1
|
Ou Y, Wang M, Xu Q, Sun B, Jia Y. Small molecule agents for triple negative breast cancer: Current status and future prospects. Transl Oncol 2024; 41:101893. [PMID: 38290250 PMCID: PMC10840364 DOI: 10.1016/j.tranon.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis. The number of cases increased by 2.26 million in 2020, making it the most commonly diagnosed cancer type in the world. TNBCs lack hormone receptor (HR) and human epidermal growth factor 2 (HER2), which limits treatment options. Currently, paclitaxel-based drugs combined with other chemotherapeutics remain the main treatment for TNBC. There is currently no consensus on the best therapeutic regimen for TNBC. However, there have been successful clinical trials exploring large-molecule monoclonal antibodies, small-molecule targeted drugs, and novel antibody-drug conjugate (ADC). Although monoclonal antibodies have produced clinical success, their large molecular weight can limit therapeutic benefits. It is worth noting that in the past 30 years, the FDA has approved small molecule drugs for HER2-positive breast cancers. The lack of effective targets and the occurrence of drug resistance pose significant challenges in the treatment of TNBC. To improve the prognosis of TNBC, it is crucial to search for effective targets and to overcome drug resistance. This review examines the clinical efficacy, adverse effects, resistance mechanisms, and potential solutions of targeted small molecule drugs in both monotherapies and combination therapies. New therapeutic targets, including nuclear export protein 1 (XPO1) and hedgehog (Hh), are emerging as potential options for researchers and become integrated into clinical trials for TNBC. Additionally, there is growing interest in the potential of targeted protein degradation chimeras (PROTACs), degraders of rogue proteins, as a future therapy direction. This review provides potentially valuable insights with clinical implications.
Collapse
Affiliation(s)
- Yan Ou
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Mengchao Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qian Xu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Binxu Sun
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
2
|
Zhao W, Wu Y, Wang S, Zhao F, Liu W, Xue Z, Zhang L, Wang J, Han M, Li X, Huang B. HTRA1 promotes EMT through the HDAC6/Ac-α-tubulin pathway in human GBM cells. CNS Neurosci Ther 2024; 30:e14605. [PMID: 38334007 PMCID: PMC10853898 DOI: 10.1111/cns.14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 01/07/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND The infiltrative nature of human gliomas renders complete surgical removal of tumors futile. Thus, illuminating mechanisms of their infiltrative properties may improve therapies and outcomes of glioma patients. METHODS Comprehensive bioinformatic analyses of PRSS family were undertaken. Transfection of HTRA1 siRNAs was used to suppress HTRA1 expression. CCK-8, EdU, and colony formation assay were employed to assess cell viability, and cell migration/invasion was detected by transwell, wound healing, and 3D tumor spheroid invasion assays. Immunoprecipitation was applied to study the mechanism that HTRA1 affected cell migration. In addition, in situ xenograft tumor model was employed to explore the role of HTRA1 in glioma growth in vivo. RESULTS HTRA1 knockdown could lead to suppression of cell viability, migration and invasion, as well as increased apoptosis. Immunoprecipitation results indicates HTRA1 might facilitate combination between HDAC6 and α-tubulin to enhance cell migration by decreasing α-tubulin acetylation. Besides, HTRA1 knockdown inhibited the growth of xenografts derived from orthotopic implantation of GBM cells and prolonged the survival time of tumor-bearing mice. CONCLUSION Our results indicate that HTRA1 promotes the proliferation and migration of GBM cells in vitro and in vivo, and thus may be a potential target for treatment in gliomas.
Collapse
Affiliation(s)
- Wenbo Zhao
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Yibo Wu
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
| | - Shuai Wang
- University of Pittsburgh Medical Center Hillman Cancer CenterPittsburghPennsylvaniaUSA
| | - Feihu Zhao
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
| | - Wenyu Liu
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
| | - Zhiyi Xue
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
| | - Lin Zhang
- Department of Clinical LaboratoryQilu Hospital of Shandong UniversityJinanChina
| | - Jian Wang
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Department of BiomedicineUniversity of BergenBergenNorway
| | - Mingzhi Han
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Xingang Li
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Bin Huang
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| |
Collapse
|
3
|
Wen Y, Ye S, Li Z, Zhang X, Liu C, Wu Y, Zheng R, Xu C, Tian J, Shu L, Yan Q, Ai F, Ma J. HDAC6 inhibitor ACY-1215 enhances STAT1 acetylation to block PD-L1 for colorectal cancer immunotherapy. Cancer Immunol Immunother 2024; 73:7. [PMID: 38231305 PMCID: PMC10794344 DOI: 10.1007/s00262-023-03624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024]
Abstract
The search for effective combination therapy with immune checkpoint inhibitors (ICI) has become important for cancer patients who do not respond to the ICI well. Histone deacetylases (HDACs) inhibitors have attracted wide attention as anti-tumor agents. ACY-1215 is a selective inhibitor of HDAC6, which can inhibit the growth of a variety of tumor. We previously revealed that HDAC family is highly expressed in colorectal cancer specimens and mouse models. In this study, ACY-1215 was combined with anti-PD1 to treat tumor-bearing mice associated with colorectal cancer. ACY-1215 combined with anti-PD1 effectively inhibited the colorectal tumor growth. The expression of PD-L1 in tumor of mice were inhibited by ACY-1215 and anti-PD1 combination treatment, whereas some biomarkers reflecting T cell activation were upregulated. In a co-culture system of T cells and tumor cells, ACY-1215 helped T cells to kill tumor cells. Mechanically, HDAC6 enhanced the acetylation of STAT1 and inhibited the phosphorylation of STAT1, thus preventing STAT1 from entering the nucleus to activate PD-L1 transcription. This study reveals a novel regulatory mechanism of HDAC6 on non-histone substrates, especially on protein acetylation. HDAC6 inhibitors may be of great significance in tumor immunotherapy and related combination strategies.
Collapse
Affiliation(s)
- Yuqing Wen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhengshuo Li
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Xiaoyue Zhang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Can Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Yangge Wu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Run Zheng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Chenxiao Xu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Junrui Tian
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Lanjun Shu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feiyan Ai
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China.
| | - Jian Ma
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China.
| |
Collapse
|
4
|
Duda J, Thomas SN. Interactions of Histone Deacetylase 6 with DNA Damage Repair Factors Strengthen its Utility as a Combination Drug Target in High-Grade Serous Ovarian Cancer. ACS Pharmacol Transl Sci 2023; 6:1924-1933. [PMID: 38107255 PMCID: PMC10723650 DOI: 10.1021/acsptsci.3c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 12/19/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is the deadliest gynecologic malignancy in women. The low survival rate is largely due to drug resistance. Approximately 80% of patients who initially respond to treatment relapse and become drug-resistant. The lack of effective second-line therapeutics remains a substantial challenge for BRCA-1/2 wild-type HGSOC patients. Histone Deacetylases (HDACs) are promising targets in HGSOC treatment; however, the mechanism and efficacy of HDAC inhibitors are understudied in HGSOC. In order to consider HDACs as a treatment target, an improved understanding of their function within HGSOC is required. This includes elucidating HDAC6-specific protein-protein interactions. In this study, we carried out substrate trapping followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate HDAC6 catalytic domain (CD)-specific interactors in the context of BRCA-1/2 wild-type HGSOC. Overall, this study identified new HDAC6 substrates that may be unique to HGSOC. The HDAC6-CD1 mutant condition contained the largest number of significant proteins compared to the CD2 mutant and the CD1/2 mutant conditions, suggesting the HDAC6-CD1 domain has catalytic activity that is independent of CD2. Among the identified substrates were proteins involved in DNA damage repair including PARP proteins. These findings further justify the use of HDAC inhibitors as a combination treatment with platinum chemotherapy agents and PARP inhibitors in HGSOC.
Collapse
Affiliation(s)
- Jolene
M. Duda
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stefani N. Thomas
- Department
of Laboratory Medicine and Pathology, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Zhang J, Chen X, Chen G, Wang H, Jia L, Hao Y, Yao D. Identification of a novel PAK1/HDAC6 dual inhibitor ZMF-23 that triggers tubulin-stathmin regulated cell death in triple negative breast cancer. Int J Biol Macromol 2023; 251:126348. [PMID: 37586623 DOI: 10.1016/j.ijbiomac.2023.126348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most poorly treated subtype of breast cancer, and targeting the heterogeneity of TNBC has emerged as a fascinating therapeutic strategy. In this study, we propose for the first time that dual-targeting PAK1 and HDAC6 is a promising novel strategy for TNBC treatment due to their essential roles in the regulation of energy metabolism and epigenetic modification. We discovered a novel dual-targeting PAK1/HDAC6 inhibitor, 6 - (2-(cyclopropylamino) - 6 - (2,4-dichlorophenyl) - 7 - oxopyrido [2,3-d] pyrimidin - 8 (7H) -yl) - N-hydroxyhexanamide (ZMF-23), which presented profound inhibitory activity against PAK1 and HDAC6 and robust antiproliferative potency in MDA-MB-231 cells. In addition, SPR and CETSA assay demonstrated the targeted binding of ZMF-23 with PAK1/HDAC6. Mechanically, ZMF-23 strongly inhibited the cellular PAK1 and HDAC6 activity, impeded PAK1 and HDAC6 regulated aerobic glycolysis and migration. By RNA-seq analysis, ZMF-23 was found to induce TNF-α-regulated necroptosis, which further enhanced apoptosis. Additionally, ZMF-23 triggered PAK1-tubulin/HDAC6-Stathmin regulated microtubule structure changes, which further induced the G2/M cycle arrest. Moreover, prominent anti-proliferative effect of ZMF-23 was confirmed in the TNBC xenograft zebrafish and mouse model via PAK1 and HDAC6 inhibition. Collectively, ZMF-23 is a novel dual PAK1/HDAC6 inhibitor with TNBC treatment potential.
Collapse
Affiliation(s)
- Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiya Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Gang Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Hailing Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Lin Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Yue Hao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| | - Dahong Yao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
6
|
The Role of Patient-Derived Organoids in Triple-Negative Breast Cancer Drug Screening. Biomedicines 2023; 11:biomedicines11030773. [PMID: 36979752 PMCID: PMC10045189 DOI: 10.3390/biomedicines11030773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive breast cancer subtypes, with a grave prognosis and few effective treatment options. Organoids represent revolutionary three-dimensional cell culture models, derived from stem or differentiated cells and preserving the capacity to differentiate into the cell types of their tissue of origin. The current review aims at studying the potential of patient-derived TNBC organoids for drug sensitivity testing as well as highlighting the advantages of the organoid technology in terms of drug screening. In order to identify relevant studies, a literature review was conducted using the MEDLINE and LIVIVO databases. The search terms “organoid” and “triple-negative breast cancer” were employed, and we were able to identify 25 studies published between 2018 and 2022. The current manuscript represents the first comprehensive review of the literature focusing on the use of patient-derived organoids for drug sensitivity testing in TNBC. Patient-derived organoids are excellent in vitro study models capable of promoting personalized TNBC therapy by reflecting the treatment responses of the corresponding patients and exhibiting high predictive value in the context of patient survival evaluation.
Collapse
|
7
|
Zheng YC, Kang HQ, Wang B, Zhu YZ, Mamun MAA, Zhao LF, Nie HQ, Liu Y, Zhao LJ, Zhang XN, Gao MM, Jiang DD, Liu HM, Gao Y. Curriculum vitae of HDAC6 in solid tumors. Int J Biol Macromol 2023; 230:123219. [PMID: 36642357 DOI: 10.1016/j.ijbiomac.2023.123219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Histone deacetylase 6 (HDAC6) is the only member of the HDAC family that resides primarily in the cytoplasm with two catalytic domains and a ubiquitin-binding domain. HDAC6 is highly expressed in various solid tumors and participates in a wide range of biological activities, including hormone receptors, the p53 signaling pathway, and the kinase cascade signaling pathway due to its unique structural foundation and abundant substrate types. Additionally, HDAC6 can function as an oncogenic factor in solid tumors, boosting tumor cell proliferation, invasion and metastasis, drug resistance, stemness, and lowering tumor cell immunogenicity, so assisting in carcinogenesis. Pan-HDAC inhibitors for cancer prevention are associated with potential cardiotoxicity in clinical investigations. It's interesting that HDAC6 silencing didn't cause any significant harm to normal cells. Currently, the use of HDAC6 specific inhibitors, individually or in combination, is among the most promising therapies in solid tumors. This review's objective is to give a general overview of the structure, biological functions, and mechanism of HDAC6 in solid tumor cells and in the immunological milieu and discuss the preclinical and clinical trials of selective HDAC6 inhibitors. These endeavors highlight that targeting HDAC6 could effectively kill tumor cells and enhance patients' immunity during solid tumor therapy.
Collapse
Affiliation(s)
- Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hui-Qin Kang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Yuan-Zai Zhu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - M A A Mamun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Long-Fei Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hai-Qian Nie
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying Liu
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Henan 450001, China
| | - Li-Juan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiao-Nan Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Mei-Mei Gao
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Henan 450001, China
| | - Dan-Dan Jiang
- Department of Pharmacy, People's Hospital of Henan Province, Zhengzhou University, Henan 450001, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
8
|
Jiang D, Ma P. Canagliflozin, characterized as a HDAC6 inhibitor, inhibits gastric cancer metastasis. Front Oncol 2022; 12:1057455. [DOI: 10.3389/fonc.2022.1057455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer is a common gastrointestinal cancer. Survival outcome for patients with the recurrence or metastasis remains poor due to the lack of effective targeting drugs. The mechanisms of non-histone acetylation modifications are key epigenetic regulations that participate in various biological processes. HDAC6 is mostly located in the cytoplasm to deacetylate non-histone substrates, which has been identified as a critical promoter of many oncogenic pathways in cancers, including gastric cancer. Nevertheless, its inhibitor has not been applied in gastric cancer clinically. In this study, we identified canagliflozin as an active HDAC6-targeted inhibitor from FDA-approved Drug Library by enzymatic assay. The strong affinity of the compounds with HDAC6 was further verified by surface plasmon resonance (SPR) and cellular thermal shift assay (CETSA). In addition, molecular docking showed that canagliflozin could bind to the active pocket of HDAC6 and form interactions with key residues. Further experiments revealed that canagliflozin could effectively inhibit the migration and epithelial-mesenchymal-transition (EMT) of gastric cancer cells in vitro and in vivo. These results reveal a novel finding that canagliflozin has the potential to be an effective agent in inhibiting gastric cancer metastasis.
Collapse
|
9
|
Deng Y, Gao J, Xu G, Yao Y, Sun Y, Shi Y, Hao X, Niu L, Li H. HDAC6-dependent deacetylation of AKAP12 dictates its ubiquitination and promotes colon cancer metastasis. Cancer Lett 2022; 549:215911. [PMID: 36122629 DOI: 10.1016/j.canlet.2022.215911] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/02/2022]
Abstract
Aberrant expression of histone deacetylase 6 (HDAC6) is greatly involved in neoplasm metastasis, which is a leading cause of colon cancer related death. Thus, deep understanding of the regulatory mechanisms of HDAC6 in the metastasis of colon cancer is warranted. In this study, we firstly found that HDAC6 expression was highly expressed in metastatic colon cancer tissues and inhibition or knockdown of HDAC6 suppressed colon cancer metastasis. Next, based on proteomic analysis we uncovered A-kinase anchoring protein 12 (AKAP12) was a novel substrate of HDAC6. HDAC6 interacted with AKAP12 and deacetylated the K526/K531 residues of AKAP12. Moreover, deacetylation of AKAP12 at K531 by HDAC6 increased its ubiquitination level, which facilitated AKAP12 proteasome-dependent degradation. Importantly, we observed an inverse correlation between AKAP12 and HDAC6 protein levels with human colon cancer specimens. Further deletion of AKAP12 in HDAC6 knockdown cells restored the cell motility defects and reactivated the protein kinase C isoforms, repression of which were responsible for the inhibition of cancer metastasis of AKAP12. Our study identified AKAP12 was a new interactor and substrate of HDAC6 and uncovered a novel mechanism through which HDAC6-dependent AKAP12 deacetylation led to its ubiquitination mediated degradation and promoted colon cancer metastasis.
Collapse
Affiliation(s)
- Yilin Deng
- Department of Gastrointestinal Cancer Biology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Phase I Clinical Trial Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jinjin Gao
- Department of Gastrointestinal Cancer Biology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Guangying Xu
- Department of Gastrointestinal Cancer Biology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yuan Yao
- Department of Gastrointestinal Cancer Biology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yehui Shi
- Phase I Clinical Trial Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xishan Hao
- Department of Gastrointestinal Cancer Biology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Liling Niu
- Department of Gastrointestinal Cancer Biology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
10
|
Li J, Yu M, Fu S, Liu D, Tan Y. Role of Selective Histone Deacetylase 6 Inhibitor ACY-1215 in Cancer and Other Human Diseases. Front Pharmacol 2022; 13:907981. [PMID: 35652048 PMCID: PMC9149003 DOI: 10.3389/fphar.2022.907981] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 01/03/2023] Open
Abstract
The deacetylation process regulated by histone deacetylases (HDACs) plays an important role in human health and diseases. HDAC6 belongs to the Class IIb of HDACs family, which mainly modifies non-histone proteins located in the cytoplasm. HDAC6 plays a key role in tumors, neurological diseases, and inflammatory diseases. Therefore, targeting HDAC6 has become a promising treatment strategy in recent years. ACY-1215 is the first orally available highly selective HDAC6 inhibitor, and its efficacy and therapeutic effects are being continuously verified. This review summarizes the research progress of ACY-1215 in cancer and other human diseases, as well as the underlying mechanism, in order to guide the future clinical trials of ACY-1215 and more in-depth mechanism researches.
Collapse
Affiliation(s)
- Jianglei Li
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Meihong Yu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Shifeng Fu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China,*Correspondence: Deliang Liu, ; Yuyong Tan,
| | - Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China,*Correspondence: Deliang Liu, ; Yuyong Tan,
| |
Collapse
|
11
|
Yoshimoto S, Morita H, Okamura K, Hiraki A, Hashimoto S. αTAT1-induced tubulin acetylation promotes ameloblastoma migration and invasion. J Transl Med 2022; 102:80-89. [PMID: 34508164 PMCID: PMC8695380 DOI: 10.1038/s41374-021-00671-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 01/18/2023] Open
Abstract
Ameloblastoma (AB) is the most common benign epithelial odontogenic tumor occurring in the jawbone. AB is a slowly growing tumor but sometimes shows a locally invasive and an aggressive growth pattern with a marked bone resorption. In addition, the local recurrence and distant metastasis of AB also sometimes occurs, which resembles one of the typical malignant potentials. From these points of view, to understand better the mechanisms of AB cell migration or invasion is necessary for the better clinical therapy and improvements of the patients' quality of life. Microtubules in eukaryotic cells reveal the shape of hollow cylinders made up of polymerized alpha (α)- and beta (β)-tubulin dimers and form the cytoskeleton together with microfilaments and intermediate filaments. Microtubules play important roles in cell migration by undergoing assembly and disassembly with post-translational modifications. Stability of microtubules caused by their acetylation is involved in cell migration. In this study, we investigated the expression and distribution of acetylated α-tubulin and alpha-tubulin N-acetyltransferase 1 (αTAT1), an enzyme which acetylates Lys-40 in α-tubulin, in AB specimens, and analyzed how tubulin was acetylated by αTAT1 activation in a human AB cell line, AM-1. Finally, we clarified that TGF-β-activated kinase1 (TAK1) was phosphorylated by TGF-β stimulation, then, induced tubulin acetylation via αTAT1 activation, which subsequently activated the migration and invasion of AB cells.
Collapse
Affiliation(s)
- Shohei Yoshimoto
- Section of Pathology, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka, 814-0193, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, 814-0193, Japan
| | - Hiromitsu Morita
- The Center for Visiting Dental Service, Department of General Dentistry, Fukuoka Dental College, Fukuoka, 814-0193, Japan
| | - Kazuhiko Okamura
- Section of Pathology, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka, 814-0193, Japan
| | - Akimitsu Hiraki
- Section of Oral Oncology, Department of Oral and Maxillofacial Surgery, Division of Oral and Medical Management, Fukuoka Dental College, Fukuoka, 814-0193, Japan
| | - Shuichi Hashimoto
- Section of Pathology, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka, 814-0193, Japan.
| |
Collapse
|
12
|
Tritchler D, Towle-Miller LM, Miecznikowski JC. Balanced Functional Module Detection in genomic data. BIOINFORMATICS ADVANCES 2021; 1:vbab018. [PMID: 36700111 PMCID: PMC9710612 DOI: 10.1093/bioadv/vbab018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/26/2021] [Indexed: 01/28/2023]
Abstract
Motivation High-dimensional genomic data can be analyzed to understand the effects of variables on a target variable such as a clinical outcome. For understanding the underlying biological mechanism affecting the target, it is important to discover the complete set of relevant variables. Thus variable selection is a primary goal, which differs from a prediction criterion. Of special interest are functional modules, cooperating sets of variables affecting the target which can be characterized by a graph. In applications such as social networks, the concept of balance in undirected signed graphs characterizes the consistency of associations within the network. This property requires that the module variables have a joint effect on the target outcome with no internal conflict, an efficiency that may be applied to biological networks. Results In this paper, we model genomic variables in signed undirected graphs for applications where the set of predictor variables influences an outcome. Consequences of the balance property are exploited to implement a new module discovery algorithm, balanced Functional Module Detection (bFMD), which selects a subset of variables from high-dimensional data that compose a balanced functional module. Our bFMD algorithm performed favorably in simulations as compared to other module detection methods. Additionally, bFMD detected interpretable results in an application using RNA-seq data obtained from subjects with Uterine Corpus Endometrial Carcinoma using the percentage of tumor invasion as the outcome of interest. The variables selected by bFMD have improved interpretability due to the logical consistency afforded by the balance property. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- David Tritchler
- Department of Biostatistics, University at Buffalo, Buffalo, NY 14260, USA,Biostatistics Division, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | | |
Collapse
|