | | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| |
Collapse
|
2
|
Ma Y, Zhang J, Wei C, Wang F, Ji H, Zhao J, Wang D, Zhang X, Tang D. Identification and experimental verification of a biomarker by combining the unfolded protein response with the immune cells in colon cancer. BMC Cancer 2024; 24:978. [PMID: 39118103 PMCID: PMC11311949 DOI: 10.1186/s12885-024-12730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The unfolded protein response (UPR) is associated with immune cells that regulate the biological behavior of tumors. This article aims to combine UPR-associated genes with immune cells to find a prognostic marker and to verify its connection to the UPR. METHODS Univariate cox analysis was used to screen prognostically relevant UPRs and further screened for key UPRs among them by machine learning. ssGSEA was used to calculate immune cell abundance. Univariate cox analysis was used to screen for prognostically relevant immune cells. Multivariate cox analysis was used to calculate UPR_score and Tumor Immune Microenvironment score (TIME_score). WGCNA was used to screen UPR-Immune-related (UI-related) genes. Consensus clustering analysis was used to classify patients into molecular subtype. Based on the UI-related genes, we classified colon adenocarcinoma (COAD) samples by cluster analysis. Single-cell analysis was used to analyze the role of UI-related genes. We detected the function of TIMP1 by cell counting and transwell. Immunoblotting was used to detect whether TIMP1 was regulated by key UPR genes. RESULTS Combined UPR-related genes and immune cells can determine the prognosis of COAD patients. Cluster analysis showed that UI-related genes were associated with clinical features of COAD. Single-cell analysis revealed that UI-related genes may act through stromal cells. We defined three key UI-related genes by machine learning algorithms. Finally, we found that TIMP1, regulated by key genes of UPR, promoted colon cancer proliferation and metastasis. CONCLUSIONS We found that TIMP1 was a prognostic marker and experimentally confirmed that TIMP1 was regulated by key genes of UPR.
Collapse
Affiliation(s)
- Yichao Ma
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jingqiu Zhang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Chen Wei
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Fei Wang
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Northern Jiangsu People's Hospital, Yangzhou, 116044, Liaoning, P.R. China
| | - Hao Ji
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jiahao Zhao
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, 225001, China
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Northern Jiangsu People's Hospital, Yangzhou, 116044, Liaoning, P.R. China
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Northern Jiangsu People's Hospital, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Xinyue Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China.
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, 225001, China.
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Northern Jiangsu People's Hospital, Yangzhou, 116044, Liaoning, P.R. China.
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Northern Jiangsu People's Hospital, Yangzhou, China.
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Yangzhou, China.
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Northern Jiangsu People's Hospital, Yangzhou, China.
| |
Collapse
|
3
|
Li MP, Long SP, Liu WC, Long K, Gao XH. EMT-related gene classifications predict the prognosis, immune infiltration, and therapeutic response of osteosarcoma. Front Pharmacol 2024; 15:1419040. [PMID: 39170698 PMCID: PMC11335561 DOI: 10.3389/fphar.2024.1419040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background Osteosarcoma (OS), a bone tumor with high ability of invasion and metastasis, has seriously affected the health of children and adolescents. Many studies have suggested a connection between OS and the epithelial-mesenchymal transition (EMT). We aimed to integrate EMT-Related genes (EMT-RGs) to predict the prognosis, immune infiltration, and therapeutic response of patients with OS. Methods We used consensus clustering to identify potential EMT-Related OS molecular subtypes. Somatic mutation, tumor immune microenvironment, and functional enrichment analyses were performed for each subtype. We next constructed an EMT-Related risk signature and evaluated it by Kaplan-Meier (K-M) analysis survival and receiver operating characteristic (ROC) curves. Moreover, we constructed a nomogram to more accurately predict OS patients' clinical outcomes. Response effects of immunotherapy in OS patients was analyzed by Tumor Immune Dysfunction and Exclusion (TIDE) analysis, while sensitivity for chemotherapeutic agents was analyzed using oncoPredict. Finally, the expression patterns of hub genes were investigated by single-cell RNA sequencing (scRNA-seq) data analysis. Results A total of 53 EMT-RDGs related to prognosis were identified, separating OS samples into two separate subgroups. The EMT-high subgroup showed favourable overall survival and more active immune response. Significant correlations were found between EMT-Related DEGs and functions as well as pathways linked to the development of OS. Additionally, a risk signature was established and OS patients were divided into two categories based on the risk scores. The signature presented a good predictive performance and could be recognized as an independent predictive factor for OS. Furthermore, patients with higher risk scores exhibited better sensitivity for five drugs, while no significant difference existed in immunotherapy response between the two risk subgroups. scRNA-seq data analysis displayed different expression patterns of the hub genes. Conclusion We developed a novel EMT-Related risk signature that can be considered as an independent predictor for OS, which may help improve clinical outcome prediction and guide personalized treatments for patients with OS.
Collapse
Affiliation(s)
- Meng-Pan Li
- Department of Orthopedics, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Si-Ping Long
- The Fourth Clinical Medical College of Nanchang University, Nanchang, China
| | - Wen-Cai Liu
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Long
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Xing-Hua Gao
- Department of Orthopedics, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Shi R, Yu R, Lian F, Zheng Y, Feng S, Li C, Zheng X. Targeting HSP47 for cancer treatment. Anticancer Drugs 2024; 35:623-637. [PMID: 38718070 DOI: 10.1097/cad.0000000000001612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Heat shock protein 47 (HSP47) serves as an endoplasmic reticulum residing collagen-specific chaperone and plays an important role in collagen biosynthesis and structural assembly. HSP47 is encoded by the SERPINH1 gene, which is located on chromosome 11q13.5, one of the most frequently amplified regions in human cancers. The expression of HSP47 is regulated by multiple cellular factors, including cytokines, transcription factors, microRNAs, and circular RNAs. HSP47 is frequently upregulated in a variety of cancers and plays an important role in tumor progression. HSP47 promotes tumor stemness, angiogenesis, growth, epithelial-mesenchymal transition, and metastatic capacity. HSP47 also regulates the efficacy of tumor therapies, such as chemotherapy, radiotherapy, and immunotherapy. Inhibition of HSP47 expression has antitumor effects, suggesting that targeting HSP47 is a feasible strategy for cancer treatment. In this review, we highlight the function and expression of regulatory mechanisms of HSP47 in cancer progression and point out the potential development of therapeutic strategies in targeting HSP47 in the future.
Collapse
Affiliation(s)
- Run Shi
- School of Medicine, Pingdingshan University, Pingdingshan, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Hou S, Chen Y, Jin C, Lin N. Integrative analysis of bulk RNA-seq and scRNA-seq data indicates the prognostic and immunologic values of SERPINH1 in glioma. ENVIRONMENTAL TOXICOLOGY 2024; 39:3654-3665. [PMID: 38506564 DOI: 10.1002/tox.24192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND SERPINH1 is abnormally expressed in multiple cancers and is associated with malignant progression. However, few reports detail its role in the etiopathogenesis of glioma. Hence, the aim of this article was to investigate the potential value of SERPINH1 in glioma using an integrative analysis. METHODS Data of RNA-seq and scRNA-seq was obtained and evaluated using online databases. The expression of SERPINH1 was confirmed by qRT-PCR and immunohistochemistry. The prognostic value of SERPINH1 was evaluated using univariate and multivariate Cox regression analyses. SERPINH1-related signaling pathways and the interaction of SERPINH1 with immunity were also investigated. RESULTS SERPINH1 exhibited a markedly elevated expression in glioma compared to normal brain tissues in the online databases. Similar results were confirmed by qRT-PCR and immunohistochemistry. SERPINH1 was found to be an independent prognosis factor, and high expression of SERPINH1 indicated poor survival. Moreover, a nomogram was constructed to predict prognosis more accurately and intuitively. GSEA analysis showed that SERPINH1 was involved in seven signaling pathways, including JAK-STAT pathway. Further analysis indicated SERPINH1 was significantly associated with immunity, especially in low-grade glioma. Additionally, an examination of scRNA-seq data revealed that SERPINH1 was primarily expressed in T cells of the CD4+ and CD8+ subsets. CONCLUSIONS SERPINH1 is a key biomarker of glioma prognosis and is immunologically relevant, which provides additional options for targeted therapy of glioma.
Collapse
Affiliation(s)
- Shiqiang Hou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China
| | - Yinan Chen
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chunjing Jin
- Laboratory Medicine Center, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China
| |
Collapse
|
6
|
Wang L, Li C, Zhan H, Li S, Zeng K, Xu C, Zou Y, Xie Y, Zhan Z, Yin S, Zeng Y, Chen X, Lv G, Han Z, Zhou D, Zhou D, Yang Y, Zhou A. Targeting the HSP47-collagen axis inhibits brain metastasis by reversing M2 microglial polarization and restoring anti-tumor immunity. Cell Rep Med 2024; 5:101533. [PMID: 38744278 PMCID: PMC11149409 DOI: 10.1016/j.xcrm.2024.101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/17/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
Brain metastases (BrMs) are the leading cause of death in patients with solid cancers. BrMs exhibit a highly immunosuppressive milieu and poor response to immunotherapies; however, the underlying mechanism remains largely unclear. Here, we show that upregulation of HSP47 in tumor cells drives metastatic colonization and outgrowth in the brain by creating an immunosuppressive microenvironment. HSP47-mediated collagen deposition in the metastatic niche promotes microglial polarization to the M2 phenotype via the α2β1 integrin/nuclear factor κB pathway, which upregulates the anti-inflammatory cytokines and represses CD8+ T cell anti-tumor responses. Depletion of microglia reverses HSP47-induced inactivation of CD8+ T cells and abolishes BrM. Col003, an inhibitor disrupting HSP47-collagen association restores an anti-tumor immunity and enhances the efficacy of anti-PD-L1 immunotherapy in BrM-bearing mice. Our study supports that HSP47 is a critical determinant of M2 microglial polarization and immunosuppression and that blocking the HSP47-collagen axis represents a promising therapeutic strategy against brain metastatic tumors.
Collapse
Affiliation(s)
- Li Wang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Cuiying Li
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Hongchao Zhan
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Shangbiao Li
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kunlin Zeng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Chang Xu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Yulong Zou
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Yuxin Xie
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Ziling Zhan
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Shengqi Yin
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Yu Zeng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Xiaoxia Chen
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Guangzhao Lv
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Zelong Han
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dexiang Zhou
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China.
| | - Yong Yang
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China.
| | - Aidong Zhou
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
7
|
Vergoten G, Bailly C. Insights into the Mechanism of Action of the Degraded Limonoid Prieurianin. Int J Mol Sci 2024; 25:3597. [PMID: 38612409 PMCID: PMC11011620 DOI: 10.3390/ijms25073597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Limonoids are extremely diversified in plants, with many categories of products bearing an intact, rearranged or fragmented oxygenated scaffold. A specific subgroup of fragmented or degraded limonoids derives from the tetranortriterpenoid prieurianin, initially isolated from the tree Trichilia prieuriana but also found in other plants of the Meliaceae family, including the more abundant species Aphanamixis polystachya. Prieurianin-type limonoids include about seventy compounds, among which are dregeanin and rohitukin. Prieurianin and analogs exhibit insecticidal, antimicrobial, antiadipogenic and/or antiparasitic properties but their mechanism of action remains ill-defined at present. Previous studies have shown that prieurianin, initially known as endosidin 1, stabilizes the actin cytoskeleton in plant and mammalian cells via the modulation of the architecture and dynamic of the actin network, most likely via interference with actin-binding proteins. A new mechanistic hypothesis is advanced here based on the recent discovery of the targeting of the chaperone protein Hsp47 by the fragmented limonoid fraxinellone. Molecular modeling suggested that prieurianin and, to a lesser extent dregeanin, can form very stable complexes with Hsp47 at the protein-collagen interface. Hsp-binding may account for the insecticidal action of the product. The present review draws up a new mechanistic portrait of prieurianin and provides an overview of the pharmacological properties of this atypical limonoid and its chemical family.
Collapse
Affiliation(s)
- Gérard Vergoten
- U1286—INFINITE, Lille Inflammation Research International Center, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 Rue du Professeur Laguesse, 59006 Lille, France
| | - Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, 59000 Lille, France
- Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, 59006 Lille, France
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
| |
Collapse
|
8
|
Wang Q, Wang Z. Serpin family H member 1 and its related collagen gene network are the potential prognostic biomarkers and anticancer targets for glioma. J Biochem Mol Toxicol 2024; 38:e23541. [PMID: 37712121 DOI: 10.1002/jbt.23541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/02/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Serpin family H member 1 (SERPINH1) is responsible for encoding the protein known as heat shock protein 47, which functions as a molecular chaperone specific to collagen (COL). This protein has been identified as a potential therapeutic target for COL-related disorders. In this study, we aimed to investigate the role of SERPINH1 in the tumorigenicity of gliomas. To achieve this, we utilized various bioinformatics tools to analyze gene expression, overall survival, protein-protein interactions, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and Gene Set Enrichment Analysis (GSEA). Based on The Cancer Genome Atlas database revealed that SERPINH1 and four COL family members (COL1A1, COL3A1, COL4A1, and COL4A2) expression are significantly upregulated in glioma tissues compared with normal nontumor tissues. GO, KEGG, and GSEA analyses exhibited that SERPINH1 is implicated in the establishment and degradation of COL-containing extracellular matrix (ECM), focal adhesion, and ECM-receptor interaction in glioma. SERPINH1 is an independent prognostic factor, exhibiting a positive association with the augmentation of neutrophils and macrophages, as well as the manifestation of immune checkpoint molecules within glioma. Experimental assessments conducted both in vitro and in vivo demonstrated that the suppression of SERPINH1 impeded the migratory, invasive, and proliferative capacities of glioma cells, while concurrently fostering cellular apoptosis. Consequently, SERPINH1 emerges as an oncogenic gene and an independent prognostic marker for glioma, potentially facilitating the advancement of immunotherapeutic interventions for the treatment of glioma.
Collapse
Affiliation(s)
- Qi Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhe Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
9
|
Xia K, Huang X, Zhao Y, Yang I, Guo W. SERPINH1 enhances the malignancy of osteosarcoma via PI3K-Akt signaling pathway. Transl Oncol 2024; 39:101802. [PMID: 37839175 PMCID: PMC10728702 DOI: 10.1016/j.tranon.2023.101802] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Serpin Family H Member 1 (SERPINH1) may be involved in the regulation of occurrence and development of tumors. However, the role and mechanism of SERPINH1 in osteosarcoma remain poorly understood. The aim of this study is to investigate the expression and role of SRPINH1 in osteosarcoma and to elucidate its underlying mechanisms. METHODS First, we examined the expression of SERPINH1 in osteosarcoma and analyzed publicly available datasets to investigate whether SERPINH1 expression was associated with the prognosis of osteosarcoma. Then we constructed SERPINH1 overexpression and knockdown systems in osteosarcoma cells, and examined the proliferation, migration and invasion ability of osteosarcoma cells after SERPINH1 expression changes using CCK-8 assay, wound healing assay and transwell invasion assay. In addition, we constructed a subcutaneous xenograft tumor model to study the function of SERPINH1 in vivo. We also examined the downstream pathways of SERPINH1 by functional analysis and performed subsequent validation. RESULTS SERPINH1 was upregulated and associated with poor survival in patients with osteosarcoma. SERPINH1 promoted the proliferation, migration and invasion of osteosarcoma cells and promotes the growth of osteosarcoma in vivo by activating the PI3K-Akt signaling pathway. CONCLUSION SERPINH1 partakes in the biological process of osteosarcoma as a tumor promotor and may be an emerging biomarker in osteosarcoma.
Collapse
Affiliation(s)
- Kezhou Xia
- Department of Orthopaedics, Renmin hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Xinghan Huang
- Department of Orthopaedics, Renmin hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Yingchun Zhao
- Department of Orthopaedics, Renmin hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Isabelle Yang
- Department of Orthopaedics, Renmin hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Weichun Guo
- Department of Orthopaedics, Renmin hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China.
| |
Collapse
|
10
|
Liu JC, Zhao QF, Zhang L, Yu BY, Li F, Kou JP. Ruscogenin Alleviates Myocardial Ischemia via Myosin IIA-Dependent Mitochondrial Fusion and Fission Balance. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1879-1904. [PMID: 37650421 DOI: 10.1142/s0192415x23500830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Ruscogenin (RUS), a major effective steroidal sapogenin derived from Ophiopogon japonicas, has been reported to alleviate myocardial ischemia (MI), but its cardioprotective mechanism is still not completely clear. In this study, we observed that RUS markedly reduced MI-induced myocardial injury, as evidenced by notable reductions in infarct size, improvement in biochemical markers, alleviation of cardiac pathology, amelioration of mitochondrial damage, and inhibition of myocardial apoptosis. Moreover, RUS notably suppressed oxygen-glucose deprivation (OGD)-triggered cell injury and apoptosis. Notably, RUS demonstrated a considerable decrease of the interaction between myosin IIA and F-actin, along with the restoration of mitochondrial fusion and fission balance. We further confirmed that the effects of RUS on MI were mediated by myosin IIA using siRNA and overexpression techniques. The inhibition of myosin IIA resulted in a significant improvement of mitochondrial fusion and fission imbalance, while simultaneously counteracting the beneficial effects of RUS. By contrast, overexpression of myosin IIA aggravated the imbalance between mitochondrial fusion and fission and partially weakened the protection of RUS. These findings suggest that myosin IIA is essential or even a key functional protein in the cardioprotection of RUS. Overall, our results have elucidated an undiscovered mechanism involving myosin IIA-dependent mitochondrial fusion and fission balance for treating MI. Furthermore, our study has uncovered a novel mechanism underlying the protective effects of RUS.
Collapse
Affiliation(s)
- Jin-Cheng Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Qing-Fei Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Ling Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Jun-Ping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
11
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 264] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
12
|
Overview of the miR-29 family members' function in breast cancer. Int J Biol Macromol 2023; 230:123280. [PMID: 36652981 DOI: 10.1016/j.ijbiomac.2023.123280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/02/2022] [Accepted: 01/07/2023] [Indexed: 01/17/2023]
Abstract
Accumulating evidence has indicated the importance of microRNAs (miRs) in the biology of human malignancies by targeting multiple signaling pathways and different Messenger RNA transcripts. Despite conflicting information and controversial roles in diverse cancers, miR-29 has been mostly characterized as a tumor suppressor in breast cancer (BC). Several signaling axes, including TIMP3/STAT1/FOXO1, GATA3-miR-29b, and EZH2-miR-29b/miR-30d-LOXL4 are controlled, at least partially, by miR-29 family members to suppress proliferation, invasion, and metastasis of BC cells. In contrast, some other studies showed that miR-29 is notably elevated in the serum/tissue of BC patients and triggers migration and metastasis by targeting various genes and transcription factors such as tristetraprolin, N-myc interactor, and ten-eleven translocation 1. This disagreement can be explained by the fact that miR-29 family members have a variety of regulatory roles depending on their environment and signaling pathways. Long non-coding RNAs also can modulate miR-29 expression in BC. We summarized recent discoveries regarding the important value of the miR-29 family in BC, focusing on the effects of miR-29 up/down-regulation in different subtypes of BC. We also explored the effects of miR-29 in BC initiation and progression, invasion, and therapy resistance.
Collapse
|
13
|
Wang WW, Yu HZ, Yang X, Xu QQ, Yan HH, Liu JR. High Levels of Heat Shock Protein 47 in the Aqueous Humor of Patients with Acute Primary Angle Closure. Ophthalmic Res 2022; 66:307-311. [PMID: 36315987 DOI: 10.1159/000527634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Acute primary angle closure (APAC) is often characterized by acute elevation of intraocular pressure accompanied by severe ocular and systemic symptoms. Excessive collagen accumulation, which can be caused by upregulated heat shock protein 47 (HSP47) expression, can produce scarring in rat conjunctival blebs. Meanwhile, the presence of HSP47 in human aqueous humor and its levels are yet to be determined. METHODS We examined 32 consecutive patients with APAC and 16 age-matched participants without APAC scheduled for cataract surgery who were enrolled as a control group. Aqueous humor samples were collected from all subjects at the time of surgery and compared between the subjects with and without APAC. RESULTS The levels of HSP47 in the aqueous humor of patients with APAC (1,210.4 ± 450.2 pg/mL) were found to be significantly increased (p = 0.001) compared with those in the control group (863.4 ± 240.0 pg/mL). Notably, the levels of HSP47 negatively correlated with the age of patients with APAC (p = 0.023). CONCLUSION HSP47 was upregulated in the aqueous humor of patients with APAC and may play a role in scarring after trabeculectomy for APAC.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Shaanxi Eye Hospital, Xi'an People' s Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hai-Zhen Yu
- Department of Clinical Laboratory, Xi'an People' s Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xin Yang
- Shaanxi Eye Hospital, Xi'an People' s Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Qian-Qian Xu
- Shaanxi Eye Hospital, Xi'an People' s Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Huan-Huan Yan
- Shaanxi Eye Hospital, Xi'an People' s Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jian-Rong Liu
- Shaanxi Eye Hospital, Xi'an People' s Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
15
|
Xie S, Xing Y, Shi W, Zhang M, Chen M, Fang W, Liu S, Zhang T, Zeng X, Chen S, Wang S, Deng W, Tang Q. Cardiac fibroblast heat shock protein 47 aggravates cardiac fibrosis post myocardial ischemia–reperfusion injury by encouraging ubiquitin specific peptidase 10 dependent Smad4 deubiquitination. Acta Pharm Sin B 2022; 12:4138-4153. [PMID: 36386478 PMCID: PMC9643299 DOI: 10.1016/j.apsb.2022.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Despite complications were significantly reduced due to the popularity of percutaneous coronary intervention (PCI) in clinical trials, reperfusion injury and chronic cardiac remodeling significantly contribute to poor prognosis and rehabilitation in AMI patients. We revealed the effects of HSP47 on myocardial ischemia–reperfusion injury (IRI) and shed light on the underlying molecular mechanism. We generated adult mice with lentivirus-mediated or miRNA (mi1/133TS)-aided cardiac fibroblast-selective HSP47 overexpression. Myocardial IRI was induced by 45-min occlusion of the left anterior descending (LAD) artery followed by 24 h reperfusion in mice, while ischemia-mediated cardiac remodeling was induced by four weeks of reperfusion. Also, the role of HSP47 in fibrogenesis was evaluated in cardiac fibroblasts following hypoxia–reoxygenation (HR). Extensive HSP47 was observed in murine infarcted hearts, human ischemic hearts, and cardiac fibroblasts and accelerated oxidative stress and apoptosis after myocardial IRI. Cardiac fibroblast-selective HSP47 overexpression exacerbated cardiac dysfunction caused by chronic myocardial IRI and presented deteriorative fibrosis and cell proliferation. HSP47 upregulation in cardiac fibroblasts promoted TGFβ1–Smad4 pathway activation and Smad4 deubiquitination by recruiting ubiquitin-specific peptidase 10 (USP10) in fibroblasts. However, cardiac fibroblast specific USP10 deficiency abolished HSP47-mediated fibrogenesis in hearts. Moreover, blockage of HSP47 with Col003 disturbed fibrogenesis in fibroblasts following HR. Altogether, cardiac fibroblast HSP47 aggravates fibrosis post-myocardial IRI by enhancing USP10-dependent Smad4 deubiquitination, which provided a potential strategy for myocardial IRI and cardiac remodeling.
Collapse
Affiliation(s)
- Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Wenke Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Min Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Mengya Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Shiqiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Tong Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Xiaofeng Zeng
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Si Chen
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Shasha Wang
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
- Corresponding author.
| |
Collapse
|
16
|
Staab-Weijnitz CA. Fighting the Fiber: Targeting Collagen in Lung Fibrosis. Am J Respir Cell Mol Biol 2021; 66:363-381. [PMID: 34861139 DOI: 10.1165/rcmb.2021-0342tr] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Organ fibrosis is characterized by epithelial injury and aberrant tissue repair, where activated effector cells, mostly fibroblasts and myofibroblasts, excessively deposit collagen into the extracellular matrix. Fibrosis frequently results in organ failure and has been estimated to contribute to at least one third of all global deaths. Also lung fibrosis, in particular idiopathic pulmonary fibrosis (IPF), is a fatal disease with rising incidence worldwide. As current treatment options targeting fibrogenesis are insufficient, there is an urgent need for novel therapeutic strategies. During the last decade, several studies have proposed to target intra- and extracellular components of the collagen biosynthesis, maturation, and degradation machinery. This includes intra- and extracellular targets directly acting on collagen gene products, but also such that anabolize essential building blocks of collagen, in particular glycine and proline biosynthetic enzymes. Collagen, however, is a ubiquitous molecule in the body and fulfils essential functions as a macromolecular scaffold, growth factor reservoir, and receptor binding site in virtually every tissue. This review summarizes recent advances and future directions in this field. Evidence for the proposed therapeutic targets and where they currently stand in terms of clinical drug development for treatment of fibrotic disease is provided. The drug targets are furthermore discussed in light of (1) specificity for collagen biosynthesis, maturation and degradation, and (2) specificity for disease-associated collagen. As therapeutic success and safety of these drugs may largely depend on targeted delivery, different strategies for specific delivery to the main effector cells and to the extracellular matrix are discussed.
Collapse
Affiliation(s)
- Claudia A Staab-Weijnitz
- Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Gesundheit und Umwelt, 9150, Comprehensive Pneumology Center/Institute of Lung Biology and Disease, Member of the German Center of Lung Research (DZL), München, Germany;
| |
Collapse
|
17
|
Heat shock protein 47 promotes cell migration and invasion through AKT signal in non-small cell lung cancer. Anticancer Drugs 2021; 33:268-277. [PMID: 34751174 DOI: 10.1097/cad.0000000000001262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lung cancer is one of the most lethal malignancies, with the highest number of cases and deaths. Non-small cell lung cancer (NSCLC) is the most ordinary type of pathology in lung cancer. Meanwhile, various researchers have reported that heat shock protein 47 (HSP47) plays a vital regulatory role in cancer. However, the role of HSP47 in NSCLC is not clear. Consequently, the current study set out to investigate the role of HSP47 in the pathogenesis of NSCLC. First, we evaluated the expression patterns of HSP47 in NSCLC cell lines related to human normal lung epithelial cells, and HSP47 was found to be highly expressed in NSCLC cell lines. In addition, inhibiting the expression of HSP47 brought about marked repression in cell proliferation, migration and invasion in PC-9 cells. On the contrary, cell proliferation, migration and invasion were all elevated after over-expression of HSP47. Mechanistical experimentation further illustrated that protein kinase B (AKT) signal was repressed after inhibition of HSP47, and the influence of sh-HSP47 on cell proliferation, migration and invasion was countered by epidermal growth factor. Lastly, in-vivo animal models demonstrated that inhibition of HSP47 repressed cell tumorigenesis and AKT signal. Collectively, our findings illustrated that HSP47 was highly expressed in NSCLC cell lines, whereas inhibition of HSP47 repressed cell migration and invasion by diminishing the AKT signal. Inhibition of HSP47 also exhibited strong therapeutic effects on NSCLC in vivo.
Collapse
|
18
|
Yoneda A, Minomi K, Tamura Y. Heat shock protein 47 confers chemoresistance on pancreatic cancer cells by interacting with calreticulin and IRE1α. Cancer Sci 2021; 112:2803-2820. [PMID: 34109710 PMCID: PMC8253297 DOI: 10.1111/cas.14976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most chemoresistant cancers. An understanding of the molecular mechanism by which PDAC cells have a high chemoresistant potential is important for improvement of the poor prognosis of patients with PDAC. Here we show for the first time that disruption of heat shock protein 47 (HSP47) enhances the efficacy of the therapeutic agent gemcitabine for PDAC cells and that the efficacy is suppressed by reconstituting HSP47 expression. HSP47 interacts with calreticulin (CALR) and the unfolded protein response transducer IRE1α in PDAC cells. Ablation of HSP47 promotes both the interaction of CALR with sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase 2 and interaction of IRE1α with inositol 1,4,5-triphosphate receptor, which generates a condition in which an increase in intracellular Ca2+ level is prone to be induced by oxidative stimuli. Disruption of HSP47 enhances NADPH oxidase-induced generation of intracellular reactive oxygen species (ROS) and subsequent increase in intracellular Ca2+ level in PDAC cells after treatment with gemcitabine, resulting in the death of PDAC cells by activation of the Ca2+ /caspases axis. Ablation of HSP47 promotes gemcitabine-induced suppression of tumor growth in PDAC cell-bearing mice. Overall, these results indicated that HSP47 confers chemoresistance on PDAC cells and suggested that disruption of HSP47 may improve the efficacy of chemotherapy for patients with PDAC.
Collapse
Affiliation(s)
- Akihiro Yoneda
- Department of Molecular TherapeuticsCenter for Food & Medical InnovationInstitute for the Promotion of Business‐Regional CollaborationHokkaido UniversitySapporoJapan
| | - Kenjiro Minomi
- Department of Molecular TherapeuticsCenter for Food & Medical InnovationInstitute for the Promotion of Business‐Regional CollaborationHokkaido UniversitySapporoJapan
- Research & Development DepartmentNucleic Acid Medicine Business DivisionNitto Denko CorporationSapporoJapan
| | - Yasuaki Tamura
- Department of Molecular TherapeuticsCenter for Food & Medical InnovationInstitute for the Promotion of Business‐Regional CollaborationHokkaido UniversitySapporoJapan
| |
Collapse
|
19
|
Hypoxia-Driven Effects in Cancer: Characterization, Mechanisms, and Therapeutic Implications. Cells 2021; 10:cells10030678. [PMID: 33808542 PMCID: PMC8003323 DOI: 10.3390/cells10030678] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia, a common feature of solid tumors, greatly hinders the efficacy of conventional cancer treatments such as chemo-, radio-, and immunotherapy. The depletion of oxygen in proliferating and advanced tumors causes an array of genetic, transcriptional, and metabolic adaptations that promote survival, metastasis, and a clinically malignant phenotype. At the nexus of these interconnected pathways are hypoxia-inducible factors (HIFs) which orchestrate transcriptional responses under hypoxia. The following review summarizes current literature regarding effects of hypoxia on DNA repair, metastasis, epithelial-to-mesenchymal transition, the cancer stem cell phenotype, and therapy resistance. We also discuss mechanisms and pathways, such as HIF signaling, mitochondrial dynamics, exosomes, and the unfolded protein response, that contribute to hypoxia-induced phenotypic changes. Finally, novel therapeutics that target the hypoxic tumor microenvironment or interfere with hypoxia-induced pathways are reviewed.
Collapse
|
20
|
Yachida N, Yoshihara K, Suda K, Nakaoka H, Ueda H, Sugino K, Yamaguchi M, Mori Y, Yamawaki K, Tamura R, Ishiguro T, Isobe M, Motoyama T, Inoue I, Enomoto T. ARID1A protein expression is retained in ovarian endometriosis with ARID1A loss-of-function mutations: implication for the two-hit hypothesis. Sci Rep 2020; 10:14260. [PMID: 32868822 PMCID: PMC7459315 DOI: 10.1038/s41598-020-71273-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022] Open
Abstract
ARID1A loss-of-function mutation accompanied by a loss of ARID1A protein expression is considered one of the most important driver events in endometriosis-associated ovarian cancer. Although our recent genomic study clarified that ARID1A loss-of-function mutations were detected in 13% of ovarian endometriosis, an association between the ARID1A mutation status and ARID1A protein expression in ovarian endometriosis remains unclear. We performed immunohistochemical staining for ARID1A in 78 ovarian endometriosis samples and 99 clear cell carcinoma samples. We revealed that not only 70 endometriosis samples without ARID1A mutations but also eight endometriosis samples with ARID1A loss-of-function mutations retained ARID1A protein expression. On the other hand, most of clear cell carcinomas with ARID1A loss-of-function mutations showed a loss of ARID1A protein expression. In particular, clear cell carcinoma samples which harbor multiple ARID1A loss-of-function mutations or both a single ARID1A loss-of-function mutation and ARID1A allelic imbalance lost ARID1A protein expression. However, ARID1A protein expression was retained in seven clear cell carcinomas with ARID1A loss-of-function mutations. These results suggest that a single ARID1A loss-of-function mutation is insufficient for ARID1A loss in ovarian endometriosis and some clear cell carcinoma. Further driver events may be needed for the malignant transformation of ovarian endometriosis with ARID1A loss-of-function mutations.
Collapse
Affiliation(s)
- Nozomi Yachida
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ward, Niigata, 951-8510, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ward, Niigata, 951-8510, Japan.
| | - Kazuaki Suda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ward, Niigata, 951-8510, Japan
| | - Hirofumi Nakaoka
- Human Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan.,Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Haruka Ueda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ward, Niigata, 951-8510, Japan
| | - Kentaro Sugino
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ward, Niigata, 951-8510, Japan
| | - Manako Yamaguchi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ward, Niigata, 951-8510, Japan
| | - Yutaro Mori
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ward, Niigata, 951-8510, Japan
| | - Kaoru Yamawaki
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ward, Niigata, 951-8510, Japan
| | - Ryo Tamura
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ward, Niigata, 951-8510, Japan
| | - Tatsuya Ishiguro
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ward, Niigata, 951-8510, Japan
| | - Masanori Isobe
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ward, Niigata, 951-8510, Japan
| | - Teiichi Motoyama
- Department of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ward, Niigata, 951-8510, Japan
| |
Collapse
|