1
|
Doppelt-Flikshtain O, Asbi T, Younis A, Ginesin O, Cohen Z, Tamari T, Berg T, Yanovich C, Aran D, Zohar Y, Assaraf YG, Zigdon-Giladi H. Inhibition of osteosarcoma metastasis in vivo by targeted downregulation of MMP1 and MMP9. Matrix Biol 2024; 134:48-58. [PMID: 39278602 DOI: 10.1016/j.matbio.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Osteosarcoma (OS) mortality stems from lung metastases. Matrix metalloproteinases (MMPs) facilitate metastatic dissemination by degrading extracellular matrix components. Herein we studied the impact of targeted MMP downregulation on OS metastasis. Differential gene expression analysis of human OS cell lines revealed high MMP9 expression in the majority of OS cell lines. Furthermore, 143B, a metastatic OS cell line, exhibited increased MMP1 and MMP9 mRNA levels. Gene set enrichment analysis on metastatic and non-metastatic OS patient specimens indicated epithelial-mesenchymal transition as the most enriched gene set, with MMP9 displaying strong association to genes in this network. Using the same dataset, Kaplan-Meier analysis revealed a correlation between MMP1 expression and dismal patient survival. Hence, we undertook targeted suppression of MMP1 and MMP9 gene expression in OS cell lines. The ability of OS cells to migrate and form colonies was markedly reduced upon MMP1 and MMP9 downregulation, whereas their cell proliferation capacity remained intact. MMP9 downregulation decreased tumor growth and lung metastases area in an orthotopic mouse OS model. Consistently, human OS lung metastasis specimens displayed marked MMP9 protein expression. Our findings highlight the role of MMP1 and MMP9 in OS metastasis, warranting further exploration of simultaneous inhibition of MMPs for future OS therapeutics.
Collapse
Affiliation(s)
- Ofri Doppelt-Flikshtain
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Thabet Asbi
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel; Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | - Amin Younis
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel; Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | - Ofir Ginesin
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel; Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | - Ziv Cohen
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tal Tamari
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Tal Berg
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Chen Yanovich
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dvir Aran
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yaniv Zohar
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hadar Zigdon-Giladi
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel; Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel.
| |
Collapse
|
2
|
Llaneza-Lago S, Fraser WD, Green D. Bayesian unsupervised clustering identifies clinically relevant osteosarcoma subtypes. Brief Bioinform 2024; 26:bbae665. [PMID: 39701601 DOI: 10.1093/bib/bbae665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/28/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
Identification of cancer subtypes is a critical step for developing precision medicine. Most cancer subtyping is based on the analysis of RNA sequencing (RNA-seq) data from patient cohorts using unsupervised machine learning methods such as hierarchical cluster analysis, but these computational approaches disregard the heterogeneous composition of individual cancer samples. Here, we used a more sophisticated unsupervised Bayesian model termed latent process decomposition (LPD), which handles individual cancer sample heterogeneity and deconvolutes the structure of transcriptome data to provide clinically relevant information. The work was performed on the pediatric tumor osteosarcoma, which is a prototypical model for a rare and heterogeneous cancer. The LPD model detected three osteosarcoma subtypes. The subtype with the poorest prognosis was validated using independent patient datasets. This new stratification framework will be important for more accurate diagnostic labeling, expediting precision medicine, and improving clinical trial success. Our results emphasize the importance of using more sophisticated machine learning approaches (and for teaching deep learning and artificial intelligence) for RNA-seq data analysis, which may assist drug targeting and clinical management.
Collapse
Affiliation(s)
- Sergio Llaneza-Lago
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - William D Fraser
- Bioanalytical Facility, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Darrell Green
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
3
|
Green D, van Ewijk R, Tirtei E, Andreou D, Baecklund F, Baumhoer D, Bielack SS, Botchu R, Boye K, Brennan B, Capra M, Cottone L, Dirksen U, Fagioli F, Fernandez N, Flanagan AM, Gambarotti M, Gaspar N, Gelderblom H, Gerrand C, Gomez-Mascard A, Hardes J, Hecker-Nolting S, Kabickova E, Kager L, Kanerva J, Kester LA, Kuijjer ML, Laurence V, Lervat C, Marchais A, Marec-Berard P, Mendes C, Merks JH, Ory B, Palmerini E, Pantziarka P, Papakonstantinou E, Piperno-Neumann S, Raciborska A, Roundhill EA, Rutkauskaite V, Safwat A, Scotlandi K, Staals EL, Strauss SJ, Surdez D, Sys GM, Tabone MD, Toulmonde M, Valverde C, van de Sande MA, Wörtler K, Campbell-Hewson Q, McCabe MG, Nathrath M. Biological Sample Collection to Advance Research and Treatment: A Fight Osteosarcoma Through European Research and Euro Ewing Consortium Statement. Clin Cancer Res 2024; 30:3395-3406. [PMID: 38869831 PMCID: PMC11334773 DOI: 10.1158/1078-0432.ccr-24-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Osteosarcoma and Ewing sarcoma are bone tumors mostly diagnosed in children, adolescents, and young adults. Despite multimodal therapy, morbidity is high and survival rates remain low, especially in the metastatic disease setting. Trials investigating targeted therapies and immunotherapies have not been groundbreaking. Better understanding of biological subgroups, the role of the tumor immune microenvironment, factors that promote metastasis, and clinical biomarkers of prognosis and drug response are required to make progress. A prerequisite to achieve desired success is a thorough, systematic, and clinically linked biological analysis of patient samples, but disease rarity and tissue processing challenges such as logistics and infrastructure have contributed to a lack of relevant samples for clinical care and research. There is a need for a Europe-wide framework to be implemented for the adequate and minimal sampling, processing, storage, and analysis of patient samples. Two international panels of scientists, clinicians, and patient and parent advocates have formed the Fight Osteosarcoma Through European Research consortium and the Euro Ewing Consortium. The consortia shared their expertise and institutional practices to formulate new guidelines. We report new reference standards for adequate and minimally required sampling (time points, diagnostic samples, and liquid biopsy tubes), handling, and biobanking to enable advanced biological studies in bone sarcoma. We describe standards for analysis and annotation to drive collaboration and data harmonization with practical, legal, and ethical considerations. This position paper provides comprehensive guidelines that should become the new standards of care that will accelerate scientific progress, promote collaboration, and improve outcomes.
Collapse
Affiliation(s)
- Darrell Green
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| | - Roelof van Ewijk
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Elisa Tirtei
- Pediatric Oncology, Regina Margherita Children’s Hospital, Turin, Italy.
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy.
| | - Dimosthenis Andreou
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria.
| | - Fredrik Baecklund
- Pediatric Oncology Unit, Karolinska University Hospital, Stockholm, Sweden.
| | - Daniel Baumhoer
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| | - Stefan S. Bielack
- Center for Pediatric, Adolescent and Women’s Medicine, Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Centre, Stuttgart, Germany.
| | - Rajesh Botchu
- Department of Musculoskeletal Radiology, Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, United Kingdom.
| | - Kjetil Boye
- Department of Oncology, Oslo University Hospital, Oslo, Norway.
| | - Bernadette Brennan
- Paediatric Oncology, Royal Manchester Children’s Hospital, Central Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom.
| | - Michael Capra
- Haematology/Oncology, Children’s Health Ireland at Crumlin, Dublin, Ireland.
| | - Lucia Cottone
- Department of Pathology, UCL Cancer Institute, University College London, London, United Kingdom.
| | - Uta Dirksen
- Pediatrics III, West German Cancer Center, University Hospital Essen, German Cancer Consortium (DKTK) Site Essen, Cancer Research Center (NCT) Cologne-Essen, University of Duisburg-Essen, Essen, Germany.
| | - Franca Fagioli
- Pediatric Oncology, Regina Margherita Children’s Hospital, Turin, Italy.
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy.
| | - Natalia Fernandez
- Patient and Parent Advocacy Group, FOSTER, Washington, District of Columbia.
| | - Adrienne M. Flanagan
- Department of Pathology, UCL Cancer Institute, University College London, London, United Kingdom.
- Histopathology, The Royal National Orthopaedic Hospital NHS Trust, Stanmore, United Kingdom.
| | - Marco Gambarotti
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Nathalie Gaspar
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
- U1015, Université Paris-Saclay, Villejuif, France.
| | - Hans Gelderblom
- Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Craig Gerrand
- Orthopaedic Oncology, The Royal National Orthopaedic Hospital NHS Trust, Stanmore, United Kingdom.
| | - Anne Gomez-Mascard
- Department of Pathology, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France.
- EQ ONCOSARC, CRCT Inserm/UT3, ERL CNRS, Toulouse, France.
| | - Jendrik Hardes
- Tumour Orthopaedics, University Hospital Essen, German Cancer Consortium (DKTK) Site Essen, Cancer Research Center (NCT) Cologne-Essen, University of Duisburg-Essen, Essen, Germany.
| | - Stefanie Hecker-Nolting
- Center for Pediatric, Adolescent and Women’s Medicine, Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Centre, Stuttgart, Germany.
| | - Edita Kabickova
- Paediatric Haematology and Oncology, University Hospital Motol, Prague, Czech Republic.
| | - Leo Kager
- Pediatrics, St Anna Children’s Hospital, Medical University Vienna, Vienna, Austria.
- St Anna Children’s Cancer Research Institute, Vienna, Austria.
| | - Jukka Kanerva
- Hematology-Oncology and Stem Cell Transplantation, HUS Helsinki University Hospital, New Children’s Hospital, Helsinki, Finland.
| | - Lennart A. Kester
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Marieke L. Kuijjer
- Computational Biology and Systems Medicine Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway.
- Pathology, Leiden University Medical Center, Leiden, the Netherlands.
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| | | | - Cyril Lervat
- Department of Pediatrics and AYA Oncology, Centre Oscar Lambret, Lille, France.
| | - Antonin Marchais
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Perrine Marec-Berard
- Institute of Hematology and Pediatric Oncology, Léon Bérard Center, Lyon, France.
| | - Cristina Mendes
- Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal.
| | - Johannes H.M. Merks
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Benjamin Ory
- School of Medicine, Nantes Université, Nantes, France.
| | - Emanuela Palmerini
- Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Orthopedico Rizzoli, Bologna, Italy.
| | - Pan Pantziarka
- Patient and Parent Advocacy Group, FOSTER, Washington, District of Columbia.
- Anticancer Fund, Meise, Belgium.
- The George Pantziarka TP53 Trust, London, United Kingdom.
| | - Evgenia Papakonstantinou
- Pediatric Hematology-Oncology, Ippokratio General Hospital of Thessaloniki, Thessaloniki, Greece.
| | | | - Anna Raciborska
- Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, Warsaw, Poland.
| | - Elizabeth A. Roundhill
- Children’s Cancer Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom.
| | - Vilma Rutkauskaite
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.
| | - Akmal Safwat
- The Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Eric L. Staals
- Orthopaedics and Trauma, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Sandra J. Strauss
- Department of Oncology, University College London Hospitals NHS Foundation Trust, UCL Cancer Institute, London, United Kingdom.
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland.
| | - Gwen M.L. Sys
- Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, Belgium.
| | - Marie-Dominique Tabone
- Department of Hematology and Oncology, A. Trousseau Hospital, Sorbonne University, APHP, Paris, France.
| | - Maud Toulmonde
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France.
| | - Claudia Valverde
- Medical Oncology, Vall d’Hebron University Hospital, Barcelona, Spain.
| | | | - Klaus Wörtler
- Musculoskeletal Radiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Quentin Campbell-Hewson
- Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| | - Martin G. McCabe
- Division of Cancer Sciences, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom.
- The Christie NHS Foundation Trust, Manchester, United Kingdom.
| | - Michaela Nathrath
- Children’s Cancer Research Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
- Pediatric Oncology, Klinikum Kassel, Kassel, Germany.
| |
Collapse
|
4
|
Ong JLK, Jalaludin NFF, Wong MK, Tan SH, Angelina C, Sukhatme SA, Yeo T, Lim CT, Lee YT, Soh SY, Lim TKH, Tay TKY, Chang KTE, Chen ZX, Loh AH. Exosomal mRNA Cargo are biomarkers of tumor and immune cell populations in pediatric osteosarcoma. Transl Oncol 2024; 46:102008. [PMID: 38852279 PMCID: PMC11220529 DOI: 10.1016/j.tranon.2024.102008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/04/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
Osteosarcoma is the commonest malignant bone tumor of children and adolescents and is characterized by a high risk of recurrence despite multimodal therapy, especially in metastatic disease. This suggests the presence of clinically undetected cancer cells that persist, leading to cancer recurrence. We sought to evaluate the utility of peripheral blood exosomes as a more sensitive yet minimally invasive blood test that could aid in evaluating treatment response and surveillance for potential disease recurrence. We extracted exosomes from the blood of pediatric osteosarcoma patients at diagnosis (n=7) and after neoadjuvant chemotherapy (n=5 subset), as well as from age-matched cancer-free controls (n=3). We also obtained matched tumor biopsy samples (n=7) from the cases. Exosome isolation was verified by CD9 immunoblot and characterized on electron microscopy. Profiles of 780 cancer-related transcripts were analysed in mRNA from exosomes of osteosarcoma patients at diagnosis and control patients, matched post-chemotherapy samples, and matched primary tumor samples. Peripheral blood exosomes of osteosarcoma patients at diagnosis were significantly smaller than those of controls and overexpressed extracellular matrix protein gene THBS1 and B cell markers MS4A1 and TCL1A. Immunohistochemical staining of corresponding tumor samples verified the expression of THBS1 on tumor cells and osteoid matrix, and its persistence in a treatment-refractory patient, as well as the B cell origin of the latter. These hold potential as liquid biopsy biomarkers of disease burden and host immune response in osteosarcoma. Our findings suggest that exosomes may provide novel and clinically-important insights into the pathophysiology of cancers such as osteosarcoma.
Collapse
Affiliation(s)
| | | | - Meng Kang Wong
- VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Sheng Hui Tan
- VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Clara Angelina
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sarvesh A Sukhatme
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Trifanny Yeo
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - York Tien Lee
- Duke NUS Medical School, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, Singapore
| | - Shui Yen Soh
- Duke NUS Medical School, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; Department of Paediatric Subspecialties Haematology/Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Tony K H Lim
- Duke NUS Medical School, Singapore, Singapore; Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Timothy Kwang Yong Tay
- Duke NUS Medical School, Singapore, Singapore; Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Kenneth Tou En Chang
- Duke NUS Medical School, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Zhi Xiong Chen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amos Hp Loh
- Duke NUS Medical School, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, Singapore.
| |
Collapse
|
5
|
Wen L, Liu Z, Zhou L, Liu Z, Li Q, Geng B, Xia Y. Bone and Extracellular Signal-Related Kinase 5 (ERK5). Biomolecules 2024; 14:556. [PMID: 38785963 PMCID: PMC11117709 DOI: 10.3390/biom14050556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Bones are vital for anchoring muscles, tendons, and ligaments, serving as a fundamental element of the human skeletal structure. However, our understanding of bone development mechanisms and the maintenance of bone homeostasis is still limited. Extracellular signal-related kinase 5 (ERK5), a recently identified member of the mitogen-activated protein kinase (MAPK) family, plays a critical role in the pathogenesis and progression of various diseases, especially neoplasms. Recent studies have highlighted ERK5's significant role in both bone development and bone-associated pathologies. This review offers a detailed examination of the latest research on ERK5 in different tissues and diseases, with a particular focus on its implications for bone health. It also examines therapeutic strategies and future research avenues targeting ERK5.
Collapse
Affiliation(s)
- Lei Wen
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Zirui Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Libo Zhou
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Zhongcheng Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Qingda Li
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
6
|
Gui W, Guo H, Wang C, Li M, Jin Y, Zhang K, Dai J, Zhao Y. Comparative developmental toxicities of zebrafish towards structurally diverse per- and polyfluoroalkyl substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166569. [PMID: 37633367 DOI: 10.1016/j.scitotenv.2023.166569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Structurally diverse per- and polyfluoroalkyl substances (PFASs) are increasingly detected in ecosystems and humans. Therefore, the clarification of their ecological and health risks is urgently required. In the present study, the toxicity of a series of PFASs, including PFOS, PFBS, Nafion BP1, Nafion BP2, F53B, OBS, PFOA, PFUnDA, PFO5DoDA, HFPO-TA was investigated. Similarities and differences in the developmental toxicity potentials were revealed. Our results demonstrated that PFUnDA exhibited the highest toxicity with the lowest EC50 value of 4.36 mg/L (for morphological abnormality); this was followed by F53B (5.58 mg/L), PFOS (6.15 mg/L), and OBS (10.65 mg/L). Positive correlations with volatility/solubility and chemotypes related to specific biological activity, including the bioconcentration factor (LogBCF), and negative correlations with lipid solubility and carbon chain component-related chemotypes, including the number of carbon and fluorine atoms, provided a reasonable explanation in the view of molecular structures. Furthermore, comparative transcriptome analysis provided molecular evidence for the relationship between PFASs exposure and malformations. Common differentially expressed genes (DEGs) involved in spine curve development, pericardial edema, and cell/organism growth-related pathways presented common targets, leading to toxic effects. Therefore, the present results provide novel insights into the potential environmental risks of structurally diverse PFASs and contribute to the selection of safer PFAS replacements.
Collapse
Affiliation(s)
- Wanying Gui
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Guo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congcong Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Minjia Li
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuanxiang Jin
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
7
|
Lu J, Tang H, Chen L, Huang N, Hu G, Li C, Luo K, Li F, Liu S, Liao S, Feng W, Zhan X, Miao J, Liu Y. Association of survivin positive circulating tumor cell levels with immune escape and prognosis of osteosarcoma. J Cancer Res Clin Oncol 2023; 149:13741-13751. [PMID: 37526661 DOI: 10.1007/s00432-023-05165-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/09/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE Function of survivin protein (encoded by BIRC5) in circulating tumor cells (CTCs) of osteosarcoma (OS) has not been investigated. The goal of this study is to determine whether the expression of survivin protein of CTCs is associated with circulating immune cell infiltration and disease prognosis of OS. METHODS Blood samples of 20 patients with OS were collected. CanPatrol™ CTC enrichment technology combined with in situ hybridization (ISH) was applied to enrich and test CTCs and survivin protein. Bioinformation analysis combined with data of routine blood test was used to verify the association between survivin and immune cell infiltration in circulatory system. To screen independent prognostic factors, Kaplan-Meier survival curve, univariate and multivariable Cox regression analyses were performed. RESULTS Bioinformatics analysis showed that BIRC5 was strongly negatively related to lymphocyte, including T cell, NK cell and B cell, which released that BIRC5 played a key role in immune escape via reducing immune cell infiltration in circulatory system. Meanwhile, the number of survivin+ CTCs was significantly negatively connection with lymphocyte count (R = -0.56, p = 0.011), which was consistent with bioinformatics analysis. Kaplan-Meier curve showed that the overall survival rate in high survivin+ CTCs group was significantly lower than low group (88.9% vs 36.4%, p = 0.04). Multivariable Cox regression analyses showed that survivin+ CTCs were an independent prognostic factor (p = 0.019). CONCLUSION These findings suggested that survivin protein played a key role in immune escape of CTCs and the presence of survivin+ CTCs might be a promising prognostic factor in OS patients.
Collapse
Affiliation(s)
- Jili Lu
- Department of Joint Surgery, Baise People's Hospital, Baise, Guangxi, China
- Department of Joint Surgery, Affiliated Southwest Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Haijun Tang
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, China
| | - Lin Chen
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, China
| | - Nenggan Huang
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, China
| | - Guofang Hu
- Department of Joint Surgery, Baise People's Hospital, Baise, Guangxi, China
- Department of Joint Surgery, Affiliated Southwest Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Chong Li
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, China
| | - Kai Luo
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, China
| | - Feicui Li
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, China
| | - Shangyu Liu
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, China
| | - Shijie Liao
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wenyu Feng
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, No. 32, West University Road, 530005, Nanning, Guangxi, China
| | - Xinli Zhan
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, China
| | - Jifeng Miao
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, No. 32, West University Road, 530005, Nanning, Guangxi, China.
| | - Yun Liu
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, China.
| |
Collapse
|
8
|
Huang R, Xu M, Guo W, Cheng M, Dong R, Tu J, Xu S, Zou C. Network pharmacology and experimental verification-based strategy for exploring the mechanisms of luteolin in the treatment of osteosarcoma. Cancer Cell Int 2023; 23:213. [PMID: 37749554 PMCID: PMC10521544 DOI: 10.1186/s12935-023-03046-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Luteolin is an active ingredient in various traditional Chinese medicines for the treatment of multiple tumors. However, the mechanisms of its inhibitory effect on osteosarcoma proliferation and metastasis remain unclear. PURPOSE To elucidate the anti-osteosarcoma mechanisms of luteolin based on network pharmacology and experimental verification. STUDY DESIGN Integrate network pharmacology predictions, scRNA-seq analysis, molecular docking, and experimental validation. METHODS Luteolin-related targets and osteosarcoma-associated targets were collected from several public databases. The luteolin against osteosarcoma targets were screened and a PPI network was constructed to identify the hub targets. The GO and KEGG enrichment of osteosarcoma-associated targets and luteolin against osteosarcoma targets were performed. And scRNA-seq analysis was performed to determine the distribution of the core target expression in OS tissues. Molecular docking, cell biological assays, and osteosarcoma orthotopic mouse model was performed to validate the inhibitory effect and mechanisms of luteolin on osteosarcoma proliferation and metastasis. RESULTS Network pharmacology showed that 251 luteolin against osteosarcoma targets and 8 hub targets including AKT1, ALB, CASP3, IL6, JUN, STAT3, TNF, and VEGFA, and the PI3K-AKT signaling pathway might play an important role in anti-osteosarcoma of luteolin. Analysis of public data revealed that AKT1, IL6, JUN, STAT3, TNF, and VEGFA expression in OS tissue was significantly higher than that in normal bones, and the diagnostic value of VEGFA for overall survival and metastasis was increased over time. scRNA-seq analysis revealed significantly higher expression of AKT1, STAT3, and VEGFA in MYC+ osteoblastic OS cells, especially in primary samples. Moreover, the docking activity between luteolin and the hub targets was excellent, as verified by molecular docking. Experimental results showed that luteolin could inhibit cell viability and significantly decrease the expression of AKT1, STAT3, IL6, TNF, and VEGFA, and luteolin could also inhibit osteosarcoma proliferation and metastasis in osteosarcoma orthotopic mouse model. CONCLUSION This study shows that luteolin may regulate multiple signaling pathways by targeting various genes like AKT1, STAT3, IL6, TNF, and VEGFA to inhibit osteosarcoma proliferation and metastasis.
Collapse
Affiliation(s)
- Renxuan Huang
- Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Guangzhou, 510080, China
| | - Mingxian Xu
- Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Guangzhou, 510080, China
| | - Weitang Guo
- Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Guangzhou, 510080, China
| | - Mingzhe Cheng
- Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Guangzhou, 510080, China
| | - Rui Dong
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Sciences, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China
| | - Jian Tu
- Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Guangzhou, 510080, China
| | - Shao Xu
- Department of Stomatology, The Third Affiliated Hospital of Southern Medical University, No. 183, Zhongshan Road, Guangzhou, 510630, China.
| | - Changye Zou
- Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Le NT. The significance of ERK5 catalytic-independent functions in disease pathways. Front Cell Dev Biol 2023; 11:1235217. [PMID: 37601096 PMCID: PMC10436230 DOI: 10.3389/fcell.2023.1235217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5), also known as BMK1 or MAPK7, represents a recent addition to the classical mitogen-activated protein kinase (MAPK) family. This family includes well-known members such as ERK1/2, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), as well as atypical MAPKs such as ERK3, ERK4, ERK7 (ERK8), and Nemo-like kinase (NLK). Comprehensive reviews available elsewhere provide detailed insights into ERK5, which interested readers can refer to for in-depth knowledge (Nithianandarajah-Jones et al., 2012; Monti et al., Cancers (Basel), 2022, 14). The primary aim of this review is to emphasize the essential characteristics of ERK5 and shed light on the intricate nature of its activation, with particular attention to the catalytic-independent functions in disease pathways.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
10
|
Kjær EKR, Vase CB, Rossing M, Ahlborn LB, Hjalgrim LL. Detection of circulating tumor-derived material in peripheral blood of pediatric sarcoma patients: A systematic review. Transl Oncol 2023; 34:101690. [PMID: 37201250 DOI: 10.1016/j.tranon.2023.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Detection of circulating tumor-derived material (cTM) in the peripheral blood (PB) of cancer patients has been shown to be useful in early diagnosis, prediction of prognosis, and disease monitoring. However, it has not yet been thoroughly evaluated for pediatric sarcoma patients. METHODS We searched the PubMed and EMBASE databases for studies reporting the detection of circulating tumor cells, circulating tumor DNA, and circulating RNA in PB of pediatric sarcoma patients. Data on performance in identifying cTM and its applicability in diagnosis, and evaluation of tumor characteristics, prognostic factors, and treatment response was extracted from publications. RESULTS A total of 79 studies were assigned for the present systematic review, including detection of circulating tumor cells (116 patients), circulating tumor DNA (716 patients), and circulating RNA (2887 patients). Circulating tumor cells were detected in 76% of patients. Circulating DNA was detected in 63% by targeted NGS, 66% by shallow WGS, and 79% by digital droplet PCR. Circulating RNA was detected in 37% of patients. CONCLUSION Of the cTM from Ewing's sarcoma and rhabdomyosarcoma ctDNA proved to be the best target for clinical application including diagnosis, tumor characterization, prognosis, and monitoring of disease progression and treatment response. For osteosarcoma the most promising targets are copy number alterations or patient specific micro RNAs, however, further investigations are needed to obtain consensus on clinical utility.
Collapse
Affiliation(s)
- Eva Kristine Ruud Kjær
- Department of Paediatrics and Adolescent Medicine, Paediatric Oncology Research Laboratory (Bonkolab), Copenhagen University Hospital Rigshospitalet, 5704, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Christian Bach Vase
- Department of Paediatrics and Adolescent Medicine, Paediatric Oncology Research Laboratory (Bonkolab), Copenhagen University Hospital Rigshospitalet, 5704, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Maria Rossing
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Center for Genomic Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lise Barlebo Ahlborn
- Center for Genomic Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lisa Lyngsie Hjalgrim
- Department of Paediatrics and Adolescent Medicine, Paediatric Oncology Research Laboratory (Bonkolab), Copenhagen University Hospital Rigshospitalet, 5704, Blegdamsvej 9, Copenhagen DK-2100, Denmark.
| |
Collapse
|
11
|
Green D, Singh A, Tippett VL, Tattersall L, Shah KM, Siachisumo C, Ward NJ, Thomas P, Carter S, Jeys L, Sumathi V, McNamara I, Elliott DJ, Gartland A, Dalmay T, Fraser WD. YBX1-interacting small RNAs and RUNX2 can be blocked in primary bone cancer using CADD522. J Bone Oncol 2023; 39:100474. [PMID: 36936386 PMCID: PMC10015236 DOI: 10.1016/j.jbo.2023.100474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
Primary bone cancer (PBC) comprises several subtypes each underpinned by distinctive genetic drivers. This driver diversity produces novel morphological features and clinical behaviour that serendipitously makes PBC an excellent metastasis model. Here, we report that some transfer RNA-derived small RNAs termed tRNA fragments (tRFs) perform as a constitutive tumour suppressor mechanism by blunting a potential pro-metastatic protein-RNA interaction. This mechanism is reduced in PBC progression with a gradual loss of tRNAGlyTCC cleavage into 5' end tRF-GlyTCC when comparing low-grade, intermediate-grade and high-grade patient tumours. We detected recurrent activation of miR-140 leading to upregulated RUNX2 expression in high-grade patient tumours. Both tRF-GlyTCC and RUNX2 share a sequence motif in their 3' ends that matches the YBX1 recognition site known to stabilise pro-metastatic mRNAs. Investigating some aspects of this interaction network, gain- and loss-of-function experiments using small RNA mimics and antisense LNAs, respectively, showed that ectopic tRF-GlyTCC reduced RUNX2 expression and dispersed 3D micromass architecture in vitro. iCLIP sequencing revealed YBX1 physical binding to the 3' UTR of RUNX2. The interaction between YBX1, tRF-GlyTCC and RUNX2 led to the development of the RUNX2 inhibitor CADD522 as a PBC treatment. CADD522 assessment in vitro revealed significant effects on PBC cell behaviour. In xenograft mouse models, CADD522 as a single agent without surgery significantly reduced tumour volume, increased overall and metastasis-free survival and reduced cancer-induced bone disease. Our results provide insight into PBC molecular abnormalities that have led to the identification of new targets and a new therapeutic.
Collapse
Key Words
- CADD522
- CADD522, computer aided drug design molecule 522
- CI, confidence interval
- CNV, copy number variant
- CS, chondrosarcoma
- CTC, circulating tumour cell
- DE, differentially expressed
- ES, Ewing sarcoma
- HD, high definition
- HR, hazard ratio
- OS, osteosarcoma
- RBP, RNA binding protein
- RNU6-1, U6 small nuclear 1
- ROI, region-of-interest
- Rnl, T4 RNA ligase
- SNV, single nucleotide variant
- SV, structural variant
- bone cancer
- iCLIP, individual nucleotide resolution cross-linking and immunoprecipitation
- mRNA, messenger RNA
- miRNA
- miRNA, microRNA
- piRNA, piwi interacting RNA
- sRNA, small RNA
- small RNA
- tRF
- tRF, transfer RNA fragment
- tRNA, transfer RNA
- ysRNA, Y RNA-derived sRNA
Collapse
Affiliation(s)
- Darrell Green
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
- Corresponding author.
| | - Archana Singh
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Victoria L. Tippett
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Luke Tattersall
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Karan M. Shah
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | | | - Nicole J. Ward
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Paul Thomas
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Henry Wellcome Laboratory for Cell Imaging, Faculty of Science, University of East Anglia, Norwich, UK
| | - Simon Carter
- Orthopaedic Oncology, Royal Orthopaedic Hospital, Birmingham, UK
| | - Lee Jeys
- Orthopaedic Oncology, Royal Orthopaedic Hospital, Birmingham, UK
| | - Vaiyapuri Sumathi
- Musculoskeletal Pathology, University Hospitals Birmingham, Royal Orthopaedic Hospital, Birmingham, UK
| | - Iain McNamara
- Orthopaedics & Trauma, Norfolk and Norwich University Hospital, Norwich, UK
| | | | - Alison Gartland
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - William D. Fraser
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
- Clinical Biochemistry, Diabetes and Endocrinology, Norfolk and Norwich University Hospital, Norwich, UK
| |
Collapse
|
12
|
Low temperature plasma suppresses proliferation, invasion, migration and survival of SK-BR-3 breast cancer cells. Mol Biol Rep 2023; 50:2025-2031. [PMID: 36538172 DOI: 10.1007/s11033-022-08026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Low temperature plasma (LTP) is a developing field in recent years to play important roles of sterilization, material modification and wound healing. Breast cancer is a common gynecological malignant tumor. Recent studies have shown that LTP is a promising selective anti-cancer treatment. The effect of LTP on breast cancer is still unclear. In this study, We treated breast cancer cell lines with low temperature plasma for different periods of time and analyzed the relevant differences. METHODS AND RESULTS SK-BR-3 cell nutrient solution was firstly treated by ACP for 0, 10, 20, 40, 80 and 120 s, which was next used to cultivateSK-BR-3cells for overnight.we found that LTP was able to suppress cell vitality, proliferation, invasion and migration of SK-BR-3 cells. Also, SK-BR-3 apoptosis was induced by LTP in a time-dependent manner. CONCLUSION These evidences suggest the negative effect of LTP on malignant development of SK-BR-3 cells, and LTP has the potential clinical application for breast cancer treatment.
Collapse
|
13
|
Macrophage Repolarization as a Therapeutic Strategy for Osteosarcoma. Int J Mol Sci 2023; 24:ijms24032858. [PMID: 36769180 PMCID: PMC9917837 DOI: 10.3390/ijms24032858] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Macrophages are versatile immune cells and can adapt to both external stimuli and their surrounding environment. Macrophages are categorized into two major categories; M1 macrophages release pro-inflammatory cytokines and produce protective responses that lead to antimicrobial or antitumor activity. M2 or tumor-associated macrophages (TAM) release anti-inflammatory cytokines that support tumor growth, invasion capacity, and metastatic potential. Since macrophages can be re-polarized from an M2 to an M1 phenotype with a variety of strategies, this has emerged as an innovative anti-cancer approach. Osteosarcoma (OS) is a kind of bone cancer and consists of a complex niche, and immunotherapy is not very effective. Therefore, immediate attention to new strategies is required. We incorporated the recent studies that have used M2-M1 repolarization strategies in the aspect of treating OS cancer.
Collapse
|
14
|
Trentini M, Zanolla I, Zanotti F, Tiengo E, Licastro D, Dal Monego S, Lovatti L, Zavan B. Apple Derived Exosomes Improve Collagen Type I Production and Decrease MMPs during Aging of the Skin through Downregulation of the NF-κB Pathway as Mode of Action. Cells 2022; 11:3950. [PMID: 36552714 PMCID: PMC9776931 DOI: 10.3390/cells11243950] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Skin ageing is strictly related to chronic inflammation of the derma and the decay of structural proteins of the extracellular matrix. Indeed, it has become common practice to refer to this phenomenon as inflammageing. Biotech innovation is always in search of new active principles that induce a youthful appearance. In this paper, apple-derived nanovesicles (ADNVs) were investigated as novel anti-inflammatory compounds, which are able to alter the extracellular matrix production of dermal fibroblasts. Total RNA sequencing analysis revealed that ADNVs negatively influence the activity of Toll-like Receptor 4 (TLR4), and, thus, downregulate the NF-κB pro-inflammatory pathway. ADNVs also reduce extracellular matrix degradation by increasing collagen synthesis (COL3A1, COL1A2, COL8A1 and COL6A1) and downregulating metalloproteinase production (MMP1, MMP8 and MMP9). Topical applications for skin regeneration were evaluated by the association of ADNVs with hyaluronic-acid-based hydrogel and patches.
Collapse
Affiliation(s)
- Martina Trentini
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ilaria Zanolla
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Federica Zanotti
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elena Tiengo
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | | | | | - Luca Lovatti
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Barbara Zavan
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
15
|
Lang J, Guo Z, Xing S, Sun J, Qiu B, Shu Y, Wang Z, Liu G. Inhibitory role of puerarin on the A549 lung cancer cell line. Transl Cancer Res 2022; 11:4117-4125. [PMID: 36523310 PMCID: PMC9745364 DOI: 10.21037/tcr-22-2246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/21/2022] [Indexed: 09/26/2023]
Abstract
BACKGROUND Although more and more drugs had been proved to be effective in controlling tumor cells, lung cancer was still the leading cause of cancer-related deaths all over the world. This study aimed to investigate the effect and mechanism of puerarin on the invasion and metastasis of A549 lung cancer cell line. METHODS A medium containing puerarin was prepared according to the gradient concentration, and 10, 20, and 40 µmol/L were selected as the experimental group (low, medium, and high concentration groups, respectively) according to the cytotoxicity experiment. Meanwhile, 0 µmol/L was used as the control group. RESULTS Following administration, metastasis-related indexes were detected by the cell scratch test, cell migration test, gene difference detection, and western blotting. 24 hours after administration, the cell scratch and Transwell showed that the migration ability of A549 cells decreased with the increasing puerarin concentration. The polymerase chain reaction (PCR) and western blotting results demonstrated that the expression of the cell invasion and metastasis-related factor, matrix metallopeptidase 9 (MMP9), was negatively correlated with drug concentration. Further investigation demonstrated that the phosphorylation of extracellular signal-regulated kinase (ERK) was also inhibited. CONCLUSIONS Puerarin can inhibit the expression of invasion and metastasis-related factors by inhibiting the phosphorylation of ERK.
Collapse
Affiliation(s)
- Jie Lang
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Zhizhen Guo
- Department of Nephrology, Kailuan General Hospital, Tangshan, China
| | - Shushan Xing
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Jian Sun
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Bin Qiu
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Yu Shu
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Zhiqiang Wang
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Guixiang Liu
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| |
Collapse
|
16
|
Xu G, Zhang H, Shi Y, Yang F. Circular RNA circDOCK1 contributes to osteosarcoma progression by acting as a ceRNA for miR-936 to regulate LEF1. J Bone Oncol 2022; 36:100453. [PMID: 36147545 PMCID: PMC9486120 DOI: 10.1016/j.jbo.2022.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/14/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022] Open
Abstract
CircDOCK1 knockdown relieved osteosarcoma cell malignant behaviors. CircDOCK1 functioned as a molecular sponge of miR-936. miR-936 directly targeted LEF1.
Background Osteosarcoma (OS) is a serious bone malignancy that commonly occurred in humans. Recent research suggested that circular RNA (circRNA) Dedicator of cytokinesis 1 (circDOCK1, also called hsa_circ_0020378) enrolled in the tumorigenesis of osteogenic sarcoma. This subject aimed to explore the precise role and mechanism of circDOCK1 on OS progression. Methods CircDOCK1, microRNA-936 (miR-936), and Lymphoid enhancer binding factor 1 (LEF1) levels were detected using real-time quantitative polymerase chain reaction (RT-qPCR). Cell Counting Kit-8 (CCK-8), colony formation, 5-ethynyl-2′-deoxyuridine (EdU), transwell, wound healing, and tube formation assays were used to assess OS cell proliferation, migration, invasion, and angiogenesis. Western blot analysis of protein levels of proliferating cell nuclear antigen (PCNA), matrix metalloproteinase 2 (MMP2), MMP9, and LEF1. According to bioinformatics software (circular RNA Interactome and TargetScan) analysis, the binding between miR-936 and circDOCK1 or LEF1 was predicted, followed by verification by a dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. Results Increased circDOCK1 and LEF1, and decreased miR-936 were found in OS tissues and cell lines. Furthermore, circDOCK1 silencing might suppress OS cell proliferation, migration, invasion, and angiogenesis in vitro. Bioinformatics analysis exhibited that circDOCK1 acted as a sponge for miR-936 and LEF1 was a downstream target of miR-936. Moreover, circDOCK1 functions through modulation of the miR-936/LEF1 axis. Conclusion CircDOCK1 knockdown might attenuate OS cell malignant biological behaviors by regulating the miR-936/GFRA1 axis, which may highlight the diagnostic and therapeutic potential of these molecules for OS treatment.
Collapse
Affiliation(s)
- Gang Xu
- Department of Bone and Soft-Tissue Tumor, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haijiao Zhang
- The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuxia Shi
- Department of Bone and Soft-Tissue Tumor, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fan Yang
- Department of Bone and Soft-Tissue Tumor, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
17
|
Rodriguez-Merchan EC, Peleteiro-Pensado M. Newly Released Advances in the Molecular Mechanisms of Osseous Metastasis and Potential Therapeutic Strategies. THE ARCHIVES OF BONE AND JOINT SURGERY 2022; 10:741-755. [PMID: 36246026 PMCID: PMC9527427 DOI: 10.22038/abjs.2022.57856.2865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/15/2022] [Indexed: 01/24/2023]
Abstract
The appearance of bone metastases (BM) in individuals with advanced solid cancers (breast, prostate, lung) often worsens their quality of life and prognosis. Although none have been fully effective, several strategies have been used to combat BM. Hence, the need for new data that could be useful for treating bone metastasis. To this end, we reviewed the recent literature on the subject. About patients with prostate cancer, treatments with PIP5K1α inhibitors have been found to inhibit tumor invasion and metastasis, and G protein-coupled receptor class C group 5 member A (GPRC5A) could be a future therapeutic target. Regarding patients with breast cancer, we found the following: Asperolide A could be another curative drug; targeting transforming growth factor-beta (TGFβ) and bone morphogenetic protein (BMP) signaling pathways, along with osteoclast activity, could be a favorable therapeutic approach in the preclusion of osteolytic bone destruction; TRAF6 inhibitors such as 6877002 appear promising; aiming the BMP4-SMAD7 signaling axis is an innovative therapeutic approach; there is favorable proof for the plausible therapeutic utilization of bone aiming immunostimulatory MOF (BT-isMOF) nanoparticles, and inhibition of IL4R and macrophages could have therapeutic benefits. For lung cancer, the function of LIGHT in osteolytic osseous illness instigated by metastatic non-small cell lung cancer should be highlighted.
Collapse
|
18
|
Salvucci M, Crawford N, Stott K, Bullman S, Longley DB, Prehn JHM. Patients with mesenchymal tumours and high Fusobacteriales prevalence have worse prognosis in colorectal cancer (CRC). Gut 2022; 71:1600-1612. [PMID: 34497144 PMCID: PMC9279747 DOI: 10.1136/gutjnl-2021-325193] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Transcriptomic-based subtyping, consensus molecular subtyping (CMS) and colorectal cancer intrinsic subtyping (CRIS) identify a patient subpopulation with mesenchymal traits (CMS4/CRIS-B) and poorer outcome. Here, we investigated the relationship between prevalence of Fusobacterium nucleatum (Fn) and Fusobacteriales, CMS/CRIS subtyping, cell type composition, immune infiltrates and host contexture to refine patient stratification and to identify druggable context-specific vulnerabilities. DESIGN We coupled cell culture experiments with characterisation of Fn/Fusobacteriales prevalence and host biology/microenviroment in tumours from two independent colorectal cancer patient cohorts (Taxonomy: n=140, colon and rectal cases of The Cancer Genome Atlas (TCGA-COAD-READ) cohort: n=605). RESULTS In vitro, Fn infection induced inflammation via nuclear factor kappa-light-chain-enhancer of activated B cells/tumour necrosis factor alpha in HCT116 and HT29 cancer cell lines. In patients, high Fn/Fusobacteriales were found in CMS1, microsatellite unstable () tumours, with infiltration of M1 macrophages, reduced M2 macrophages, and high interleukin (IL)-6/IL-8/IL-1β signalling. Analysis of the Taxonomy cohort suggested that Fn was prognostic for CMS4/CRIS-B patients, despite having lower Fn load than CMS1 patients. In the TCGA-COAD-READ cohort, we likewise identified a differential association between Fusobacteriales relative abundance and outcome when stratifying patients in mesenchymal (either CMS4 and/or CRIS-B) versus non-mesenchymal (neither CMS4 nor CRIS-B). Patients with mesenchymal tumours and high Fusobacteriales had approximately twofold higher risk of worse outcome. These associations were null in non-mesenchymal patients. Modelling the three-way association between Fusobacteriales prevalence, molecular subtyping and host contexture with logistic models with an interaction term disentangled the pathogen-host signalling relationship and identified aberrations (including NOTCH, CSF1-3 and IL-6/IL-8) as candidate targets. CONCLUSION This study identifies CMS4/CRIS-B patients with high Fn/Fusobacteriales prevalence as a high-risk subpopulation that may benefit from therapeutics targeting mesenchymal biology.
Collapse
Affiliation(s)
- Manuela Salvucci
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nyree Crawford
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Katie Stott
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Susan Bullman
- Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel B Longley
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Jochen H M Prehn
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
19
|
Wang X, Xu Y, Sun Q, Zhou X, Ma W, Wu J, Zhuang J, Sun C. New insights from the single-cell level: Tumor associated macrophages heterogeneity and personalized therapy. Biomed Pharmacother 2022; 153:113343. [PMID: 35785706 DOI: 10.1016/j.biopha.2022.113343] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are important immune cells in the tumor microenvironment, and their invasion in tumors is closely related to poor prognosis. Although TAMs are recognized as therapeutic targets, their heterogeneity makes studying tumor mechanism and developing drugs targeting TAMs difficult. The study of TAMs heterogeneity can be used to analyze the mechanism of tumor progression and drug resistance, and may provide possible treatment strategies for cancer patients. Single-cell RNA sequencing (scRNA-seq) can reveal the RNA expression profile for each TAM to distinguish heterogeneity, thereby providing a more efficient detection method and more accurate information for TAM-related studies. In this review, by summarizing the research progress in macrophage heterogeneity and other aspects of scRNA-seq over the past five years, we introduced the development of scRNA-seq technology and its application status in solid tumors, analyzed the advantages and selections of scRNA-seq in TAMs, and summarized the detailed specific research fields. To explore the mechanism of tumor progression and drug intervention from single cell level will provide new perspective for personalized treatment strategies targeting macrophages.
Collapse
Affiliation(s)
- Xiaomin Wang
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yiwei Xu
- Institute of Integrated Medicine, School of Medicine, Qingdao University, Qingdao, China
| | - Qi Sun
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xintong Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - JiBiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China; College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China.
| |
Collapse
|
20
|
Tubita A, Lombardi Z, Tusa I, Lazzeretti A, Sgrignani G, Papini D, Menconi A, Gagliardi S, Lulli M, Dello Sbarba P, Esparís-Ogando A, Pandiella A, Stecca B, Rovida E. Inhibition of ERK5 Elicits Cellular Senescence in Melanoma via the Cyclin-Dependent Kinase Inhibitor p21. Cancer Res 2022; 82:447-457. [PMID: 34799355 PMCID: PMC9397638 DOI: 10.1158/0008-5472.can-21-0993] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 10/06/2021] [Accepted: 11/15/2021] [Indexed: 01/07/2023]
Abstract
Melanoma is the deadliest skin cancer with a very poor prognosis in advanced stages. Although targeted and immune therapies have improved survival, not all patients benefit from these treatments. The mitogen-activated protein kinase ERK5 supports the growth of melanoma cells in vitro and in vivo. However, ERK5 inhibition results in cell-cycle arrest rather than appreciable apoptosis. To clarify the role of ERK5 in melanoma growth, we performed transcriptomic analyses following ERK5 knockdown in melanoma cells expressing BRAFV600E and found that cellular senescence was among the most affected processes. In melanoma cells expressing either wild-type or mutant (V600E) BRAF, both genetic and pharmacologic inhibition of ERK5 elicited cellular senescence, as observed by a marked increase in senescence-associated β-galactosidase activity and p21 expression. In addition, depletion of ERK5 from melanoma cells resulted in increased levels of CXCL1, CXCL8, and CCL20, proteins typically involved in the senescence-associated secretory phenotype. Knockdown of p21 suppressed the induction of cellular senescence by ERK5 blockade, pointing to p21 as a key mediator of this process. In vivo, ERK5 knockdown or inhibition with XMD8-92 in melanoma xenografts promoted cellular senescence. Based on these results, small-molecule compounds targeting ERK5 constitute a rational series of prosenescence drugs that may be exploited for melanoma treatment. SIGNIFICANCE: This study shows that targeting ERK5 induces p21-mediated cellular senescence in melanoma, identifying a prosenescence effect of ERK5 inhibitors that may be exploited for melanoma treatment.
Collapse
Affiliation(s)
- Alessandro Tubita
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Zoe Lombardi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Azzurra Lazzeretti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Giovanna Sgrignani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Dimitri Papini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Alessio Menconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Sinforosa Gagliardi
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Persio Dello Sbarba
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Instituto de Investigación Biomédica de Salamanca (IBSAL), CIBERONC, Salamanca, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Instituto de Investigación Biomédica de Salamanca (IBSAL), CIBERONC, Salamanca, Spain
- CSIC, Salamanca, Spain
| | - Barbara Stecca
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| |
Collapse
|
21
|
Tattersall L, Shah KM, Lath DL, Singh A, Down JM, De Marchi E, Williamson A, Di Virgilio F, Heymann D, Adinolfi E, Fraser WD, Green D, Lawson MA, Gartland A. The P2RX7B splice variant modulates osteosarcoma cell behaviour and metastatic properties. J Bone Oncol 2021; 31:100398. [PMID: 35340569 PMCID: PMC8948168 DOI: 10.1016/j.jbo.2021.100398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
P2RX7B expression confers a survival advantage in TE85+P2RX7B and MNNG-HOS+P2RX7B OS cell lines. P2RX7B expression reduced cell adhesion and activation promoted invasion and migration in vitro. MNNG-HOS+P2RX7B tumours in vivo exhibited ectopic bone formation that A740003 reduced. Expression of P2RX7B in primary tumour cells increased the propensity to metastasise to the lungs. A novel gene axis, FN1/LOX/PDGFB/IGFBP3/BMP4 was downregulated in response to A740003.
Background Osteosarcoma (OS) is the most common type of primary bone cancer affecting children and adolescents. OS has a high propensity to spread meaning the disease is often incurable and fatal. There have been no improvements in survival rates for decades. This highlights an urgent need for the development of novel therapeutic strategies. Here, we report in vitro and in vivo data that demonstrates the role of purinergic signalling, specifically, the B isoform of the purinergic receptor P2RX7 (P2RX7B), in OS progression and metastasis. Methods TE85 and MNNG-HOS OS cells were transfected with P2RX7B. These cell lines were then characterised and assessed for proliferation, cell adhesion, migration and invasion in vitro. We used these cells to perform both paratibial and tail vein injected mouse studies where the primary tumour, bone and lungs were analysed. We used RNA-seq to identify responsive pathways relating to P2RX7B. Results Our data shows that P2RX7B expression confers a survival advantage in TE85 + P2RX7B and MNNG-HOS + P2RX7B human OS cell lines in vitro that is minimised following treatment with A740003, a specific P2RX7 antagonist. P2RX7B expression reduced cell adhesion and P2RX7B activation promoted invasion and migration in vitro, demonstrating a metastatic phenotype. Using an in vivo OS xenograft model, MNNG-HOS + P2RX7B tumours exhibited cancer-associated ectopic bone formation that was abrogated with A740003 treatment. A pro-metastatic phenotype was further demonstrated in vivo as expression of P2RX7B in primary tumour cells increased the propensity of tumour cells to metastasise to the lungs. RNA-seq identified a novel gene axis, FN1/LOX/PDGFB/IGFBP3/BMP4, downregulated in response to A740003 treatment. Conclusion Our data illustrates a role for P2RX7B in OS tumour growth, progression and metastasis. We show that P2RX7B is a future therapeutic target in human OS.
Collapse
Affiliation(s)
- Luke Tattersall
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Karan M. Shah
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Darren L. Lath
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Archana Singh
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Jennifer M. Down
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Elena De Marchi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Italy
| | - Alex Williamson
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Francesco Di Virgilio
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Italy
| | - Dominique Heymann
- Université de Nantes, Institut de Cancérologie de l’Ouest, Saint-Herblain, France
| | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Italy
| | - William D. Fraser
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
- Clinical Biochemistry, Norfolk and Norwich University Hospital, Norwich Research Park, Norwich, UK
| | - Darrell Green
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Michelle A. Lawson
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Alison Gartland
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
- Corresponding author.
| |
Collapse
|
22
|
Li M, Wu W, Deng S, Shao Z, Jin X. TRAIP modulates the IGFBP3/AKT pathway to enhance the invasion and proliferation of osteosarcoma by promoting KANK1 degradation. Cell Death Dis 2021; 12:767. [PMID: 34349117 PMCID: PMC8339131 DOI: 10.1038/s41419-021-04057-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023]
Abstract
Osteosarcoma is one of the most common primary malignancies in bones and is characterized by high metastatic rates. Circulating tumor cells (CTCs) derived from solid tumors can give rise to metastatic lesions, increasing the risk of death in patients with cancer. Here, we used bioinformatics tools to compare the gene expression between CTCs and metastatic lesions in osteosarcoma to identify novel molecular mechanisms underlying osteosarcoma metastasis. We identified TRAIP as a key differentially expressed gene with prognostic significance in osteosarcoma. We demonstrated that TRAIP regulated the proliferation and invasion of osteosarcoma cells. In addition, we found that TRAIP promoted KANK1 polyubiquitination and subsequent degradation, downregulating IGFBP3 and activating the AKT pathway in osteosarcoma cells. These results support the critical role of the TRAIP/KANK1/IGFBP3/AKT signaling axis in osteosarcoma progression and suggest that TRAIP may represent a promising therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Mi Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Deng
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, China.
| |
Collapse
|
23
|
Carmell N, Rominiyi O, Myers KN, McGarrity-Cottrell C, Vanderlinden A, Lad N, Perroux-David E, El-Khamisy SF, Fernando M, Finegan KG, Brown S, Collis SJ. Identification and Validation of ERK5 as a DNA Damage Modulating Drug Target in Glioblastoma. Cancers (Basel) 2021; 13:cancers13050944. [PMID: 33668183 PMCID: PMC7956595 DOI: 10.3390/cancers13050944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Glioblastomas are high-grade brain tumours and are the most common form of malignancy arising in the brain. Patient survival has improved little over the last 40 years, highlighting an urgent unmet need for more effective treatments for these tumours. Current standard-of-care treatment involves surgical removal of as much of the tumour as possible followed by a course of chemo-/radiotherapy. The main chemotherapeutic drug used is called temozolomide, however even with this treatment regimen, the average patient survival following diagnosis is around 15 months. We have identified a protein called ERK5 which is present at higher levels in these high-grade brain tumours compared to normal brain tissue, and which is also associated with resistance to temozolomide and poor patient survival. Additionally, we show that targeting ERK5 in brain tumour cells can improve the effectiveness of temozolomide in killing these tumour cells and offers potential much-needed future clinical benefit to patients diagnosed with glioblastoma. Abstract Brain tumours kill more children and adults under 40 than any other cancer, with approximately half of primary brain tumours being diagnosed as high-grade malignancies known as glioblastomas. Despite de-bulking surgery combined with chemo-/radiotherapy regimens, the mean survival for these patients is only around 15 months, with less than 10% surviving over 5 years. This dismal prognosis highlights the urgent need to develop novel agents to improve the treatment of these tumours. To address this need, we carried out a human kinome siRNA screen to identify potential drug targets that augment the effectiveness of temozolomide (TMZ)—the standard-of-care chemotherapeutic agent used to treat glioblastoma. From this we identified ERK5/MAPK7, which we subsequently validated using a range of siRNA and small molecule inhibitors within a panel of glioma cells. Mechanistically, we find that ERK5 promotes efficient repair of TMZ-induced DNA lesions to confer cell survival and clonogenic capacity. Finally, using several glioblastoma patient cohorts we provide target validation data for ERK5 as a novel drug target, revealing that heightened ERK5 expression at both the mRNA and protein level is associated with increased tumour grade and poorer patient survival. Collectively, these findings provide a foundation to develop clinically effective ERK5 targeting strategies in glioblastomas and establish much-needed enhancement of the therapeutic repertoire used to treat this currently incurable disease.
Collapse
Affiliation(s)
- Natasha Carmell
- Weston Park Cancer Centre, Department of Oncology & Metabolism, The University of Sheffield Medical School, Sheffield S10 2SJ, UK; (N.C.); (O.R.); (K.N.M.); (C.M.-C.); (A.V.); (N.L.); (E.P.-D.)
| | - Ola Rominiyi
- Weston Park Cancer Centre, Department of Oncology & Metabolism, The University of Sheffield Medical School, Sheffield S10 2SJ, UK; (N.C.); (O.R.); (K.N.M.); (C.M.-C.); (A.V.); (N.L.); (E.P.-D.)
- Department of Neurosurgery, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK
| | - Katie N. Myers
- Weston Park Cancer Centre, Department of Oncology & Metabolism, The University of Sheffield Medical School, Sheffield S10 2SJ, UK; (N.C.); (O.R.); (K.N.M.); (C.M.-C.); (A.V.); (N.L.); (E.P.-D.)
| | - Connor McGarrity-Cottrell
- Weston Park Cancer Centre, Department of Oncology & Metabolism, The University of Sheffield Medical School, Sheffield S10 2SJ, UK; (N.C.); (O.R.); (K.N.M.); (C.M.-C.); (A.V.); (N.L.); (E.P.-D.)
| | - Aurelie Vanderlinden
- Weston Park Cancer Centre, Department of Oncology & Metabolism, The University of Sheffield Medical School, Sheffield S10 2SJ, UK; (N.C.); (O.R.); (K.N.M.); (C.M.-C.); (A.V.); (N.L.); (E.P.-D.)
| | - Nikita Lad
- Weston Park Cancer Centre, Department of Oncology & Metabolism, The University of Sheffield Medical School, Sheffield S10 2SJ, UK; (N.C.); (O.R.); (K.N.M.); (C.M.-C.); (A.V.); (N.L.); (E.P.-D.)
| | - Eva Perroux-David
- Weston Park Cancer Centre, Department of Oncology & Metabolism, The University of Sheffield Medical School, Sheffield S10 2SJ, UK; (N.C.); (O.R.); (K.N.M.); (C.M.-C.); (A.V.); (N.L.); (E.P.-D.)
| | - Sherif F. El-Khamisy
- Sheffield Institute for Nucleic Acids (SInFoNiA) and the Healthy Lifespan Institute, University of Sheffield, Sheffield S10 2TN, UK;
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | - Malee Fernando
- Department of Histopathology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2TN, UK;
| | - Katherine G. Finegan
- Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Stephen Brown
- Department of Biomedical Science, The Sheffield RNAi Screening Facility, The University of Sheffield, Sheffield S10 2TN, UK;
| | - Spencer J. Collis
- Weston Park Cancer Centre, Department of Oncology & Metabolism, The University of Sheffield Medical School, Sheffield S10 2SJ, UK; (N.C.); (O.R.); (K.N.M.); (C.M.-C.); (A.V.); (N.L.); (E.P.-D.)
- Sheffield Institute for Nucleic Acids (SInFoNiA) and the Healthy Lifespan Institute, University of Sheffield, Sheffield S10 2TN, UK;
- Correspondence: ; Tel.: +44-(0)114-215-9043
| |
Collapse
|