1
|
Liu Y, Feng H, Zhao Q, Liang X, Wang Y, Xiao S, Shen S, Wu J. RNA binding motif protein 43 (RBM43) suppresses hepatocellular carcinoma metastasis by regulating Slug mRNA stability. Genes Dis 2024; 11:101192. [PMID: 39104422 PMCID: PMC11298866 DOI: 10.1016/j.gendis.2023.101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/19/2023] [Indexed: 08/07/2024] Open
Affiliation(s)
- Yao Liu
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huan Feng
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qi Zhao
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiao Liang
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shuai Xiao
- The First Affiliated Hospital, Cancer Research Institute, Department of Gastrointestinal Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Suqin Shen
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Liu H, Ye Z, Wang X, Wu Y, Deng C. Comprehensive analysis of the functions, prognostic and diagnostic values of RNA binding proteins in head and neck squamous cell carcinoma. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101937. [PMID: 38844022 DOI: 10.1016/j.jormas.2024.101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Accumulating evidence has suggested that RNA binding protein (RBP) dysregulation plays an essential role during tumorigenesis. Here, we sought to explore the potential biological functions and clinical significance of RBP and develop diagnostic and prognostic signatures based on RBP in patients with head and neck squamous cell carcinoma (HNSCC). METHODS The differently expressed RBPs between HNSCC samples and their normal counterparts were identified using the Limma package. The immunohistochemistry (IHC) images of several RBPs were collected from the Human Protein Atlas database. The diagnostic signature based on RBP was built by LASSO-logistic regression and random forest. The prognostic signature based on RBP was constructed by LASSO and stepwise Cox regression analysis in the training cohort and validated in the validation cohort. RESULTS Eighty-four aberrantly expressed RBPs were obtained, comprising 41 up-regulated and 43 down-regulated RBPs. Seven RBP genes (CPEB3, PDCD4, ENDOU, PARP12, DNMT3B, IGF2BP1, EXO1) were identified as diagnostic-related hub genes. They were used to establish a diagnostic RBP signature risk score (DRBPS) model by the coefficients in least absolute shrinkage and selection operator (LASSO)-logistic regression analysis and showed high specificity and sensitivity in the training (area under the receiver operating characteristic curve (AUC) = 0.998), and in all validation cohorts (AUC > 0.95 for all). Similarly, seven RBP genes (MKRN3, ZC3H12D, EIF5A2, AFF3, SIDT1, RBM24, and NR0B1) were identified as prognosis-associated hub genes by LASSO and stepwise multiple Cox regression analyses and were used to construct the prognostic model named as PRBPS. The AUC of the time-dependent receiver operator characteristic curve of the prognostic model was 0.664 at 3 years and 0.635 at 5 years in the training cohort and 0.720, 0.777 in the validation cohort, showing a favorable predictive efficacy for prognosis in HNSCC. CONCLUSIONS Our results demonstrate the value of consideration of RBP in the diagnosis and prognosis for HNSCC and provide a novel insight into understanding the potential role of dysregulated RBP in HNSCC.
Collapse
Affiliation(s)
- Hai Liu
- School of Stomatology, Wannan Medical College, Wuhu, China; Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
| | - Zhenqi Ye
- School of Stomatology, Wannan Medical College, Wuhu, China; Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
| | - Xiaoying Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yaping Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| | - Chao Deng
- School of Stomatology, Wannan Medical College, Wuhu, China; Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China.
| |
Collapse
|
3
|
Gao C, Zhu R, Shen J, Xu T, She Y, Chen Z. RBM12 regulates the progression of hepatocellular cancer via miR-497-5p/CPNE1 Axis. ENVIRONMENTAL RESEARCH 2023; 239:117203. [PMID: 37793588 DOI: 10.1016/j.envres.2023.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC), also called hepatocellular cancer, has emerged as a highly prevalent malignancy globally. By binding to specific RNA via one or more spherical RNA Domains (RBDs) or RNA Motifs (RBMs), RNA Binding Proteins (RBPs) can affect RNA modification, splicing, localization, translation, and stability. METHODS This paper builds on previous research by further investigating the impact of RBM12 on LC progression. In order to determine the effect of RBM12 expression on the prognosis of patients with hepatocellular cancer, we first investigated its expression in liver cancer cells (LCC) and tissues. The effect of RBM12 on the malignant biological behavior of LCC was subsequently detected using cytological experiments. To explore the upstream mechanism affecting RBM12, we predicted the miRNA targeting RBM12. According to the database, miR-497-5p was the best candidate gene. The double Luciferase reporter gene experiment was executed to validate the bounding of miR-497-5p with RBM12. RESULTS According to the cytological experiments, a high RBM12 expression promoted the propagation, migration, and invasion of LCC and impeded liver cancer cell apoptosis. By secreting TGF-β1, RBM12 could induce the EMT process. The miR-497-5p expression is suppressed in hepatocellular cancer. As shown by the CCK8, plate cloning, Transwell, EDU, and other experiments, miR-497-5p suppressed RBM12 expression and tumor growth. The double Luciferase reporter gene system was utilized to verify the combination of miR-497-5p and RBM12. The CPNE1 is a downstream gene regulated by RBM12. A high CPNE1 expression was exhibited in LCC and tissues. The CPNE1 is essential in the process where RBM12 promotes the incidence and progression of liver cancer. CONCLUSIONS By elucidating the exact molecular mechanism through which RBM12 promotes the initiation and progression of LC, thus, the current investigation provides some reference for the clinical management of LC.
Collapse
Affiliation(s)
- Cheng Gao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China; Medical College of Nantong University, Nantong, Jiangsu 226001, China
| | - Renfei Zhu
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Jianbo Shen
- Medical College of Nantong University, Nantong, Jiangsu 226001, China; Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Tianxin Xu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China; Medical College of Nantong University, Nantong, Jiangsu 226001, China
| | - YongJun She
- Department of Anesthesiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Zhong Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
4
|
Xiao Y, Chen X, Hu W, Ma W, Di Q, Tang H, Zhao X, Huang G, Chen W. USP39-mediated deubiquitination of Cyclin B1 promotes tumor cell proliferation and glioma progression. Transl Oncol 2023; 34:101713. [PMID: 37302347 DOI: 10.1016/j.tranon.2023.101713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND The elevated Cyclin B1 expression contributes to various tumorigenesis and poor prognosis. Cyclin B1 expression could be regulated by ubiquitination and deubiquitination. However, the mechanism of how Cyclin B1 is deubiquitinated and its roles in human glioma remain unclear. METHODS Co-immunoprecipitation and other assays were performed to detect the interacting of Cyclin B1 and USP39. A series of in vitro and in vivo experiments were performed to investigate the effect of USP39 on the tumorigenicity of tumor cells. RESULTS USP39 interacts with Cyclin B1 and stabilizes its expression by deubiquitinating Cyclin B1. Notably, USP39 cleaves the K29-linked polyubiquitin chain on Cyclin B1 at Lys242. Additionally, overexpression of Cyclin B1 rescues the arrested cell cycle at G2/M transition and the suppressed proliferation of glioma cells caused by USP39 knockdown in vitro. Furthermore, USP39 promotes the growth of glioma xenograft in subcutaneous and in situ of nude mice. Finally, in human tumor specimens, the expression levels of USP39 and Cyclin B1 are positively relevant. CONCLUSION Our data support the evidence that USP39 acts a novel deubiquitinating enzyme of Cyclin B1 and promoted tumor cell proliferation at least in part through Cyclin B1 stabilization, represents a promising therapeutic strategy for tumor patients.
Collapse
Affiliation(s)
- Yue Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Neurosurgery, Shenzhen Second People's Hospital, The first Affiliated Hospital of Shenzhen University, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xinyi Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Neurosurgery, Shenzhen Second People's Hospital, The first Affiliated Hospital of Shenzhen University, Shenzhen University Medical School, Shenzhen 518055, China
| | - Weiwei Hu
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenjing Ma
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Neurosurgery, Shenzhen Second People's Hospital, The first Affiliated Hospital of Shenzhen University, Shenzhen University Medical School, Shenzhen 518055, China
| | - Qianqian Di
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Neurosurgery, Shenzhen Second People's Hospital, The first Affiliated Hospital of Shenzhen University, Shenzhen University Medical School, Shenzhen 518055, China
| | - Haimei Tang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Neurosurgery, Shenzhen Second People's Hospital, The first Affiliated Hospital of Shenzhen University, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Neurosurgery, Shenzhen Second People's Hospital, The first Affiliated Hospital of Shenzhen University, Shenzhen University Medical School, Shenzhen 518055, China
| | - Guodong Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Neurosurgery, Shenzhen Second People's Hospital, The first Affiliated Hospital of Shenzhen University, Shenzhen University Medical School, Shenzhen 518055, China
| | - Weilin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Neurosurgery, Shenzhen Second People's Hospital, The first Affiliated Hospital of Shenzhen University, Shenzhen University Medical School, Shenzhen 518055, China; Institute of Biological Therapy, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
5
|
Wang W, Zhang R, Feng N, Zhang L, Liu N. Overexpression of RBM34 Promotes Tumor Progression and Correlates with Poor Prognosis of Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:369-381. [PMID: 36643033 PMCID: PMC9817046 DOI: 10.14218/jcth.2022.00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND AIMS Emerging evidence suggests that RNA-binding motif (RBM) proteins are involved in hepatocarcinogenesis and act either as oncogenes or tumor suppressors. The objective of this study was to investigate the role of RBM34, an RBM protein, in hepatocellular carcinoma (HCC). METHODS We first examined the expression of RBM34 across cancers. The correlation of RBM34 with clinicopathological features and the prognostic value of RBM34 for HCC was then investigated. Functional enrichment analysis of RBM34-related differentially expressed genes (DEGs) was performed to explore its biological function. RNA sequencing (RNA-seq) was applied to identify downstream genes and pathways affected upon RBM34 knockout. The correlation of RBM34 with immune characteristics was also analyzed. The oncogenic function of RBM34 was examined in in vitro and in vivo experiments. RESULTS RBM34 was highly expressed in hepatocellular carcinoma and correlated with poor clinicopathological features and prognosis. RBM34 was positively associated with tumor immune cell infiltration, biomarkers of immune cells, and immune checkpoint expression. A positive correlation was also observed between RBM34, T cell exhaustion, and regulatory T cell marker genes. Knockout of RBM34 significantly inhibited cell proliferation, migration, and xenograft tumor growth, and sensitized HCC cells to sorafenib treatment. RBM34 inhibition reduced FGFR2 expression and affected PI3K-AKT pathway activation in HCC cells. CONCLUSIONS Our study suggests that RBM34 may serve as a new prognostic marker and therapeutic target of HCC.
Collapse
Affiliation(s)
- Wei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rui Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ning Feng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Correspondence to: Nianli Liu and Longzhen Zhang, Cancer Institute of Xuzhou Medical University, No.84 West Huaihai Road, Xuzhou, Jiangsu 221000, China. ORCID: https://orcid.org/0000-0002-0602-6709 (NL). Tel/Fax: +86-516-5582530, E-mail: (NL), (LZ)
| | - Nianli Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Correspondence to: Nianli Liu and Longzhen Zhang, Cancer Institute of Xuzhou Medical University, No.84 West Huaihai Road, Xuzhou, Jiangsu 221000, China. ORCID: https://orcid.org/0000-0002-0602-6709 (NL). Tel/Fax: +86-516-5582530, E-mail: (NL), (LZ)
| |
Collapse
|
6
|
Chen E, He Y, Jiang J, Yi J, Zou Z, Song Q, Ren Q, Lin Z, Lu Y, Liu J, Zhang J. CDCA8 induced by NF-YA promotes hepatocellular carcinoma progression by regulating the MEK/ERK pathway. Exp Hematol Oncol 2023; 12:9. [PMID: 36639822 PMCID: PMC9838039 DOI: 10.1186/s40164-022-00366-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumors. Cell division cycle associated 8 (CDCA8) is an important multifactorial regulator in cancers. However, its up and downstream targets and effects in HCC are still unclear. METHODS A comprehensive bioinformatics analysis was performed using The Cancer Genome Atlas dataset (TCGA) to explore novel core oncogenes. We quantified CDCA8 levels in HCC tumors using qRT-PCR. HCC cell's proliferative, migratory, and invasive abilities were detected using a Cell Counting Kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, clone formation, and a Transwell assay. An orthotopic tumor model and tail vein model were constructed to determine the effects of CDCA8 inhibition in vivo. The mechanism underlying CDCA8 was investigated using RNA sequencing. The prognostic value of CDCA8 was assessed with immunohistochemical staining of the tissue microarrays. RESULTS CDCA8 was identified as a novel oncogene during HCC development. The high expression of CDCA8 was an independent predictor for worse HCC outcomes both in publicly available datasets and in our cohort. We found that CDCA8 knockdown inhibited HCC cell proliferation, colony formation, and migration by suppressing the MEK/ERK pathway in vitro. Moreover, CDCA8 deficiency significantly inhibited tumorigenesis and metastasis. Next-generation sequencing and laboratory validation showed that CDCA8 silencing inhibited the expression of TPM3, NECAP2, and USP13. Furthermore, NA-YA overexpression upregulated the expression of CDCA8. CDCA8 knockdown could attenuate NF-YA-mediated cell invasion in vitro. The expression of NF-YA alone or in combined with CDCA8 were validated as significant independent risk factors for patient survival. CONCLUSION Our findings revealed that the expression of CDCA8 alone or in combined with NF-YA contributed to cancer progression, and could serve as novel potential therapeutic targets for HCC patients.
Collapse
Affiliation(s)
- Erbao Chen
- grid.440601.70000 0004 1798 0578Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China ,grid.263817.90000 0004 1773 1790School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Yu He
- grid.263817.90000 0004 1773 1790School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Jing Jiang
- grid.440601.70000 0004 1798 0578Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong China
| | - Jing Yi
- grid.440601.70000 0004 1798 0578Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China
| | - Zhilin Zou
- grid.414701.7Department of Ophthalmology, Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Qiuzi Song
- grid.440601.70000 0004 1798 0578Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China
| | - Qingqi Ren
- grid.440601.70000 0004 1798 0578Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China
| | - Zewei Lin
- grid.440601.70000 0004 1798 0578Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China
| | - Yi Lu
- grid.263817.90000 0004 1773 1790School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China ,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong China
| | - Jikui Liu
- grid.440601.70000 0004 1798 0578Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China
| | - Jian Zhang
- grid.263817.90000 0004 1773 1790School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China ,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong China
| |
Collapse
|
7
|
Dumesic PA, Wilensky SE, Bose S, Van Vranken JG, Gygi SP, Spiegelman BM. RBM43 links adipose inflammation and energy expenditure through translational regulation of PGC1α. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.522985. [PMID: 36712038 PMCID: PMC9881917 DOI: 10.1101/2023.01.06.522985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adipose thermogenesis involves specialized mitochondrial function that counteracts metabolic disease through dissipation of chemical energy as heat. However, inflammation present in obese adipose tissue can impair oxidative metabolism. Here, we show that PGC1α, a key governor of mitochondrial biogenesis and thermogenesis, is negatively regulated at the level of mRNA translation by the little-known RNA-binding protein RBM43. Rbm43 is expressed selectively in white adipose depots that have low thermogenic potential, and is induced by inflammatory cytokines. RBM43 suppresses mitochondrial and thermogenic gene expression in a PGC1α-dependent manner and its loss protects cells from cytokine-induced mitochondrial impairment. In mice, adipocyte-selective Rbm43 disruption increases PGC1α translation, resulting in mitochondrial biogenesis and adipose thermogenesis. These changes are accompanied by improvements in glucose homeostasis during diet-induced obesity that are independent of body weight. The action of RBM43 suggests a translational mechanism by which inflammatory signals associated with metabolic disease dampen mitochondrial function and thermogenesis.
Collapse
|
8
|
Zheng J, Fan W, Zhang X, Quan W, Wu Y, Shu M, Chen M, Liang M. PAIP1 regulates expression of immune and inflammatory response associated genes at transcript level in liver cancer cell. PeerJ 2023; 11:e15070. [PMID: 37101794 PMCID: PMC10124545 DOI: 10.7717/peerj.15070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/23/2023] [Indexed: 04/28/2023] Open
Abstract
Poly(A) binding protein interacting protein 1 (PAIP1) is a translation regulator and also regulate the decay of mRNA. PAIP1 has also been reported to be a marker of increased invasive potential of liver cancer. However, the roles and underlying molecular mechanism of PAIP1 in liver cancer is still unclear. Here, cell viability and the gene expression profile of liver cancer line HepG2 transfected with PAIP1 siRNA was compared with cells transfected with non-targeting control siRNA. The results showed that PAIP1 knockdown inhibited cell viability, and extensively affects expression of 893 genes at transcriptional level in HepG2 cells. Gene function analysis showed that a large number of PAIP1 up-regulated genes were enriched in term of DNA-dependent transcription and the down-regulated genes were enriched in some pathways including immune response and inflammatory response. qPCR confirmed that PAIP1 knockdown positively regulated the expression of selected immune and inflammatory factor genes in HepG2 cells. Expression analysis of TCGA revealed that PAIP1 had positive correlations with two immune associated genes IL1R2 and PTAFR in liver tumor tissue. Taken together, our results demonstrated that PAIP1 was not only a translation regulator, but also a transcription regulator in liver cancer. Moreover, PAIP1 could function as a regulatory factor of immune and inflammatory genes in liver cancer. Thus, our study provides important cues for further study on the regulatory mechanism of PAIP1 in liver cancer.
Collapse
Affiliation(s)
- Jianfeng Zheng
- Department of Laboratory Medicine, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Weiwei Fan
- Department of Infectious Medicine, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Xiaoyu Zhang
- First Department of Infection, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Weili Quan
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, China
- ABLife BioBigData Institute, Wuhan, Hubei, China
| | - Yunfei Wu
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, China
| | - Mengni Shu
- First Department of Infection, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Moyang Chen
- First Department of Infection, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ming Liang
- First Department of Infection, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Xu B, Liang J, Zou H, Wang J, Xiong Y, Pei J. Identification of Novel tRNA-Leu-CAA-Derived tsRNAs for the Diagnosis and Prognosis of Diffuse Gliomas. Cancer Manag Res 2022; 14:2609-2623. [PMID: 36072386 PMCID: PMC9441585 DOI: 10.2147/cmar.s367020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/27/2022] [Indexed: 12/26/2022] Open
Abstract
Purpose tsRNA is a type of small non-coding RNA derived from tRNA. Diffuse gliomas are the most common brain tumors. This investigation focused on tsRNA identification and characterization within gliomas. Methods The sequences of human tRNA and tsRNAs were taken from GtRNAdb, tRFdb and tRFexplorer databases. Data processing and bioinformatic analysis were performed with R or Python software. The expression of tsRNAs in glioma tissues was analyzed by qRT-PCR assay. Results With computational approaches, we identified hundreds of tsRNAs with available expression abundance in the glioma datasets, most of them derived from the 3′ end or 5′ end of mature tRNA. Among the tsRNAs derived from tRNA-Leu-CAA, ts-26, tRFdb-3012a, and tRFdb-3012b (tRFdb-3012a/b) were significantly decreased in diffuse gliomas. The clinical survivals of glioma patients with low tsRNA (ts-26, tRFdb-3012a, and tRFdb-3012b) expression were remarkably worse than that of those with high expression. Expression of tRFdb-3012a/b was correlated with IDH mutant status and MGMT promoter mutation in gliomas, and tRFdb-3012a/b and ts-23 tended to be highly expressed in patients with the IDH mutant. The enrichment analysis showed that some tRFdb-3012a/b-related genes were enriched in RNA splicing and processing, the spliceosome pathway and astrocyte molecular signatures. Moreover, the 3′ untranslated region of the RBM43 gene was predicted to contain putative binding sites of tRFdb-3012a/b, ts-26 may directly bind to the 3′ untranslated region of the HOXA13 gene, and the expressions of both RBM43 and HOXA13 were up-regulated in diffuse gliomas. High RBM43 and HOXA13 expressions were significantly associated with poor survival outcome of glioma patients. Conclusion These results suggest that tRNA-Leu-CAA-derived tsRNAs (ts-26, tRFdb-3012a, and tRFdb-3012b) could be explored as diagnostic and prognostic biomarkers for diffuse gliomas, and tRFdb-3012a/b and ts-26 may play an important role in the progression of gliomas, through binding RBM43 and HOXA13, respectively.
Collapse
Affiliation(s)
- Bing Xu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People’s Republic of China
| | - Jian Liang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People’s Republic of China
| | - Hecun Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jingwen Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yubo Xiong
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People’s Republic of China
- Department of Neurosurgery, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei, 430010, People’s Republic of China
| | - Jiao Pei
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People’s Republic of China
- Correspondence: Jiao Pei; Yubo Xiong, Email ;
| |
Collapse
|
10
|
Deng Y, Li Y, Wu T, Chen X, Li X, Cai K, Wu X. RAD6 Positively Affects Tumorigenesis of Esophageal Squamous Cell Carcinoma by Regulating Histone Ubiquitination of CCNB1. Biol Proced Online 2022; 24:4. [PMID: 35321657 PMCID: PMC8943946 DOI: 10.1186/s12575-022-00165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Esophageal carcinoma (ESCA) is deadly cancer worldwide with unknown etiology. This study aimed to investigate the impact and mechanism of RAD6 on the development of Esophageal squamous cell carcinoma (ESCC). Expressions of RAD6A and RAD6B in ESCA were investigated from TCGA dataset and their expressions in tissue sample of ESCA patients and cells were determined. Functional experiments were conducted to explore the impact of RAD6A and RAD6B on malignant characteristics of several kinds of ESCC cells. Animal experiment was established and injected with RAD6A and RAD6B shRNA to evaluate the effect on tumor growth. RAD6A and RAD6B were up-regulated in ESCC cells and tissues. Overexpressed RAD6A and RAD6B similarly increased ESCC cell proliferation, invasion and migration and silencing of RAD6 exerted opposite effects. Knockdown of RAD6A suppressed tumor growth and decreased the level of H2B, as data demonstrated positive correlation between RAD6A and CCNB1 in ESCC tissues. Collectively, this study elucidates that RAD6 is up-regulated in ESCC and promotes the progression of ESCC through up-regulation of CCNB1 to enhance H2B ubiquitination. These evidence provide a novel insight into the pathogenesis of ESCC and might contribute to the development of targeted therapy.
Collapse
Affiliation(s)
- Yu Deng
- Department of Thoracic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yujiang Li
- Department of Thoracic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.,Department of Thoracic and Cardiovascular Surgery, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Tiantong Wu
- Department of General Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xuyuan Chen
- Department of Thoracic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xiang Li
- Department of Emergency Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Kaican Cai
- Department of Thoracic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| | - Xu Wu
- Department of Thoracic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
The role of RNA binding proteins in hepatocellular carcinoma. Adv Drug Deliv Rev 2022; 182:114114. [PMID: 35063534 DOI: 10.1016/j.addr.2022.114114] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of overall cancer deaths worldwide with limited therapeutic options. Due to the heterogeneity of HCC pathogenesis, the molecular mechanisms underlying HCC development are not fully understood. Emerging evidence indicates that RNA-binding proteins (RBPs) play a vital role throughout hepatocarcinogenesis. Thus, a deeper understanding of how RBPs contribute to HCC progression will provide new tools for early diagnosis and prognosis of this devastating disease. In this review, we summarize the tumor suppressive and oncogenic roles of RBPs and their roles in hepatocarcinogenesis. The diagnostic and therapeutic potential of RBPs in HCC, including their limitations, are also discussed.
Collapse
|
12
|
Soubise B, Jiang Y, Douet-Guilbert N, Troadec MB. RBM22, a Key Player of Pre-mRNA Splicing and Gene Expression Regulation, Is Altered in Cancer. Cancers (Basel) 2022; 14:cancers14030643. [PMID: 35158909 PMCID: PMC8833553 DOI: 10.3390/cancers14030643] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023] Open
Abstract
RNA-Binding Proteins (RBP) are very diverse and cover a large number of functions in the cells. This review focuses on RBM22, a gene encoding an RBP and belonging to the RNA-Binding Motif (RBM) family of genes. RBM22 presents a Zinc Finger like and a Zinc Finger domain, an RNA-Recognition Motif (RRM), and a Proline-Rich domain with a general structure suggesting a fusion of two yeast genes during evolution: Cwc2 and Ecm2. RBM22 is mainly involved in pre-mRNA splicing, playing the essential role of maintaining the conformation of the catalytic core of the spliceosome and acting as a bridge between the catalytic core and other essential protein components of the spliceosome. RBM22 is also involved in gene regulation, and is able to bind DNA, acting as a bona fide transcription factor on a large number of target genes. Undoubtedly due to its wide scope in the regulation of gene expression, RBM22 has been associated with several pathologies and, notably, with the aggressiveness of cancer cells and with the phenotype of a myelodysplastic syndrome. Mutations, enforced expression level, and haploinsufficiency of RBM22 gene are observed in those diseases. RBM22 could represent a potential therapeutic target in specific diseases, and, notably, in cancer.
Collapse
Affiliation(s)
- Benoît Soubise
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
| | - Yan Jiang
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Nathalie Douet-Guilbert
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
| | - Marie-Bérengère Troadec
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- Correspondence: ; Tel.: +33-2-98-01-64-55
| |
Collapse
|
13
|
Yang T, Chen Y, Xu J, Li J, Liu H, Liu N. Bioinformatics screening the novel and promising targets of curcumin in hepatocellular carcinoma chemotherapy and prognosis. BMC Complement Med Ther 2022; 22:21. [PMID: 35078445 PMCID: PMC8788085 DOI: 10.1186/s12906-021-03487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The aim of present study was to screen the novel and promising targets of curcumin in hepatocellular carcinoma diagnosis and chemotherapy. METHODS Potential targets of curcumin were screened from SwissTargetPrediction, ParmMapper and drugbank databases. Potential aberrant genes of hepatocellular carcinoma were screened from Genecards databases. Fifty paired hepatocellular carcinoma patients' gene expression profiles from the GEO database were used to test potential targets of curcumin. Besides, GO analysis, KEGG pathway enrichment analysis and PPI network construction were used to explore the underlying mechanism of candidate hub genes. ROC analysis and Kaplan-Meier analysis were used to evaluate the diagnostic and prognostic value of candidate hub genes, respectively. Real-time PCR was used to verify the results of bioinformatics analysis. RESULTS Bioinformatics analysis results suggested that AURKA, CDK1, CCNB1, TOP2A, CYP2B6, CYP2C9, and CYP3A4 genes served as candidate hub genes. AURKA, CDK1, CCNB1 and TOP2A were significantly upregulated and correlated with poor prognosis in hepatocellular carcinoma, AUC values of which were 95.7, 96.9, 98.1 and 96.1% respectively. There was not significant correlation between the expression of CYP2B6 and prognosis of hepatocellular carcinoma, while CYP2C9 and CYP3A4 genes were significantly downregulated and correlated with poor prognosis in hepatocellular carcinoma. AUC values of CYP2B6, CYP2C9, and CYP3A4 were 96.0, 97.0 and 88.0% respectively. In vitro, we further confirmed that curcumin significantly downregulated the expression of AURKA, CDK1, and TOP2A genes, while significantly upregulated the expression of CYP2B6, CYP2C9, and CYP3A4 genes. CONCLUSIONS Our results provided a novel panel of AURKA, CDK1, TOP2A, CYP2C9, and CYP3A4 candidate genes for curcumin related chemotherapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tingting Yang
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Gonghexiheng Street 1, Guangzhou, Guangdong, 510080, P.R. China
| | - Yibiao Chen
- Department of Head and Neck Radiotherapy, Meizhou City People's Hospital, No.6 Building, Huangtang Road 63, Meijiang District, Meizhou, Guangdong, 514031, P.R. China
| | - Jiexuan Xu
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Gonghexiheng Street 1, Guangzhou, Guangdong, 510080, P.R. China
| | - Jinyuan Li
- Department of Head and Neck Radiotherapy, Meizhou City People's Hospital, No.6 Building, Huangtang Road 63, Meijiang District, Meizhou, Guangdong, 514031, P.R. China
| | - Hong Liu
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Gonghexiheng Street 1, Guangzhou, Guangdong, 510080, P.R. China.
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Gonghexiheng Street 1, Guangzhou, Guangdong, 510080, P.R. China.
| | - Naihua Liu
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Gonghexiheng Street 1, Guangzhou, Guangdong, 510080, P.R. China.
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Gonghexiheng Street 1, Guangzhou, Guangdong, 510080, P.R. China.
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglin Down Street 19, Guangzhou, Guangdong, 510080, P.R. China.
| |
Collapse
|
14
|
Li Z, Guo Q, Zhang J, Fu Z, Wang Y, Wang T, Tang J. The RNA-Binding Motif Protein Family in Cancer: Friend or Foe? Front Oncol 2021; 11:757135. [PMID: 34804951 PMCID: PMC8600070 DOI: 10.3389/fonc.2021.757135] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/19/2021] [Indexed: 01/22/2023] Open
Abstract
The RNA-binding motif (RBM) proteins are a class of RNA-binding proteins named, containing RNA-recognition motifs (RRMs), RNA-binding domains, and ribonucleoprotein motifs. RBM proteins are involved in RNA metabolism, including splicing, transport, translation, and stability. Many studies have found that aberrant expression and dysregulated function of RBM proteins family members are closely related to the occurrence and development of cancers. This review summarizes the role of RBM proteins family genes in cancers, including their roles in cancer occurrence and cell proliferation, migration, and apoptosis. It is essential to understand the mechanisms of these proteins in tumorigenesis and development, and to identify new therapeutic targets and prognostic markers.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Qingyu Guo
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Jiaxin Zhang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Zitong Fu
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yifei Wang
- Department of Urology, Hainan General Hospital, Hainan, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Tian J, Ma C, Yang L, Sun Y, Zhang Y. Prognostic Value and Immunological Characteristics of a Novel RNA Binding Protein Signature in Cutaneous Melanoma. Front Genet 2021; 12:723796. [PMID: 34531901 PMCID: PMC8438157 DOI: 10.3389/fgene.2021.723796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022] Open
Abstract
Background The existing studies indicate that RNA binding proteins (RBPs) are closely correlated with the genesis and development of cancers. However, the role of RBPs in cutaneous melanoma remains largely unknown. Therefore, the present study aims to establish a reliable prognostic signature based on RBPs to distinguish cutaneous melanoma patients with different prognoses and investigate the immune infiltration of patients. Methods After screening RBPs from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, Cox and least absolute shrinkage and selection operator (LASSO) regression analysis were then used to establish a prediction model. The relationship between the signature and the abundance of immune cell types, the tumor microenvironment (TME), immune-related pathways, and immune checkpoints were also analyzed. Results In total, 7 RBPs were selected to establish the prognostic signature. Patients categorized as a high-risk group demonstrated worse overall survival (OS) rates compared to those of patients categorized as a low-risk group. The signature was validated in an independent external cohort and indicated a promising prognostic ability. Further analysis indicated that the signature wasan independent prognostic indicator in cutaneous melanoma. A nomogram combining risk score and clinicopathological features was then established to evaluate the 3- and 5-year OS in cutaneous melanoma patients. Analyses of immune infiltrating, the TME, immune checkpoint, and drug susceptibility revealed significant differences between the two groups. GSEA analysis revealed that basal cell carcinoma, notch signaling pathway, melanogenesis pathways were enriched in the high-risk group, resulting in poor OS. Conclusion We established and validated a robust 7-RBP signature that could be a potential biomarker to predict the prognosis and immunotherapy response of cutaneous melanoma patients, which provides new insights into cutaneous melanoma immunotherapeutic strategies.
Collapse
Affiliation(s)
- Jun Tian
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Chongzhi Ma
- Department of Dermatology, The 63600 Hospital of PLA, Lanzhou, China
| | - Li Yang
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yang Sun
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yuan Zhang
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
16
|
Gao C, Shen J, Chen W, Yao L, Liang X, Zhu R, Chen Z. Increased RBM12 expression predicts poor prognosis in hepatocellular carcinoma based on bioinformatics. J Gastrointest Oncol 2021; 12:1905-1926. [PMID: 34532138 DOI: 10.21037/jgo-21-390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/05/2021] [Indexed: 11/06/2022] Open
Abstract
Background Liver cancer is one of the major causes of cancer death worldwide, incurring high mortality and a significant financial burden on the healthcare system. Abnormal RNA-binding proteins (RBPs) have been found to be associated with carcinogenesis in liver cancer. Among these, RNA-binding motif protein 12 (RBM12) is located in the exon junction complex (EJC). The goal of this study was to determine what role RBM12 plays in hepatocellular carcinoma (HCC) from a biological perspective. Methods The Tumor IMmune Estimation Resource (TIMER) and the Human Protein Atlas database were used to examine the expression level of RBM12, with the UALCAN and Gene Expression Profiling Interactive Analysis (GEPIA) databases used to investigate the relationship between RBM12 and other noteworthy clinical features. RBM12 expression in cells and tissue samples was detected using quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis. The functional network of RBM12 in HCC was studied using LinkedOmics and gene set enrichment analysis (GSEA), while the effects of hypomethylation on the expression of RBM12 in HCC was investigated using methylation databases. Finally, we used TIMER and CIBERSORT to investigate the relationship between immune cell infiltration and RBM12 in HCC. Results RBM12 is highly elevated in HCC tissues and cells, and it can be used to predict the prognosis of patients with HCC. Analysis with LinkedOmics and GSEA revealed RBM12 to be closely linked with tumor progression. Furthermore, hypomethylation was linked to an increase in RBM12 expression in HCC, while RBM12 was associated with immune cell infiltration. Conclusions This study shows that an elevated level of RBM12 in HCC indicates a poor patient prognosis. Furthermore, according to LinkedOmics and GSEA analyses, RBM12 was implicated in the most important hallmark pathways. Our findings suggest that RBM12 overexpression is caused by hypomethylation and that RBM12 plays a key role in liver cancer tumor immunity.
Collapse
Affiliation(s)
- Cheng Gao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Medical College of Nantong University, Nantong, China
| | - Jianbo Shen
- Medical College of Nantong University, Nantong, China.,Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Weipeng Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Medical College of Nantong University, Nantong, China
| | - Lanqing Yao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Medical College of Nantong University, Nantong, China
| | - Xiaoliang Liang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Medical College of Nantong University, Nantong, China
| | - Renfei Zhu
- Department of Hepatobiliary, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Zhong Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
17
|
RNA-Binding Motif Protein 11 (RBM11) Serves as a Prognostic Biomarker and Promotes Ovarian Cancer Progression. DISEASE MARKERS 2021; 2021:3037337. [PMID: 34434291 PMCID: PMC8382552 DOI: 10.1155/2021/3037337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 01/14/2023]
Abstract
Ovarian cancer is one of the most lethal gynecologic malignancies for women. Due to the lack of efficient target therapy, the overall survival rate for patients with advanced ovarian cancer is still low. Illustrating the molecular mechanisms dictating ovarian cancer progression is critically important to develop novel therapeutic agents. Here, we found that RNA-binding motif protein 11 (RBM11) was highly elevated in ovarian cancer tissues compared with normal ovary, while RBM11 depletion in ovarian cancer cells resulted in impaired cell growth and invasion. Moreover, knockdown of RBM11 also retarded tumor growth in the A2780 ovarian cancer xenograft model. Mechanically, we found that RBM11 positively regulated Akt/mTOR signaling pathway activation in ovarian cancer cells. Thus, these results identify RBM11 is a novel oncogenic protein and prognostic biomarker for ovarian cancers.
Collapse
|
18
|
Li Y, Liu LL, Hu R, Sun Q, Wen XB, Luo RZ, Yan SM. Elevated expression of the RNA-binding motif protein 43 predicts poor prognosis in esophageal squamous cell carcinoma. Int J Clin Oncol 2021; 26:1847-1855. [PMID: 34398362 PMCID: PMC8449765 DOI: 10.1007/s10147-021-01976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/04/2021] [Indexed: 11/13/2022]
Abstract
RNA-binding proteins (RBPs) play crucial roles in the post-transcriptional regulation of mRNA during numerous physiological and pathological processes, including tumor genesis and development. However, the role of RNA-binding motif protein 43 (RBM43) in esophageal squamous cell carcinoma (ESCC) has not been reported so far. The current study was the first to evaluate RBM43 protein expression by immunohistochemistry (IHC) in an independent cohort of 207 patients with ESCC, to explore its potential prognostic value and clinical relevance in ESCC. The results indicated that RBM43 protein levels were significantly elevated in ESCC tissues and increased RBM43 expression was associated with age and N categories. In addition, ESCC patients with high expression of RBM43 had shorter overall survival (OS) and disease‐free survival (DFS) than those with low RBM43 expression. Furthermore, when survival analyses were conducted at different clinical stages, overexpression of RBM43 was significantly correlated with shortened survival in patients with ESCC at early stages (TNM stage I–II and N0 stage). Cox regression analysis further proved that high RBM43 expression was an independent predictor of poor prognosis in ESCC patients. In conclusion, increased expression of RBM43 is correlated with malignant attributes to ESCC and predicts unfavorable prognosis, suggesting an effective prognostic biomarker and potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Yong Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Li-Li Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Rui Hu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310022, China
| | - Qi Sun
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Xiao-Bo Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Rong-Zhen Luo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China. .,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China.
| | - Shu-Mei Yan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China. .,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
19
|
Shi Q, Meng Z, Tian XX, Wang YF, Wang WH. Identification and validation of a hub gene prognostic index for hepatocellular carcinoma. Future Oncol 2021; 17:2193-2208. [PMID: 33620260 DOI: 10.2217/fon-2020-1112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aims: We aim to provide new insights into the mechanisms of hepatocellular carcinoma (HCC) and identify key genes as biomarkers for the prognosis of HCC. Materials & methods: Differentially expressed genes between HCC tissues and normal tissues were identified via the Gene Expression Omnibus tool. The top ten hub genes screened by the degree of the protein nodes in the protein-protein interaction network also showed significant associations with overall survival in HCC patients. Results: A prognostic model containing a five-gene signature was constructed to predict the prognosis of HCC via multivariate Cox regression analysis. Conclusion: This study identified a novel five-gene signature (CDK1, CCNB1, CCNB2, BUB1 and KIF11) as a significant independent prognostic factor.
Collapse
Affiliation(s)
- Q Shi
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Z Meng
- The People's Hospital of Henan Province, Zhengzhou, Henan, 450003, China
| | - X X Tian
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Y F Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - W H Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
20
|
Tian S, Liu J, Sun K, Liu Y, Yu J, Ma S, Zhang M, Jia G, Zhou X, Shang Y, Han Y. Systematic Construction and Validation of an RNA-Binding Protein-Associated Model for Prognosis Prediction in Hepatocellular Carcinoma. Front Oncol 2021; 10:597996. [PMID: 33575212 PMCID: PMC7870868 DOI: 10.3389/fonc.2020.597996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Evidence from prevailing studies show that hepatocellular carcinoma (HCC) is among the top cancers with high mortality globally. Gene regulation at post-transcriptional level orchestrated by RNA-binding proteins (RBPs) is an important mechanism that modifies various biological behaviors of HCC. Currently, it is not fully understood how RBPs affects the prognosis of HCC. In this study, we aimed to construct and validate an RBP-related model to predict the prognosis of HCC patients. METHODS Differently expressed RBPs were identified in HCC patients based on the GSE54236 dataset from the Gene Expression Omnibus (GEO) database. Integrative bioinformatics analyses were performed to select hub genes. Gene expression patterns were validated in The Cancer Genome Atlas (TCGA) database, after which univariate and multivariate Cox regression analyses, as well as Kaplan-Meier analysis were performed to develop a prognostic model. Then, the performance of the prognostic model was assessed using receiver operating characteristic (ROC) curves and clinicopathological correlation analysis. Moreover, data from the International Cancer Genome Consortium (ICGC) database were used for external validation. Finally, a nomogram combining clinicopathological parameters and prognostic model was established for the individual prediction of survival probability. RESULTS The prognostic risk model was finally constructed based on two RBPs (BOP1 and EZH2), facilitating risk-stratification of HCC patients. Survival was markedly higher in the low-risk group relative to the high-risk group. Moreover, higher risk score was associated with advanced pathological grade and late clinical stage. Besides, the risk score was found to be an independent prognosis factor based on multivariate analysis. Nomogram including the risk score and clinical stage proved to perform better in predicting patient prognosis. CONCLUSIONS The RBP-related prognostic model established in this study may function as a prognostic indicator for HCC, which could provide evidence for clinical decision making.
Collapse
Affiliation(s)
- Siyuan Tian
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Jingyi Liu
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Keshuai Sun
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Yansheng Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Jiahao Yu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Shuoyi Ma
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Miao Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Gui Jia
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Xia Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Yulong Shang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Ying Han
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|