1
|
Kondaboina S, Parrish O, Parada CA, Ferreira M. Whole Exome Sequencing of Intracranial Epidermoid Cysts Reveals Immune-Associated Mechanistic and Potential Targets. Cancers (Basel) 2024; 16:3487. [PMID: 39456581 PMCID: PMC11506683 DOI: 10.3390/cancers16203487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Intracranial Epidermoid Cysts (IECs) are rare intracranial tumors primarily treated through surgery. Cyst adherence complicates complete removal, leading to high rates of tumor progression after subtotal resection. The molecular drivers of IEC remain unknown. Consequently, advances in treatment have fallen short. Tumor genetic profiling has revealed potential targets for drug development, including FDA-approved options and reshaping treatment. The genetic landscape of IECs has not been explored. We applied Whole Exome Sequencing (WES) to IECs to gain insights into the mechanisms of oncogenesis and identify potential therapeutic targets. Methods: We performed WES on tumor tissue and matched blood samples, when available. Following GATK best practices, we conducted read processing, quality control, somatic variant calling, and copy-number inference. Data analyses and visualization were conducted in R. Results: Top altered genes are associated with the immune system and tumor microenvironment, suggesting a mechanism of immune evasion. Gene and pathway enrichment revealed a high mutation burden in genes associated with Extracellular Matrix (ECM) and PI3K-AKT-mTOR cascades. Recurrent and deleterious alterations in NOTCH2 and USP8 were identified in 50% and 30% of the cohort, respectively. Frequent amplifications in deubiquitinases and beta-defensins strengthened the involvement of immune mechanisms for oncogenic transformation. Conclusions: Top altered genes and recurrent mutations may play a role in shaping the microenvironment and modulating immune evasion in IECs. USP8 and NOTCH2 may serve as clinically relevant target for IECs. Finally, we present evidence that the crosstalk between the PI3K-Akt-mTOR and ECM signaling pathways may play a role in modulating the immune escape mechanism in IECs.
Collapse
Affiliation(s)
| | | | - Carolina Angelica Parada
- Department of Neurological Surgery, University of Washington Medical Center 1, Seattle, WA 98195, USA; (S.K.); (O.P.)
| | - Manuel Ferreira
- Department of Neurological Surgery, University of Washington Medical Center 1, Seattle, WA 98195, USA; (S.K.); (O.P.)
| |
Collapse
|
2
|
Pachuau L, Lalremmawia H, Ralte L, Vanlalpeka J, Pautu JL, Chenkual S, Zomuana T, Lalruatfela ST, Zohmingthanga J, Chhakchhuak L, Varma AK, Kumar NS. Uncovering novel pathogenic variants and pathway mutations in triple-negative breast cancer among the endogamous mizo tribe. Breast Cancer Res Treat 2024:10.1007/s10549-024-07501-9. [PMID: 39384723 DOI: 10.1007/s10549-024-07501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
PURPOSE The incidence of triple-negative breast cancer (TNBC) in India is higher compared to Western populations. The objective of this study is to identify novel and less reported variants in TNBC in Mizoram, a state with a high cancer incidence in India. METHODS We analysed whole exome sequencing data from triple-negative breast cancer (TNBC) patients in the Mizo population to identify key and novel variants. Moreover, we analysed reported breast cancer-related genes and pathway alterations. RESULTS Somatic mutation analysis revealed that TP53 was the most frequently mutated gene and TP53, CACNA1E, IGSF3, RYR1, and FAM155A as significantly mutated driver genes. Based on the ACMG guidelines, we identified a rare pathogenic germline variant of BRCA1 (p.C1697R) in 13% and a likely pathogenic frameshift insertion in RBMX (p.P106Ffs) in 73% of the patients. We also found that the ATM, STK11, and CDKN2A genes were significantly mutated in germline TNBC samples compared to healthy samples. Moreover, we identified novel somatic variants in CHEK2 (p.K182M) and NF1 (p.C245X), and novel germline variants RB1 (p.D111G), CDH1 (p.A10Gfs), CDKN2A (p.V96G), CDKN2A (p.S12Afs*22), MAP3K1 (CAAdelins0), MSH6 (p.L1226_L1230del), and PMS2 (TTCdelins0). Pathway analysis revealed that most somatic mutations were highly associated with PI3K-Akt signalling pathway and MAPK signalling pathways in TNBC. CONCLUSIONS These findings identified novel variants and key genes contributing to disease development and progression. Further analysis of less studied genes, including RBMX, MRC1, ATM, CTNNB1, and CDKN2A, in TNBC may reveal new potential genes for targeted therapeutic strategies and contribute to clinical advancements in the treatment of TNBC.
Collapse
Affiliation(s)
- Lalawmpuii Pachuau
- Department of Biotechnology, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
- Department of Pathology, Department of Health & Family Welfare, Civil Hospital Aizawl, Government of Mizoram, Dawrpui, Aizawl, Mizoram, 796001, India
| | - H Lalremmawia
- Department of Biotechnology, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Lalengkimi Ralte
- Department of Biotechnology, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Johan Vanlalpeka
- Department of Medicine, Zoram Medical College, Falkawn, Aizawl, Mizoram, 796 005, India
| | - Jeremy Lalrinsanga Pautu
- Department of Medical Oncology, Mizoram State Cancer Institute, Zemabawk, Aizawl, Mizoram, 796017, India
| | - Saia Chenkual
- Department of Surgery, Department of Health & Family Welfare, Civil Hospital Aizawl, Government of Mizoram, Dawrpui, Aizawl, 796001, Mizoram, India
- Zoram Medical College, Falkawn, Aizawl, Mizoram, 796 005, India
| | - Thomas Zomuana
- Department of Surgery, Department of Health & Family Welfare, Civil Hospital Aizawl, Government of Mizoram, Dawrpui, Aizawl, 796001, Mizoram, India
| | - Sailo Tlau Lalruatfela
- Department of Surgery, Department of Health & Family Welfare, Civil Hospital Aizawl, Government of Mizoram, Dawrpui, Aizawl, 796001, Mizoram, India
| | | | - Lalchhandama Chhakchhuak
- Department of Pathology, Department of Health & Family Welfare, Civil Hospital Aizawl, Government of Mizoram, Dawrpui, Aizawl, Mizoram, 796001, India
| | - Ashok K Varma
- Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Anushaktinagar, Maharastra, 400094, Mumbai, India
| | | |
Collapse
|
3
|
Rong S, Dai B, Yang C, Lan Z, Wang L, Xu L, Chen W, Chen J, Wu Z. HNRNPC modulates PKM alternative splicing via m6A methylation, upregulating PKM2 expression to promote aerobic glycolysis in papillary thyroid carcinoma and drive malignant progression. J Transl Med 2024; 22:914. [PMID: 39380010 PMCID: PMC11459990 DOI: 10.1186/s12967-024-05668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
The heterogeneous nuclear ribonucleoprotein C (HNRNPC) plays a crucial role in tumorigenesis, yet its role in papillary thyroid carcinoma (PTC) remains elusive. Herein, we elucidated the function and molecular mechanism of HNRNPC in PTC tumorigenesis and progression. Our study unveiled a significant upregulation of HNRNPC in PTC, and knockdown of HNRNPC markedly inhibited the proliferation, invasion, and metastasis of BCPAP cells. Furthermore, HNRNPC modulated PKM alternative splicing in BCPAP cells primarily through m6A modification. Additionally, by upregulating PKM2 expression, HNRNPC promoted aerobic glycolysis in BCPAP cells, thereby facilitating malignant progression in PTC. In summary, our findings demonstrate that HNRNPC regulates PKM alternative splicing through m6A methylation modification and promotes the proliferation, invasion and metastasis of PTC through glucose metabolism pathways mediated by PKM2. These discoveries provide new biomarkers for screening and diagnosing PTC patients and offer novel therapeutic targets for personalized treatment strategies.
Collapse
Affiliation(s)
- Shikuo Rong
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Thyroid Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.
| | - Bao Dai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunrong Yang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ziteng Lan
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Linhe Wang
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Xu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Weijian Chen
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Chen
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zeyu Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Alors‐Pérez E, Blázquez‐Encinas R, Moreno‐Montilla MT, García‐Vioque V, Jiménez‐Vacas JM, Mafficini A, González‐Borja I, Luchini C, Sánchez‐Hidalgo JM, Sánchez‐Frías ME, Pedraza‐Arevalo S, Romero‐Ruiz A, Lawlor RT, Viúdez A, Gahete MD, Scarpa A, Arjona‐Sánchez Á, Luque RM, Ibáñez‐Costa A, Castaño JP. Spliceosomic dysregulation in pancreatic cancer uncovers splicing factors PRPF8 and RBMX as novel candidate actionable targets. Mol Oncol 2024; 18:2524-2540. [PMID: 38790138 PMCID: PMC11459039 DOI: 10.1002/1878-0261.13658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, characterized by late diagnosis and poor treatment response. Surgery is the only curative approach, only available to early-diagnosed patients. Current therapies have limited effects, cause severe toxicities, and minimally improve overall survival. Understanding of splicing machinery alterations in PDAC remains incomplete. Here, we comprehensively examined 59 splicing machinery components, uncovering dysregulation in pre-mRNA processing factor 8 (PRPF8) and RNA-binding motif protein X-linked (RBMX). Their downregulated expression was linked to poor prognosis and malignancy features, including tumor stage, invasion and metastasis, and associated with poorer survival and the mutation of key PDAC genes. Experimental modulation of these splicing factors in pancreatic cancer cell lines reverted their expression to non-tumor levels and resulted in decreased key tumor-related features. These results provide evidence that the splicing machinery is altered in PDAC, wherein PRPF8 and RBMX emerge as candidate actionable therapeutic targets.
Collapse
Affiliation(s)
- Emilia Alors‐Pérez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Ricardo Blázquez‐Encinas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - María Trinidad Moreno‐Montilla
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Víctor García‐Vioque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Juan Manuel Jiménez‐Vacas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Andrea Mafficini
- ARC‐Net Research Centre and Section of Pathology of Department of Diagnostics and Public HealthUniversity and Hospital Trust of VeronaItaly
| | - Iranzu González‐Borja
- OncobionaTras Lab, Navarrabiomed, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra‐IDISNAUniversidad Pública de NavarraPamplonaSpain
| | - Claudio Luchini
- ARC‐Net Research Centre and Section of Pathology of Department of Diagnostics and Public HealthUniversity and Hospital Trust of VeronaItaly
| | - Juan M. Sánchez‐Hidalgo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CórdobaSpain
- Surgery ServiceReina Sofia University HospitalCórdobaSpain
| | - Marina E. Sánchez‐Frías
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Pathology ServiceReina Sofia University HospitalCórdobaSpain
| | - Sergio Pedraza‐Arevalo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | | | - Rita T. Lawlor
- ARC‐Net Research Centre and Section of Pathology of Department of Diagnostics and Public HealthUniversity and Hospital Trust of VeronaItaly
| | - Antonio Viúdez
- OncobionaTras Lab, Navarrabiomed, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra‐IDISNAUniversidad Pública de NavarraPamplonaSpain
- ICON plcPamplonaSpain
| | - Manuel D. Gahete
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CórdobaSpain
| | - Aldo Scarpa
- ARC‐Net Research Centre and Section of Pathology of Department of Diagnostics and Public HealthUniversity and Hospital Trust of VeronaItaly
| | - Álvaro Arjona‐Sánchez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Surgery ServiceReina Sofia University HospitalCórdobaSpain
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CórdobaSpain
| | - Alejandro Ibáñez‐Costa
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Justo P. Castaño
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CórdobaSpain
| |
Collapse
|
5
|
Qiu Y, Luo Y, Guo G, Meng J, Bao N, Jiang H. BMSCs-derived exosomes carrying miR-668-3p promote progression of osteoblasts in osteonecrosis of the femoral head: Expression of proteins CD63 and CD9. Int J Biol Macromol 2024; 280:136177. [PMID: 39357704 DOI: 10.1016/j.ijbiomac.2024.136177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Recently, exosomes that are derived from bone marrow mesenchymal stem cells (BMSCs) have garnered considerable interest due to their significant roles in the processes of bone regeneration and repair. Among the various molecular components present within these exosomes, miR-668-3p has emerged as a pivotal microRNA that may be instrumental in modulating the function and proliferation of osteoblasts, the cells responsible for bone formation. The primary objective of this research was to examine the enhancing effects of BMSC-derived exosomes that are enriched with miR-668-3p on the advancement of osteoblasts in the context of osteonecrosis of the femoral head. Furthermore, the study aimed to analyze how the expression of specific exosomal proteins, namely CD63 and CD9, influences this biological process. To conduct the investigation, BMSCs were isolated from healthy rat models, followed by the extraction of their secreted exosomes. The subsequent phase of the study involved assessing the proliferation and differentiation of osteoblasts by introducing the exosomes enriched with miR-668-3p into an experimental setup representing osteonecrosis of the femoral head. The findings revealed that exosomes derived from BMSCs, which contained miR-668-3p, significantly enhanced the proliferation of osteoblasts as well as the expression of key osteogenic marker genes. Notably, the levels of CD63 and CD9 proteins were markedly increased in the treated groups, indicating that the mechanisms underlying this promotion might involve cell adhesion and the endocytic uptake of exosomes.
Collapse
Affiliation(s)
- Yang Qiu
- Department of orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Yibin Luo
- Department of orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Guodong Guo
- Department of orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Jia Meng
- Department of orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China.
| | - Nirong Bao
- Department of orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China.
| | - Hui Jiang
- Department of orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China.
| |
Collapse
|
6
|
Zhang J, Xu X, Deng H, Liu L, Xiang Y, Feng J. Overcoming cancer drug-resistance calls for novel strategies targeting abnormal alternative splicing. Pharmacol Ther 2024; 261:108697. [PMID: 39025436 DOI: 10.1016/j.pharmthera.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Abnormal gene alternative splicing (AS) events are strongly associated with cancer progression. Here, we summarize AS events that contribute to the development of drug resistance and classify them into three categories: alternative cis-splicing (ACS), alternative trans-splicing (ATS), and alternative back-splicing (ABS). The regulatory mechanisms underlying AS processes through cis-acting regulatory elements and trans-acting factors are comprehensively described, and the distinct functions of spliced variants, including linear spliced variants derived from ACS, chimeric spliced variants arising from ATS, and circRNAs generated through ABS, are discussed. The identification of dysregulated spliced variants, which contribute to drug resistance and hinder effective cancer treatment, suggests that abnormal AS processes may together serve as a precise regulatory mechanism enabling drug-resistant cancer cell survival or, alternatively, represent an evolutionary pathway for cancer cells to adapt to changes in the external environment. Moreover, this review summarizes recent advancements in treatment approaches targeting AS-associated drug resistance, focusing on cis-acting regulatory elements, trans-acting factors, and specific spliced variants. Collectively, gaining an in-depth understanding of the mechanisms underlying aberrant alternative splicing events and developing strategies to target this process hold great promise for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xinyu Xu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hongwei Deng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou city, Sichuan 646000, China.
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
7
|
Liu S, Holmes AD, Katzman S, Sharma U. A sperm-enriched 5'fragment of tRNA-Valine regulates preimplantation embryonic transcriptome and development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607197. [PMID: 39211093 PMCID: PMC11361008 DOI: 10.1101/2024.08.08.607197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sperm small RNAs have been implicated in intergenerational epigenetic inheritance of paternal environmental effects; however, their biogenesis and functions remain poorly understood. We previously identified a 5' fragment of tRNA-Valine-CAC-2 (tRFValCAC) as one of the most abundant small RNA in mature sperm. tRFValCAC is specifically enriched in sperm during post-testicular maturation in the epididymis, and we found that it is delivered to sperm from epididymis epithelial cells via extracellular vesicles. Here, we investigated the mechanistic basis of tRFValCAC delivery to sperm and its functions in the early embryo. We show that tRFValCAC interacts with an RNA binding protein, heterogeneous nuclear ribonucleoprotein A/B (hnRNPAB), in the epididymis, and this interaction regulates the sorting and packing of tRFValCAC into extracellular vesicles. In the embryo, we found that tRFValCAC regulates early embryonic mRNA processing and splicing. Inhibition of tRFValCAC in preimplantation embryos altered the transcript abundance of genes involved in RNA splicing and mRNA processing. Importantly, tRFValCAC-inhibited embryos showed altered mRNA splicing, including alternative splicing of various splicing factors and genes important for proper preimplantation embryonic development. Finally, we find that inhibition of tRFValCAC in zygotes delayed preimplantation embryonic development. Together, our results reveal a novel function of a sperm-enriched tRF in regulating alternating splicing and preimplantation embryonic development and shed light on the mechanism of sperm small RNA-mediated epigenetic inheritance.
Collapse
Affiliation(s)
- Simeiyun Liu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Andrew D. Holmes
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Sol Katzman
- Genomics Institute, University of California, Santa Cruz, California, 95064
| | - Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| |
Collapse
|
8
|
Li L, Jin T, Hu L, Ding J. Alternative splicing regulation and its therapeutic potential in bladder cancer. Front Oncol 2024; 14:1402350. [PMID: 39132499 PMCID: PMC11310127 DOI: 10.3389/fonc.2024.1402350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Bladder cancer is one of the leading causes of mortality globally. The development of bladder cancer is closely associated with alternative splicing, which regulates human gene expression and enhances the diversity of functional proteins. Alternative splicing is a distinctive feature of bladder cancer, and as such, it may hold promise as a therapeutic target. This review aims to comprehensively discuss the current knowledge of alternative splicing in the context of bladder cancer. We review the process of alternative splicing and its regulation in bladder cancer. Moreover, we emphasize the significance of abnormal alternative splicing and splicing factor irregularities during bladder cancer progression. Finally, we explore the impact of alternative splicing on bladder cancer drug resistance and the potential of alternative splicing as a therapeutic target.
Collapse
Affiliation(s)
- Lina Li
- College of Medicine, Jinhua University of Vocational Technology, Jinhua, Zhejiang, China
| | - Ting Jin
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Liang Hu
- Department of Urology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| |
Collapse
|
9
|
Pan D, Long L, Li C, Zhou Y, Liu Q, Zhao Z, Zhao H, Lin W, Zheng Z, Peng L, Li E, Xu L. Splicing factor hnRNPA1 regulates alternative splicing of LOXL2 to enhance the production of LOXL2Δ13. J Biol Chem 2024; 300:107414. [PMID: 38810697 PMCID: PMC11259713 DOI: 10.1016/j.jbc.2024.107414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) is a member of the lysyl oxidase family and has the ability to catalyze the cross-linking of extracellular matrix collagen and elastin. High expression of LOXL2 is related to tumor cell proliferation, invasion, and metastasis. LOXL2 contains 14 exons. Previous studies have found that LOXL2 has abnormal alternative splicing and exon skipping in a variety of tissues and cells, resulting in a new alternatively spliced isoform denoted LOXL2Δ13. LOXL2Δ13 lacks LOXL2WT exon 13, but its encoded protein has greater ability to induce tumor cell proliferation, invasion, and metastasis. However, the molecular events that produce LOXL2Δ13 are still unclear. In this study, we found that overexpression of the splicing factor hnRNPA1 in cells can regulate the alternative splicing of LOXL2 and increase the expression of LOXL2Δ13. The exonic splicing silencer exists at the 3' splice site and 5' splice site of LOXL2 exon 13. HnRNPA1 can bind to the exonic splicing silencer and inhibit the inclusion of exon 13. The RRM domain of hnRNPA1 and phosphorylation of hnRNPA1 at S91 and S95 are important for the regulation of LOXL2 alternative splicing. These results show that hnRNPA1 is a splicing factor that enhances the production of LOXL2Δ13.
Collapse
Affiliation(s)
- Deyuan Pan
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Lin Long
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Chengyu Li
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yingxin Zhou
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Ziting Zhao
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Hui Zhao
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Wan Lin
- Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Zhenyuan Zheng
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Liu Peng
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Enmin Li
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China.
| | - Liyan Xu
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong Province, China.
| |
Collapse
|
10
|
Sun Y, Xiong B, Shuai X, Li J, Wang C, Guo J, Cheng Z, Liu S. Downregulation of HNRNPA1 induced neoantigen generation via regulating alternative splicing. Mol Med 2024; 30:85. [PMID: 38867190 PMCID: PMC11167825 DOI: 10.1186/s10020-024-00849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Immunotherapies effectively treat human malignancies, but the low response and resistance are major obstacles. Neoantigen is an emerging target for tumor immunotherapy that can enhance anti-tumor immunity and improve immunotherapy. Aberrant alternative splicing is an important source of neoantigens. HNRNPA1, an RNA splicing factor, was found to be upregulated in the majority of tumors and play an important role in the tumor immunosuppressive microenvironment. METHODS Whole transcriptome sequencing was performed on shHNRNPA1 SKOV3 cells and transcriptomic data of shHNRNPA1 HepG2, MCF-7M, K562, and B-LL cells were downloaded from the GEO database. Enrichment analysis was performed to elucidate the mechanisms underlying the activation of anti-tumor immunity induced by HNRNPA1 knockdown. mRNA alternative splicing was analyzed and neoantigens were predicted by JCAST v.0.3.5 and Immune epitope database. The immunogenicity of candidate neoantigens was calculated by Class I pMHC Immunogenicity and validated by the IFN-γ ELISpot assay. The effect of shHNRNPA1 on tumor growth and immune cells in vivo was evaluated by xenograft model combined with immunohistochemistry. RESULTS HNRNPA1 was upregulated in a majority of malignancies and correlated with immunosuppressive status of the tumor immune microenvironment. Downregulation of HNRNPA1 could induce the activation of immune-related pathways and biological processes. Disruption of HNRNPA1 resulted in aberrant alternative splicing events and generation of immunogenic neoantigens. Downregulation of HNRNPA1 inhibited tumor growth and increased CD8+ T cell infiltration in vivo. CONCLUSION Our study demonstrated that targeting HNRNPA1 could produce immunogenic neoantigens that elicit anti-tumor immunity by inducing abnormal mRNA splicing. It suggests that HNRNPA1 may be a potential target for immunotherapy.
Collapse
Affiliation(s)
- Yaoqi Sun
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Bing Xiong
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xueqian Shuai
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jiale Li
- Anhui University of Science and Technology, Huainan, 232001, China
| | - Chunyan Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jing Guo
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Shupeng Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
11
|
Wan XH, Jin GB, Yang Q, Hu JL, Liu ZL, Rao J, Wen C, Li PL, Yang XM, Huang B, Wang XZ. Novel miR-490-3p/hnRNPA1-b/PKM2 axis mediates the Warburg effect and proliferation of colon cancer cells via the PI3K/AKT pathway. World J Gastrointest Oncol 2024; 16:2038-2059. [PMID: 38764836 PMCID: PMC11099460 DOI: 10.4251/wjgo.v16.i5.2038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Accepted: 03/11/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Heterogeneous ribonucleoprotein A1 (hnRNPA1) has been reported to enhance the Warburg effect and promote colon cancer (CC) cell proliferation, but the role and mechanism of the miR-490-3p/hnRNPA1-b/PKM2 axis in CC have not yet been elucidated. AIM To investigate the role and mechanism of a novel miR-490-3p/hnRNPA1-b/PKM2 axis in enhancing the Warburg effect and promoting CC cell proliferation through the PI3K/AKT pathway. METHODS Paraffin-embedded pathological sections from 220 CC patients were collected and subjected to immunohistochemical analysis to determine the expression of hnRNPA1-b. The relationship between the expression values and the clinicopathological features of the patients was investigated. Differences in mRNA expression were analyzed using quantitative real-time polymerase chain reaction, while differences in protein expression were analyzed using western blot. Cell proliferation was evaluated using the cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays, and cell cycle and apoptosis were detected using flow cytometric assays. The targeted binding of miR-490-3p to hnRNPA1-b was validated using a dual luciferase reporter assay. The Warburg effect was evaluated by glucose uptake and lactic acid production assays. RESULTS The expression of hnRNPA1-b was significantly increased in CC tissues and cells compared to normal controls (P < 0.05). Immunohistochemical results demonstrated significant variations in the expression of the hnRNPA1-b antigen in different stages of CC, including stage I, II-III, and IV. Furthermore, the clinicopathologic characterization revealed a significant correlation between hnRNPA1-b expression and clinical stage as well as T classification. HnRNPA1-b was found to enhance the Warburg effect through the PI3K/AKT pathway, thereby promoting proliferation of HCT116 and SW620 cells. However, the proliferation of HCT116 and SW620 cells was inhibited when miR-490-3p targeted and bound to hnRNPA1-b, effectively blocking the Warburg effect. CONCLUSION These findings suggest that the novel miR-490-3p/hnRNPA1-b/PKM2 axis could provide a new strategy for the diagnosis and treatment of CC.
Collapse
Affiliation(s)
- Xiang-Hui Wan
- Jiangxi Medical College, Nanchang University, Nanchang 330029, Jiangxi Province, China
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
- Jiangxi Key Laboratory of Translational Research for Cancer, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Guo-Bing Jin
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Qun Yang
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Ji-Long Hu
- Department of Abdominal Surgery, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Zhi-Liang Liu
- Department of Pathology, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Jun Rao
- Science and Education Section, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Can Wen
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Peng-Ling Li
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Xi-Mei Yang
- Department of Clinical Laboratory, Jiangxi Children’s Hospital, Nanchang 330006, Jiangxi Province, China
| | - Bo Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Zhong Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
12
|
Li Y, Zhang S, Li Y, Liu J, Li Q, Zang W, Pan Y. The Regulatory Network of hnRNPs Underlying Regulating PKM Alternative Splicing in Tumor Progression. Biomolecules 2024; 14:566. [PMID: 38785973 PMCID: PMC11117501 DOI: 10.3390/biom14050566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
One of the hallmarks of cancer is metabolic reprogramming in tumor cells, and aerobic glycolysis is the primary mechanism by which glucose is quickly transformed into lactate. As one of the primary rate-limiting enzymes, pyruvate kinase (PK) M is engaged in the last phase of aerobic glycolysis. Alternative splicing is a crucial mechanism for protein diversity, and it promotes PKM precursor mRNA splicing to produce PKM2 dominance, resulting in low PKM1 expression. Specific splicing isoforms are produced in various tissues or illness situations, and the post-translational modifications are linked to numerous disorders, including cancers. hnRNPs are one of the main components of the splicing factor families. However, there have been no comprehensive studies on hnRNPs regulating PKM alternative splicing. Therefore, this review focuses on the regulatory network of hnRNPs on PKM pre-mRNA alternative splicing in tumors and clinical drug research. We elucidate the role of alternative splicing in tumor progression, prognosis, and the potential mechanism of abnormal RNA splicing. We also summarize the drug targets retarding tumorous splicing events, which may be critical to improving the specificity and effectiveness of current therapeutic interventions.
Collapse
Affiliation(s)
- Yuchao Li
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Shuwei Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Yuexian Li
- Department of Radiation Oncology Gastrointestinal and Urinary and Musculoskeletal Cancer, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang 110042, China;
| | - Junchao Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Qian Li
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Wenli Zang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Yaping Pan
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| |
Collapse
|
13
|
Zhou Y, Ray PS, Zhu J, Stein F, Rettel M, Sekaran T, Sahadevan S, Perez-Perri JI, Roth EK, Myklebost O, Meza-Zepeda LA, von Deimling A, Fu C, Brosig AN, Boye K, Nathrath M, Blattmann C, Lehner B, Hentze MW, Kulozik AE. Systematic analysis of RNA-binding proteins identifies targetable therapeutic vulnerabilities in osteosarcoma. Nat Commun 2024; 15:2810. [PMID: 38561347 PMCID: PMC10984982 DOI: 10.1038/s41467-024-47031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor with a strong tendency to metastasize, limiting the prognosis of affected patients. Genomic, epigenomic and transcriptomic analyses have demonstrated the exquisite molecular complexity of this tumor, but have not sufficiently defined the underlying mechanisms or identified promising therapeutic targets. To systematically explore RNA-protein interactions relevant to OS, we define the RNA interactomes together with the full proteome and the transcriptome of cells from five malignant bone tumors (four osteosarcomata and one malignant giant cell tumor of the bone) and from normal mesenchymal stem cells and osteoblasts. These analyses uncover both systematic changes of the RNA-binding activities of defined RNA-binding proteins common to all osteosarcomata and individual alterations that are observed in only a subset of tumors. Functional analyses reveal a particular vulnerability of these tumors to translation inhibition and a positive feedback loop involving the RBP IGF2BP3 and the transcription factor Myc which affects cellular translation and OS cell viability. Our results thus provide insight into potentially clinically relevant RNA-binding protein-dependent mechanisms of osteosarcoma.
Collapse
Affiliation(s)
- Yang Zhou
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Partho Sarothi Ray
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jianguo Zhu
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Mandy Rettel
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Sudeep Sahadevan
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Eva K Roth
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ola Myklebost
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Leonardo A Meza-Zepeda
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Chuli Fu
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Annika N Brosig
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Kjetil Boye
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Michaela Nathrath
- Department of Pediatrics and Children's Cancer Research Center, Technical University of Munich, School of Medicine, Munich, Germany
- Pediatric Hematology and Oncology, Klinikum Kassel, Kassel, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Olga Hospital, Stuttgart, Germany
| | - Claudia Blattmann
- Department of Pediatric Oncology, Hematology and Immunology, Olga Hospital, Stuttgart, Germany
| | - Burkhard Lehner
- Department of Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias W Hentze
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | - Andreas E Kulozik
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
14
|
颜 秋, 曾 鹏, 黄 树, 谭 翠, 周 秀, 乔 静, 赵 晓, 冯 玲, 朱 振, 张 国, 胡 鸿, 陈 彩. [RBMX overexpression inhibits proliferation, migration, invasion and glycolysis of human bladder cancer cells by downregulating PKM2]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:9-16. [PMID: 38293971 PMCID: PMC10878900 DOI: 10.12122/j.issn.1673-4254.2024.01.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVE To investigate the role of RNA-binding motif protein X-linked (RBMX) in regulating the proliferation, migration, invasion and glycolysis in human bladder cancer cells. METHODS A lentivirus vectors system and RNA interference technique were used to construct bladder cancer 1376 and UC-3 cell models with RBMX overexpression and knockdown, respectively, and successful cell modeling was verified using RT-qPCR and Western blotting. Proliferation and colony forming ability of the cells were evaluated using EdU assay and colony-forming assay, and cell migration and invasion abilities were determined using Transwell experiment. The expressions of glycolysis-related proteins M1 pyruvate kinase (PKM1) and M2 pyruvate kinase (PKM2) were detected using Western blotting. The effects of RBMX overexpression and knockdown on glycolysis in the bladder cancer cells were assessed using glucose and lactic acid detection kits. RESULTS RT-qPCR and Western blotting confirmed successful construction of 1376 and UC-3 cell models with RBMX overexpression and knockdown. RBMX overexpression significantly inhibited the proliferation, clone formation, migration and invasion of bladder cancer cells, while RBMX knockdown produced the opposite effects. Western blotting results showed that RBMX overexpression increased the expression of PKM1 and decreased the expression of PKM2, while RBMX knockdown produced the opposite effects. Glucose consumption and lactate production levels were significantly lowered in the cells with RBMX overexpression (P < 0.05) but increased significantly following RBMX knockdown (P < 0.05). CONCLUSION RBMX overexpression inhibits bladder cancer progression and lowers glycolysis level in bladder cancer cells by downregulating PKM2 expression, suggesting the potential of RBMX as a molecular target for diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- 秋霞 颜
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University/Qingyuan People's Hospital, Qingyuan 511518, China
- 广东省尿控及生殖医学创新工程技术研究中心,广东 清远 511518Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, Qingyuan 511518, China
| | - 鹏 曾
- 广州医科大学附属第六医院//清远市人民医院泌尿外科,广东 清远 511518Department of Urology, Sixth Affiliated Hospital of Guangzhou Medical University/Qingyuan People's Hospital, Qingyuan 511518, China
- 广东省尿控及生殖医学创新工程技术研究中心,广东 清远 511518Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, Qingyuan 511518, China
| | - 树强 黄
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University/Qingyuan People's Hospital, Qingyuan 511518, China
| | - 翠钰 谭
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University/Qingyuan People's Hospital, Qingyuan 511518, China
| | - 秀琴 周
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University/Qingyuan People's Hospital, Qingyuan 511518, China
| | - 静 乔
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University/Qingyuan People's Hospital, Qingyuan 511518, China
| | - 晓英 赵
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University/Qingyuan People's Hospital, Qingyuan 511518, China
| | - 玲 冯
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University/Qingyuan People's Hospital, Qingyuan 511518, China
| | - 振杰 朱
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University/Qingyuan People's Hospital, Qingyuan 511518, China
| | - 国志 张
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University/Qingyuan People's Hospital, Qingyuan 511518, China
| | - 鸿 胡
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University/Qingyuan People's Hospital, Qingyuan 511518, China
| | - 彩蓉 陈
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University/Qingyuan People's Hospital, Qingyuan 511518, China
- 广东省尿控及生殖医学创新工程技术研究中心,广东 清远 511518Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, Qingyuan 511518, China
| |
Collapse
|
15
|
Sheng Y, Lei K, Sun C, Liu J, Tu Z, Zhu X, Huang K. Aberrant RBMX expression is relevant for cancer prognosis and immunotherapy response. Aging (Albany NY) 2024; 16:226-245. [PMID: 38214653 PMCID: PMC10817375 DOI: 10.18632/aging.205363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/03/2023] [Indexed: 01/13/2024]
Abstract
Cancer accounts for the highest rates of morbidity and mortality worldwide. RNA binding motif protein X-linked (RBMX) is a nuclear RNA-binding protein, associated with certain types of cancer by participating in the integration of sister chromatids and a combination of ribonucleoprotein complexes. However, the specific role of RBMX in cancer immunity remains unknown. This study presents the aberrant expression levels, single-cell distributions, effective prognostic roles, immune cell infiltration associations, and immunotherapy responses of RBMX as a biomarker in various types of cancer. Moreover, it validates the aberrant expression of RBMX in clinical cancer samples. Furthermore, we also evaluated the relationships between RBMX expression and myeloid-derived suppressor cells in clinical samples by immunofluorescent staining. The results showed that knockdown of RBMX can impair the proliferation, migration, and invasion of liver cancer cells. Finally, we indicated that RBMX may play an immunoregulatory role in cancer progression, affecting the therapeutic effects of immune checkpoint inhibitors in patients with cancer.
Collapse
Affiliation(s)
- Yilei Sheng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- The HuanKui Medical College of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Kunjian Lei
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| | - Chengpeng Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- The HuanKui Medical College of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Jia Liu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06511, USA
| | - Zewei Tu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
16
|
Salapa HE, Thibault PA, Libner CD, Ding Y, Clarke JPWE, Denomy C, Hutchinson C, Abidullah HM, Austin Hammond S, Pastushok L, Vizeacoumar FS, Levin MC. hnRNP A1 dysfunction alters RNA splicing and drives neurodegeneration in multiple sclerosis (MS). Nat Commun 2024; 15:356. [PMID: 38191621 PMCID: PMC10774274 DOI: 10.1038/s41467-023-44658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/22/2023] [Indexed: 01/10/2024] Open
Abstract
Neurodegeneration is the primary driver of disease progression in multiple sclerosis (MS) resulting in permanent disability, creating an urgent need to discover its underlying mechanisms. Herein, we establish that dysfunction of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) results in differential of binding to RNA targets causing alternative RNA splicing, which contributes to neurodegeneration in MS and its models. Using RNAseq of MS brains, we discovered differential expression and aberrant splicing of hnRNP A1 target RNAs involved in neuronal function and RNA homeostasis. We confirmed this in vivo in experimental autoimmune encephalomyelitis employing CLIPseq specific for hnRNP A1, where hnRNP A1 differentially binds and regulates RNA, including aberrantly spliced targets identified in human samples. Additionally, dysfunctional hnRNP A1 expression in neurons caused neurite loss and identical changes in splicing, corroborating hnRNP A1 dysfunction as a cause of neurodegeneration. Collectively, these data indicate hnRNP A1 dysfunction causes altered neuronal RNA splicing, resulting in neurodegeneration in MS.
Collapse
Affiliation(s)
- Hannah E Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada
| | - Patricia A Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada
| | - Cole D Libner
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Yulian Ding
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
- Division of Biomedical Engineering, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
| | - Joseph-Patrick W E Clarke
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada
| | - Connor Denomy
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Catherine Hutchinson
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada
| | - Hashim M Abidullah
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - S Austin Hammond
- Next-Generation Sequencing Facility, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Landon Pastushok
- Advanced Diagnostics Research Laboratory, Department of Pathology and Lab Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Michael C Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada.
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada.
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada.
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
17
|
He S, Liang Y, Tan Y, Liu Q, Liu T, Lu X, Zheng S. Positioning determines function: Wandering PKM2 performs different roles in tumor cells. Cell Biol Int 2024; 48:20-30. [PMID: 37975488 DOI: 10.1002/cbin.12103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/01/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Short for pyruvate kinase M2 subtype, PKM2 can be said of all-round player that is notoriously known for its metabolic involvement in glycolysis. Holding a dural role as a metabolic or non-metabolic (kinase) enzyme, PKM2 has drawn extensive attention over its biological roles implicated in tumor cells, including proliferation, migration, invasion, metabolism, and so on. wandering PKM2 can be transboundary both intracellularly and extracellularly. Specifically, PKM2 can be nuclear, cytoplasmic, mitochondrial, exosomal, or even circulate within the body. Importantly, PKM2 can function as an RNA-binding protein (RBP) to self-support its metabolic function. Despite extensive investigations or reviews available surrounding the biological roles of PKM2 from different angles in tumor cells, little has been described regarding some novel role of PKM2 that has been recently found, including, for example, acting as RNA-binding protein, protection of Golgi apparatus, and remodeling of microenvironment, and so forth. Given these findings, in this review, we summarize the recent advancements made in PKM2 research, mainly from non-metabolic respects. By the way, PKM1, another paralog of PKM2, seems to have been overlooked or under-investigated since its discovery. Some recent discoveries made about PKM1 are also preliminarily mentioned and discussed.
Collapse
Affiliation(s)
- Shuo He
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi, China
| | - Yan Liang
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi, China
| | - Yiyi Tan
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| |
Collapse
|
18
|
Xie R, Liu L, Lu X, He C, Yao H, Li G. N6-methyladenosine modification of OIP5-AS1 promotes glycolysis, tumorigenesis, and metastasis of gastric cancer by inhibiting Trim21-mediated hnRNPA1 ubiquitination and degradation. Gastric Cancer 2024; 27:49-71. [PMID: 37897508 PMCID: PMC10761432 DOI: 10.1007/s10120-023-01437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/01/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Opa-interacting protein 5 antisense transcript 1 (OIP5-AS1) has been demonstrated to play vital roles in development and progression of tumors such as gastric cancer (GC). However, the detailed molecular mechanism of OIP5-AS1 has not been completely elucidated. Our study aimed to investigate the role and the epigenetic regulation mechanism of OIP5-AS1 in GC. METHODS OIP5-AS1 expression in GC tissues was detected by RT-qPCR. Loss- and gain-of-function experiments were conducted to assess the biological function of OIP5-AS1 in vitro and in vivo. The interaction of OIP5-AS1 with insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) or heterogeneous nuclear nucleoprotein A1 (hnRNPA1) was verified by bioinformatics analysis, RNA pull-down assays, and RNA immunoprecipitation assays. RESULTS In this study, we identified that OIP5-AS1 is specifically overexpressed in GC tumor tissues and cell lines and correlated with a poor prognosis. The loss of OIP5-AS1 suppressed the proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and glycolysis of GC cells, but the ectopic expression of OIP5-AS1 had the opposite impact. Meanwhile, knockdown of OIP5-AS1 inhibited tumor growth in patient-derived xenograft models, as well as repressed tumor metastasis. Mechanistically, IGF2BP3 could bind to OIP5-AS1 by N6-methyladenosine (m6A) modification sites on OIP5-AS1, thereby stabilizing OIP5-AS1. Moreover, OIP5-AS1 prevented Trim21-mediated ubiquitination and degradation of hnRNPA1, stabilizing hnRNPA1 protein and promoting the malignant progression of GC by regulating PKM2 signaling pathway. CONCLUSIONS In conclusion, this study highlighted that OIP5-AS1 is an oncogenic m6A-modified long non-coding RNA (lncRNA) in GC and that IGF2BP3/OIP5-AS1/hnRNPA1 axis may provide a potential diagnostic or prognostic target for GC.
Collapse
Affiliation(s)
- Rongjun Xie
- Department of General Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Zhuhui District, 336, Dongfeng South Road, Hengyang, 421002, China
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Baiyun District, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Longfei Liu
- Department of General Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Zhuhui District, 336, Dongfeng South Road, Hengyang, 421002, China
| | - Xianzhou Lu
- Department of General Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Zhuhui District, 336, Dongfeng South Road, Hengyang, 421002, China
| | - Chengjian He
- Department of Intensive Care Medicine, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Zhuhui District, 336, Dongfeng South Road, Hengyang, 421002, China
| | - Hongyi Yao
- Department of Intensive Care Medicine, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Zhuhui District, 336, Dongfeng South Road, Hengyang, 421002, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Baiyun District, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| |
Collapse
|
19
|
Fan ST, Xu HQ, He Y, Tu MX, Shi K, Zhang YQ, Guo Q, Yang WQ, Qin Y. Overexpression of TMEM150A in glioblastoma multiforme patients correlated with dismal prognoses and compromised immune statuses. PLoS One 2023; 18:e0294144. [PMID: 38055673 PMCID: PMC10699650 DOI: 10.1371/journal.pone.0294144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/25/2023] [Indexed: 12/08/2023] Open
Abstract
Transmembrane proteins have exhibited a significant correlation with glioblastoma multiforme (GBM). The current study elucidates the roles of transmembrane protein 150A (TMEM150A) in GBM. Data on patients with GBM were collected from The Cancer Genome Atlas and Xena databases. The objective was to identify the expression levels of TMEM150A in patients with GBM, and evaluate its diagnostic and prognostic values, accomplished using the receiver operating characteristic and survival analyses. On a cellular level, Cell Counting Kit-8, Wound healing, and Transwell experiments were performed to gauge the impact of TMEM150A on cell growth and migration. The study further investigated the correlation between TMEM150A expression and immune status, along with ribonucleic acid (RNA) modifications in GBM. The findings demonstrated TMEM150A overexpression in the cancerous tissues of patients with GBM, with an area under the curve value of 0.95. TMEM150A overexpression was significantly correlated with poor prognostic indicators. TMEM150A overexpression and isocitrate dehydrogenase (IDH) mutation status were predictive of poor survival time among patients with GBM. In vitro experiments indicated that suppressing TMEM150A expression could inhibit GBM cell proliferation, migration, and invasion. Moreover, TMEM150A overexpression was associated with stromal, immune, and estimate scores, immune cells (such as the T helper (Th) 17 cells, Th2 cells, and regulatory T cells), cell markers, and RNA modifications. Therefore, TMEM150A overexpression might serve as a promising biomarker for predicting poor prognosis in patients with GBM. Inhibiting TMEM150A expression holds the potential for improving the survival time of patients with GBM.
Collapse
Affiliation(s)
- Si-Tong Fan
- Department of Infectious Disease, Beilun District People’s Hospital of Ningbo, Ningbo City, China
| | - Hao-Qiang Xu
- Department of Neurology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan City, China
| | - Yang He
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan City, China
| | - Ming-Xiang Tu
- Department of Neurology, Yunyang District People’s Hospital, Shiyan City, China
| | - Ke Shi
- Department of Thoracic Surgery, Beilun District People’s Hospital of Ningbo, Ningbo City, China
| | - Yun-Qiang Zhang
- Department of Thoracic Surgery, Beilun District People’s Hospital of Ningbo, Ningbo City, China
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei Medical University, Shiyan City, China
| | - Wen-Qiong Yang
- Department of Neurology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan City, China
- Department of Neurology, Shenzhen Lansheng Brain Hospital, Shenzhen City, China
| | - Yong Qin
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan City, China
| |
Collapse
|
20
|
Wang Z, Dai F, Liu H, Cheng Y. Recognition of the Subtypes Classification and Diagnostic Signature Based on RNA N6-Methyladenosine Regulators in Recurrent Spontaneous Abortion. Reprod Sci 2023; 30:3537-3547. [PMID: 37488406 DOI: 10.1007/s43032-023-01271-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/09/2023] [Indexed: 07/26/2023]
Abstract
Recurrent spontaneous abortion (RSA) is a common reproductive disease in female patients that seriously affects the quality of life of patients. N6-methyladenosine (m6A), as the most common modification, plays an important role in various biological behaviors; however, the relationship between m6A and RSA is still unknown. In the present study, we utilized RNA sequencing data and clinical information of RSA patients and normal women in the GEO database to identify the expression profiles of m6A regulators in RSA. Based on the m6A regulators' expression profiles, we constructed a random forest model consisting of 4 genes to predict the prevalence of RSA patients, including FMR1, METTL14, LRPPRC, and RBMX. The predictive performance of the nomogram was constructed and validated. Not only that, consensus clustering was performed to divide RSA patients into 3 clusters based on the expression of m6A regulators and calculated the m6A scores and immune infiltration of patients in different clusters. It was found that the TH1-type immune response was dominant in the A cluster, the B-type immune activity was poor, and the C cluster was the strongest. In addition, on the basis of m6A typing, we further used the differentially expressed genes between clusters to perform consensus clustering verification, and the results were consistent with the previous findings. In conclusion, the m6A regulators played an indispensable role in the occurrence of RSA, and the m6A-based typing could effectively identify the immune characteristics of different RSA patients to a certain extent, providing a new direction and strategy for the diagnosis and treatment of RSA patients.
Collapse
Affiliation(s)
- Zitao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Zhu Z, Huo F, Zhang J, Shan H, Pei D. Crosstalk between m6A modification and alternative splicing during cancer progression. Clin Transl Med 2023; 13:e1460. [PMID: 37850412 PMCID: PMC10583157 DOI: 10.1002/ctm2.1460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
Background N6-methyladenosine (m6A), the most prevalent internal mRNA modification in eukaryotes, is added by m6A methyltransferases, removed by m6A demethylases and recognised by m6A-binding proteins. This modification significantly influences carious facets of RNA metabolism and plays a pivotal role in cellular and physiological processes. Main body Pre-mRNA alternative splicing, a process that generates multiple splice isoforms from multi-exon genes, contributes significantly to the protein diversity in mammals. Moreover, the presence of crosstalk between m6A modification and alternative splicing, with m6A modifications on pre-mRNAs exerting regulatory control, has been established. The m6A modification modulates alternative splicing patterns by recruiting specific RNA-binding proteins (RBPs) that regulate alternative splicing or by directly influencing the interaction between RBPs and their target RNAs. Conversely, alternative splicing can impact the deposition or recognition of m6A modification on mRNAs. The integration of m6A modifications has expanded the scope of therapeutic strategies for cancer treatment, while alternative splicing offers novel insights into the mechanistic role of m6A methylation in cancer initiation and progression. Conclusion This review aims to highlight the biological functions of alternative splicing of m6A modification machinery and its implications in tumourigenesis. Furthermore, we discuss the clinical relevance of understanding m6A-dependent alternative splicing in tumour therapies.
Collapse
Affiliation(s)
- Zhi‐Man Zhu
- Department of PathologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Fu‐Chun Huo
- Department of PathologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Jian Zhang
- Department of Respiratory MedicineSecond Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Hong‐Jian Shan
- Department of OrthopedicsThe Affiliated Jiangning Hospital with Nanjing Medical UniversityNanjingJiangsuChina
| | - Dong‐Sheng Pei
- Department of PathologyXuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
22
|
Tuersun H, Liu L, Zhang J, Maimaitizunong R, Tang X, Li H. m6A reading protein RBMX as a biomarker for prognosis and tumor progression in esophageal cancer. Transl Cancer Res 2023; 12:2319-2335. [PMID: 37859733 PMCID: PMC10583014 DOI: 10.21037/tcr-23-84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/10/2023] [Indexed: 10/21/2023]
Abstract
Background As a member of m6A methylated binding protein, RNA binding motif protein X-linked (RBMX) has been reported to be associated with tumor invasion, metastasis and prognosis. However, the prognostic significance of RBMX expression in esophageal cancer (ESCA) remains unclear. Methods Based on the TIMER database, GEPIA database, cBioPortal database, CIBERSORT deconvolution algorithm, String-DB database, LinkedOmics database, etc., the RBMX expression level, mRNA expression level, prognostic relationship, genetic mutation, immune cell infiltration level, protein interaction network, differential co-expression genes and functional enrichment in esophageal carcinoma were analyzed. Immunohistochemistry was used to detect the expression of RBMX in 53 cases of esophageal carcinoma and adjacent esophageal tissues. Results The RBMX expression in ESCA tissue was significantly higher than that in the normal tissues. The overall survival (OS) of patients with high RBMX expression was significantly lower than that of patients with low expression (P=0.04). The protein encoded by the RBMX gene appeared to copy number amplification, mutation and deep deletion. The expression level of RBMX was positively correlated with the levels of follicular helper T cells, eosinophils and initial B cells (P<0.05). Genes significantly and positively correlated with RBMX expression included HNRNPA1L2, SFRS13A, HNRNPA1, etc., which were mainly enriched in biological processes (BPs) such as cell division, mRNA splicing, RNA binding and mRNA 3'-UTR binding. Conclusions RBMX may be as a biomarker of poor prognosis of ESCA. RBMX is closely related to the survival and prognosis, genetic mutation and immune cell infiltration of patients with ESCA.
Collapse
Affiliation(s)
- Hainisayimu Tuersun
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Ling Liu
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Jing Zhang
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | | | - Xiaohui Tang
- Central Laboratory of Xinjiang Medical University, Urumqi, China
| | - Hui Li
- Central Laboratory of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
23
|
Hao L, Zhang J, Liu Z, Zhang Z, Mao T, Guo J. Role of the RNA-binding protein family in gynecologic cancers. Am J Cancer Res 2023; 13:3799-3821. [PMID: 37693158 PMCID: PMC10492115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
Gynecological cancers pose a threat to women's health. Although early-stage gynecological cancers show good outcomes after standardized treatment, the prognosis of patients with advanced, met-astatic, and recurrent cancers is poor. RNA-binding proteins (RBPs) are important cellular proteins that interact with RNA through RNA-binding domains and participate extensively in post-transcriptional regulatory processes, such as mRNA alternative splicing, polyadenylation, intracellular localization and stability, and translation. Abnormal RBP expression affects the normal function of oncogenes and tumor suppressor genes in many malignancies, thus leading to the occurrence or progression of cancers. Similarly, RBPs play crucial roles in gynecological carcinogenesis. We summarize the role of RBPs in gynecological malignancies and explore their potential in the diagnosis and treatment of cancers. The findings summarized in this review may provide a guide for future research on the functions of RBPs.
Collapse
Affiliation(s)
- Linlin Hao
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Jian Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and TechnologyShenzhen 518055, Guangdong, China
| | - Zhongshan Liu
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Zhiliang Zhang
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Tiezhu Mao
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Jie Guo
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| |
Collapse
|
24
|
Jiang T, Xing L, Zhao L, Ye Z, Yu D, Lin S. Comprehensive analysis of m6A related gene mutation characteristics and prognosis in colorectal cancer. BMC Med Genomics 2023; 16:105. [PMID: 37194014 DOI: 10.1186/s12920-023-01509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/04/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Colorectal cancer is considered as the second most common cancer worldwide. Studies have shown that m6A RNA methylation abnormalities play an important role in the pathogenesis of many human diseases, including cancer. The current study was designed to characterize the mutation of m6A related genes and explore their prognostic role in colorectal cancer. METHODS RNA-seq data and somatic mutation data of TCGA-COAD and TCGA-READ were downloaded from UCSC xena for comprehensive analysis. M6A related genes were selected from previous literatures, including "Writer" protein (METTL3, METTL5, METTL14, METTL16, ZC3H13, RBM15, WTAP, KIAA1429), "Reader" protein YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2, HNRNPC, IGF2BP1, IGF2BP2, IGF2BP3), and "Eraser" protein (FTO, ALKBH5). Kaplan-Meier diagrams were used to explore the correlation between m6A-related genes and colorectal cancer prognosis. The correlations between m6A-related genes and clinical parameters and immune-related indicators were explored by Spearman correlation analysis. And finally, the expression patterns of five key genes (RBMX, FMR1, IGF2BP1, LRPPRC and YTHDC2) were detected by qPCR in CRC specimens. RESULTS In CRC, the expressions of m6A-related genes were significantly different between CRC and normal control except METTL14, YTHDF2, YTHDF3. Some of CRC patients (178 in 536) have a m6A-related genes mutation. ZC3H13 has highest mutation frequency of all m6A-related genes. M6A-related genes mainly enrich in regulation of mRNA metabolic process pathway. Patients with high expressions of FMR1, LRPPRC, METTL14, RBMX, YTHDC2, YTHDF2, YTHDF3 have poor prognosis in CRC. There was a significant correlation between the FMR1, LRPPRC, RBMX, YTHDC2, IGF2BP1 expression and the clinical characteristics of CRC. In addition, these genes are significantly associated with immune-related indicators. According to the expression patterns of FMR1, LRPPRC, RBMX, YTHDC2, and IGF2BP1, patients with CRC were clustered into two groups, and their survival was significantly different. By evaluating the tumor microenvironment in two clusters using ssGSEA, expressions of immune checkpoints and GSVA enrichment analysis, we observed that the immune and stem cell index of two cluster were much different. The qPCR results showed that RBMX expression was markedly elevated in cancerous tissues than in the normal colonic tissues. CONCLUSION Our study identified novel prognostic markers associated with immune of CRC cancer patients. Moreover, the potential mechanisms of prognostic markers in regulating the etiology of CRC cancer were investigated. These findings enrich our understanding of the relationships between m6a related genes and CRC, and may provide novel ideas in the therapy of CRC patients.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, 804 Shengli Road, Yinchuan, 750004, China
| | - Linshuai Xing
- School of Clinical Medicine, Ningxia Medical University, 1160 Shengli Road, Yinchuan, 750004, China
| | - Lipeng Zhao
- School of Clinical Medicine, Ningxia Medical University, 1160 Shengli Road, Yinchuan, 750004, China
| | - Ziqi Ye
- School of Clinical Medicine, Ningxia Medical University, 1160 Shengli Road, Yinchuan, 750004, China
| | - Dong Yu
- Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, 804 Shengli Road, Yinchuan, 750004, China
| | - Shengtao Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou, 350001, China.
| |
Collapse
|
25
|
Montero-Hidalgo AJ, Pérez-Gómez JM, Martínez-Fuentes AJ, Gómez-Gómez E, Gahete MD, Jiménez-Vacas JM, Luque RM. Alternative splicing in bladder cancer: potential strategies for cancer diagnosis, prognosis, and treatment. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1760. [PMID: 36063028 DOI: 10.1002/wrna.1760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 05/13/2023]
Abstract
Bladder cancer is the most common malignancy of the urinary tract worldwide. The therapeutic options to tackle this disease comprise surgery, intravesical or systemic chemotherapy, and immunotherapy. Unfortunately, a wide number of patients ultimately become resistant to these treatments and develop aggressive metastatic disease, presenting a poor prognosis. Therefore, the identification of novel therapeutic approaches to tackle this devastating pathology is urgently needed. However, a significant limitation is that the progression and drug response of bladder cancer is strongly associated with its intrinsic molecular heterogeneity. In this sense, RNA splicing is recently gaining importance as a critical hallmark of cancer since can have a significant clinical value. In fact, a profound dysregulation of the splicing process has been reported in bladder cancer, especially in the expression of certain key splicing variants and circular RNAs with a potential clinical value as diagnostic/prognostic biomarkers or therapeutic targets in this pathology. Indeed, some authors have already evidenced a profound antitumor effect by targeting some splicing factors (e.g., PTBP1), mRNA splicing variants (e.g., PKM2, HYAL4-v1), and circular RNAs (e.g., circITCH, circMYLK), which illustrates new possibilities to significantly improve the management of this pathology. This review represents the first detailed overview of the splicing process and its alterations in bladder cancer, and highlights opportunities for the development of novel diagnostic/prognostic biomarkers and their clinical potential for the treatment of this devastating cancer type. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Antonio J Martínez-Fuentes
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Enrique Gómez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- Urology Service, HURS/IMIBIC, Cordoba, 14004, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| |
Collapse
|
26
|
Siculella L, Giannotti L, Di Chiara Stanca B, Spedicato F, Calcagnile M, Quarta S, Massaro M, Damiano F. A comprehensive understanding of hnRNP A1 role in cancer: new perspectives on binding with noncoding RNA. Cancer Gene Ther 2023; 30:394-403. [PMID: 36460805 DOI: 10.1038/s41417-022-00571-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is the most abundant and ubiquitously expressed member of the heterogeneous nuclear ribonucleoproteins family (hnRNPs). hnRNP A1 is an RNA-binding protein associated with complexes active in diverse biological processes such as RNA splicing, transactivation of gene expression, and modulation of protein translation. It is overexpressed in several cancers, where it actively promotes the expression and translation of several key proteins and regulators associated with tumorigenesis and cancer progression. Interesting recent studies have focused on the RNA-binding property of hnRNP A1 and revealed previously under-explored functions of hnRNP A1 in the processing of miRNAs, and loading non-coding RNAs into exosomes. Here, we will report the recent advancements in our knowledge of the role of hnRNP A1 in the biological processes underlying cancer proliferation and growth, with a particular focus on metabolic reprogramming.
Collapse
Affiliation(s)
- Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Laura Giannotti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Benedetta Di Chiara Stanca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Francesco Spedicato
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Stefano Quarta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce, Italy
| | - Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| |
Collapse
|
27
|
Gilbert K, Vuorinen A, Aatkar A, Pogány P, Pettinger J, Grant EK, Kirkpatrick JM, Rittinger K, House D, Burley GA, Bush JT. Profiling Sulfur(VI) Fluorides as Reactive Functionalities for Chemical Biology Tools and Expansion of the Ligandable Proteome. ACS Chem Biol 2023; 18:285-295. [PMID: 36649130 PMCID: PMC9942091 DOI: 10.1021/acschembio.2c00633] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023]
Abstract
Here, we report a comprehensive profiling of sulfur(VI) fluorides (SVI-Fs) as reactive groups for chemical biology applications. SVI-Fs are reactive functionalities that modify lysine, tyrosine, histidine, and serine sidechains. A panel of SVI-Fs were studied with respect to hydrolytic stability and reactivity with nucleophilic amino acid sidechains. The use of SVI-Fs to covalently modify carbonic anhydrase II (CAII) and a range of kinases was then investigated. Finally, the SVI-F panel was used in live cell chemoproteomic workflows, identifying novel protein targets based on the type of SVI-F used. This work highlights how SVI-F reactivity can be used as a tool to expand the liganded proteome.
Collapse
Affiliation(s)
- Katharine
E. Gilbert
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- University
of Strathclyde, 295 Cathedral Street, GlasgowG11XL, United Kingdom
| | - Aini Vuorinen
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| | - Arron Aatkar
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- University
of Strathclyde, 295 Cathedral Street, GlasgowG11XL, United Kingdom
| | - Peter Pogány
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
| | - Jonathan Pettinger
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| | - Emma K. Grant
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
| | | | - Katrin Rittinger
- The
Francis Crick Institute, 1 Midland Road, LondonNW1 1AT, United Kingdom
| | - David House
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| | - Glenn A. Burley
- University
of Strathclyde, 295 Cathedral Street, GlasgowG11XL, United Kingdom
| | - Jacob T. Bush
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| |
Collapse
|
28
|
Song J, Zheng J, Liu X, Dong W, Yang C, Wang D, Ruan X, Zhao Y, Liu L, Wang P, Zhang M, Liu Y. A novel protein encoded by ZCRB1-induced circHEATR5B suppresses aerobic glycolysis of GBM through phosphorylation of JMJD5. J Exp Clin Cancer Res 2022; 41:171. [PMID: 35538499 PMCID: PMC9086421 DOI: 10.1186/s13046-022-02374-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/26/2022] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
RNA-binding proteins (RBPs) and circular RNAs (circRNAs) play important roles in glioblastoma multiforme (GBM). Aerobic glycolysis is a metabolic characteristic of GBM. However, the roles of RBPs and circRNAs in aerobic glycolysis in GBM remain unclear. The aim of this study is to explore the mechanisms by which RBPs and circRNAs regulate aerobic glycolysis in GBM cells.
Methods
RNA sequencing and circRNA microarray analysis were performed to identify RBPs and circRNAs for further study. Mass spectrometry validated the encoded protein and its interacting proteins. Quantitative reverse transcription PCR and western blot assays were used to determine the mRNA and protein expression, respectively. Furthermore, immunofluorescence and fluorescence in situ hybridization assays were used to determine the protein and RNA localization, respectively. Glucose and lactate measurement assays, Seahorse XF glycolysis stress assays and cell viability assays were conducted to investigate the effects on glycolysis and proliferation in GBM cells.
Results
We selected zinc finger CCHC-type and RNA-binding motif 1 (ZCRB1) and circRNA HEAT repeat containing 5B (circHEATR5B) as candidates for this study. These genes were expressed at low levels in GBM tissues and cells. Both ZCRB1 and circHEATR5B overexpression suppressed aerobic glycolysis and proliferation in GBM cells. ZCRB1 overexpression promoted the Alu element-mediated formation of circHEATR5B. In addition, circHEATR5B encoded a novel protein HEATR5B-881aa which interacted directly with Jumonji C-domain-containing 5 (JMJD5) and reduced its stability by phosphorylating S361. JMJD5 knockdown increased pyruvate kinase M2 (PKM2) enzymatic activity and suppressed glycolysis and proliferation in GBM cells. Finally, ZCRB1, circHEATR5B and HEATR5B-881aa overexpression inhibited GBM xenograft growth and prolonged the survival time of nude mice.
Conclusions
This study reveals a novel mechanism of regulating aerobic glycolysis and proliferation in GBM cells through the ZCRB1/circHEATR5B/HEATR5B-881aa/JMJD5/PKM2 pathway, which can provide novel strategies and potential targets for GBM therapy.
Collapse
|
29
|
Mehta M, Raguraman R, Ramesh R, Munshi A. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv Drug Deliv Rev 2022; 191:114569. [PMID: 36252617 PMCID: PMC10411638 DOI: 10.1016/j.addr.2022.114569] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
Traditionally majority of eukaryotic gene expression is influenced by transcriptional and post-transcriptional events. Alterations in the expression of proteins that act post-transcriptionally can affect cellular signaling and homeostasis. RNA binding proteins (RBPs) are a family of proteins that specifically bind to RNAs and are involved in post-transcriptional regulation of gene expression and important cellular processes such as cell differentiation and metabolism. Deregulation of RNA-RBP interactions and any changes in RBP expression or function can lead to various diseases including cancer. In cancer cells, RBPs play an important role in regulating the expression of tumor suppressors and oncoproteins involved in various cell-signaling pathways. Several RBPs such as HuR, AUF1, RBM38, LIN28, RBM24, tristetrapolin family and Musashi play critical roles in various types of cancers and their aberrant expression in cancer cells makes them an attractive therapeutic target for cancer treatment. In this review we provide an overview of i). RBPs involved in cancer progression and their mechanism of action ii). the role of RBPs, including HuR, in breast cancer progression and DNA damage response and iii). explore RBPs with emphasis on HuR as therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA.
| |
Collapse
|
30
|
Liu M, Guo J, Jia R. Emerging roles of alternative RNA splicing in oral squamous cell carcinoma. Front Oncol 2022; 12:1019750. [PMID: 36505770 PMCID: PMC9732560 DOI: 10.3389/fonc.2022.1019750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
Alternative RNA splicing (ARS) is an essential and tightly regulated cellular process of post-transcriptional regulation of pre-mRNA. It produces multiple isoforms and may encode proteins with different or even opposite functions. The dysregulated ARS of pre-mRNA contributes to the development of many cancer types, including oral squamous cell carcinoma (OSCC), and may serve as a biomarker for the diagnosis and prognosis of OSCC and an attractive therapeutic target. ARS is mainly regulated by splicing factors, whose expression is also often dysregulated in OSCC and involved in tumorigenesis. This review focuses on the expression and roles of splicing factors in OSCC, the alternative RNA splicing events associated with OSCC, and recent advances in therapeutic approaches that target ARS.
Collapse
Affiliation(s)
- Miaomiao Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China,Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China,*Correspondence: Jihua Guo, ; Rong Jia,
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China,RNA Institute, Wuhan University, Wuhan, China,*Correspondence: Jihua Guo, ; Rong Jia,
| |
Collapse
|
31
|
Wang Z, Zhou J, Zhang H, Ge L, Li J, Wang H. RNA m 6 A methylation in cancer. Mol Oncol 2022; 17:195-229. [PMID: 36260366 PMCID: PMC9892831 DOI: 10.1002/1878-0261.13326] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023] Open
Abstract
N6 -methyladenosine (m6 A) is one of the most abundant internal modifications in eukaryotic messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). It is a reversible and dynamic RNA modification that has been observed in both internal coding segments and untranslated regions. Studies indicate that m6 A modifications play important roles in translation, RNA splicing, export, degradation and ncRNA processing control. In this review, we focus on the profiles and biological functions of RNA m6 A methylation on both mRNAs and ncRNAs. The dynamic modification of m6 A and its potential roles in cancer development are discussed. Moreover, we discuss the possibility of m6 A modifications serving as potential biomarkers for cancer diagnosis and targets for therapy.
Collapse
Affiliation(s)
- Zhaotong Wang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Jiawang Zhou
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Haisheng Zhang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Lichen Ge
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Jiexin Li
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Hongsheng Wang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
32
|
Feng J, Zhou J, Lin Y, Huang W. hnRNP A1 in RNA metabolism regulation and as a potential therapeutic target. Front Pharmacol 2022; 13:986409. [PMID: 36339596 PMCID: PMC9634572 DOI: 10.3389/fphar.2022.986409] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Abnormal RNA metabolism, regulated by various RNA binding proteins, can have functional consequences for multiple diseases. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is an important RNA binding protein, that regulates various RNA metabolic processes, including transcription, alternative splicing of pre-mRNA, translation, miRNA processing and mRNA stability. As a potent splicing factor, hnRNP A1 can regulate multiple splicing events, including itself, collaborating with other cooperative or antagonistical splicing factors by binding to splicing sites and regulatory elements in exons or introns. hnRNP A1 can modulate gene transcription by directly interacting with promoters or indirectly impacting Pol II activities. Moreover, by interacting with the internal ribosome entry site (IRES) or 3′-UTR of mRNAs, hnRNP A1 can affect mRNA translation. hnRNP A1 can alter the stability of mRNAs by binding to specific locations of 3′-UTR, miRNAs biogenesis and Nonsense-mediated mRNA decay (NMD) pathway. In this review, we conclude the selective sites where hnRNP A1 binds to RNA and DNA, and the co-regulatory factors that interact with hnRNP A1. Given the dysregulation of hnRNP A1 in diverse diseases, especially in cancers and neurodegeneration diseases, targeting hnRNP A1 for therapeutic treatment is extremely promising. Therefore, this review also provides the small-molecule drugs, biomedicines and novel strategies targeting hnRNP A1 for therapeutic purposes.
Collapse
|
33
|
Gan K, Zhang K, Li Y, Zhao X, Li H, Xu C, Liu S, Zhang C, Han D, Wen W, Qin W. Establishment and validation of a polygene prognostic model for clear cell renal cell carcinoma. Front Genet 2022; 13:1021163. [PMID: 36338999 PMCID: PMC9630580 DOI: 10.3389/fgene.2022.1021163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 08/15/2023] Open
Abstract
Purpose: To establish an effective prognostic model for patients with clear cell renal cell carcinoma (ccRCC). Methods: We identified four hub differentially expressed genes (DEGs) in Gene Expression Omnibus (GEO) database and verified them in the Cancer Gene Atlas (TCGA), STRING, UALCAN, TIMER, and Gene Expression Profiling Interactive Analysis (GEPIA) databases. We then used TCGA and International Cancer Genome Consortium (ICGC) to identify tumor pathway molecules highly correlated with hub DEGs. And by further LASSO and Cox regression analysis, we successfully identified five genes as prognostic factors. Results: We successfully identified a risk prediction model consisting of five genes: IGF2BP3, CDKN1A, GSDMB, FABP5, RBMX. We next distributed patients into low-risk and high-risk groups using the median as a cutoff. The low-risk group obviously had better survival than those in the predicted high-risk group. The results showed discrepancies in tumor-associated immune cell infiltration between risk groups. We also combined the risk model with clinical variables to create a nomogram. Conclusion: Our model has a satisfactory predictive effect on the prognosis of ccRCC patients and may provide new ideas for future immune therapy.
Collapse
Affiliation(s)
- Kai Gan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Keying Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yu Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaolong Zhao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hongji Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chao Xu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shaojie Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chao Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Weihong Wen
- Department of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
34
|
Chua HH, Chang MH, Chen YH, Tsuei DJ, Jeng YM, Lee PH, Ni YH. PIM1-Induced Cytoplasmic Expression of RBMY Mediates Hepatocellular Carcinoma Metastasis. Cell Mol Gastroenterol Hepatol 2022; 15:121-152. [PMID: 36191855 PMCID: PMC9672922 DOI: 10.1016/j.jcmgh.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Metastasis indicates a grave prognosis in patients with hepatocellular carcinoma (HCC). Our previous studies showed that RNA binding motif protein Y-linked (RBMY) is potentially a biomarker for poor survival in HCC patients, but its role in metastasis is largely unclear. METHODS A total of 308 male patients with primary HCC were enrolled. RBMY expression was traced longitudinally by immunostaining from the manifestation of a primary HCC tumor to the formation of a distant metastasis, and its upstream regulators were screened with a protein microarray. A series of metastasis assays in mouse models and HCC cell lines were performed to explore new functional insights into RBMY. RESULTS Cytoplasmic expression of RBMY was associated with rapid distant metastasis (approximately 1 year after resection) and had a predictive power of 82.4% for HCC metastasis. RBMY conferred high migratory and invasive potential upon phosphorylation by the provirus integration in Moloney 1 (PIM1) kinase. Binding of PIM1 to RBMY caused mutual stabilization and massive translocation of RBMY from nuclei to mitochondria, thereby preventing mitochondrial apoptosis and augmenting mitochondrial generation of adenosine triphosphate/reactive oxygen species to enhance cell motility. Depletion of RBMY suppressed Snail1/zinc finger E-box binding homeobox transcription factor 1-mediated epithelial-mesenchymal transition and dynamin-related protein 1-dependent mitochondrial fission. Inactivation and knockout of PIM1 down-regulated the expression of RBMY. In nude mice, cytoplasmic RBMY promoted liver-to-lung metastasis by increasing epithelial-mesenchymal transition, mitochondrial proliferation, and mitochondrial fission, whereas nuclear-restricted RBMY impeded the mitochondrial switch and failed to induce lung metastasis. CONCLUSIONS This study showed the regulation of HCC metastasis by PIM1-driven cytoplasmic expression of RBMY and suggested a novel therapeutic target for attenuating metastasis.
Collapse
Affiliation(s)
- Huey-Huey Chua
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Hwei Chang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Hui Chen
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Daw-Jen Tsuei
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Huang Lee
- Department of Surgery, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan,Department of Surgery, E-DA Hospital, Kaohsiung, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Medical Microbiota Center, College of Medicine, National Taiwan University, Taipei, Taiwan; Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
35
|
Muehlbauer LK, Wei T, Shishkova E, Coon JJ, Lambert PF. IQGAP1 and RNA Splicing in the Context of Head and Neck via Phosphoproteomics. J Proteome Res 2022; 21:2211-2223. [PMID: 35980772 PMCID: PMC9833422 DOI: 10.1021/acs.jproteome.2c00309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
IQGAP1 (IQ motif-containing GTPase-activating protein 1) scaffolds several signaling pathways in mammalian cells that are implicated in carcinogenesis, including the RAS and PI3K pathways that involve multiple protein kinases. IQGAP1 has been shown to promote head and neck squamous cell carcinoma (HNSCC); however, the underlying mechanism(s) remains unclear. Here, we report a mass spectrometry-based analysis identifying differences in phosphorylation of cellular proteins in vivo and in vitro in the presence or absence of IQGAP1. By comparing the esophageal phosphoproteome profiles between Iqgap1+/+ and Iqgap1-/- mice, we identified RNA splicing as one of the most altered cellular processes. Serine/arginine-rich splicing factor 6 (SRSF6) was the protein with the most downregulated levels of phosphorylation in Iqgap1-/- tissue. We confirmed that the absence of IQGAP1 reduced SRSF6 phosphorylation both in vivo and in vitro. We then expanded our analysis to human normal oral keratinocytes. Again, we found factors involved in RNA splicing to be highly altered in the phosphoproteome profile upon genetic disruption of IQGAP1. Both the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the Cancer Genome Atlas (TCGA) data sets indicate that phosphorylation of splicing-related proteins is important in HNSCC prognosis. The Biological General Repository for Interaction Datasets (BioGRID) repository also suggested multiple interactions between IQGAP1 and splicing-related proteins. Based on these collective observations, we propose that IQGAP1 regulates the phosphorylation of splicing proteins, which potentially affects their splicing activities and, therefore, contributes to HNSCC. Raw data are available from the MassIVE database with identifier MSV000087770.
Collapse
Affiliation(s)
- Laura K. Muehlbauer
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tao Wei
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53706, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
36
|
Wang X, Xu K, Liao X, Rao J, Huang K, Gao J, Xu G, Wang D. Construction of a survival nomogram for gastric cancer based on the cancer genome atlas of m6A-related genes. Front Genet 2022; 13:936658. [PMID: 35991573 PMCID: PMC9389082 DOI: 10.3389/fgene.2022.936658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
Objective: Based on TCGA database, a prediction model for 1-, 3-, and 5-year overall survival rates of gastric cancer (GC) patients was constructed by analyzing the critical risk factors affecting the prognosis of gastric cancer patients.Method: Clinicopathological features as well as gene signature of GC patients were obtained from TCGA database. Patients were randomly divided into a training cohort and an internal validation cohort. Independent predictors of GC prognosis were analyzed by univariate and multivariate Cox analyses to construct nomogram. The accuracy and reliability of the model was further validated by calibration curves, ROC curves, and C-indexes, and the clinical utility of the model was analyzed by decision analysis curves.Result: Age, sex, N stage, M stage, METTL16, RBM15, FMR1, IGFBP1, and FTO were significantly associated with the prognosis of GC patients, and these predictors were further included in the construction of nomogram. The C-indexes for the training cohort and validation set were 0.735 and 0.688, respectively. The results of the ROC curve analysis indicated that the area under the curve (AUC) exceeded 0.6 in training and validation sets at 1, 3, and 5 years.Conclusion: We have constructed and validated a nomogram that provides individual survival condition prediction for GC patients. The prognostic model integrating gene signatures and clinicopathological characteristics would help clinicians determine the prognosis of patients with GC and develop individualized treatment plans.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
- *Correspondence: Xiaokang Wang,
| | - Kexin Xu
- Department of Clinical Medicine, School of the Second Clinical Medicine, Anhui Medical University, Hefei, China
| | - Xueyi Liao
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jiaoyu Rao
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Kaiyuan Huang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Jianlin Gao
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Gengrui Xu
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Dengchuan Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
37
|
Heterogeneous nuclear ribonucleoprotein A/B: an emerging group of cancer biomarkers and therapeutic targets. Cell Death Dis 2022; 8:337. [PMID: 35879279 PMCID: PMC9314375 DOI: 10.1038/s41420-022-01129-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein A/B (hnRNPA/B) is one of the core members of the RNA binding protein (RBP) hnRNPs family, including four main subtypes, A0, A1, A2/B1 and A3, which share the similar structure and functions. With the advance in understanding the molecular biology of hnRNPA/B, it has been gradually revealed that hnRNPA/B plays a critical role in almost the entire steps of RNA life cycle and its aberrant expression and mutation have important effects on the occurrence and progression of various cancers. This review focuses on the clinical significance of hnRNPA/B in various cancers and systematically summarizes its biological function and molecular mechanisms.
Collapse
|
38
|
Thonda S, Vinnakota RL, Kona SV, Kalivendi SV. Identification of RBMX as a splicing regulator in Parkinsonian mimetic induced alternative splicing of α-synuclein. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194825. [PMID: 35577270 DOI: 10.1016/j.bbagrm.2022.194825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
α-Synuclein (α-syn) plays a precipitating role in Parkinson's disease (PD) due to its tendency to form oligomers and fibrils. The presence of smaller isoforms of α-syn was widely noticed in the affected brain regions of PD patients. 112-synuclein (112-syn) which lacks exon-5, possess enhanced aggregation propensity and forms intracellular inclusions. However, the factors responsible for the skipping of exon-5 are not completely understood. In this context, we aimed to identity the cis & trans-acting elements governing alternative splicing (AS) events by the Parkinsonian agent (MPP+) using minigene constructs. Minigene-I and -II were constructed by pruning the intron-4 and -5 regions respectively without altering the branch point adenosine to preserve splicing machinery. Also, chimeric minigenes were engineered by replacing either 5' (Mini-III) or 3' (Mini-IV) flanking intronic regions of exon-5 with other intronic regions (intron-3 and -2) that are not responsive to MPP+ induced splicing. While all the above minigenes exhibited MPP+-induced skipping of exon-5, Minigene-III did not generate the spliced product indicating that the 5' flanking intronic region (316 bp) of exon-5 possess cis-acting elements responsible for oxidant-induced alternative splicing. RNA-Binding Protein Database (RBDP) analysis revealed the presence of four putative RNA binding proteins (RBPs), namely, RBMX, MBNL1, KHDRBS3 and SFRS1 that may bind to the 316 bp region of intron-4and their expression was substantially reduced following MPP+ treatment. Further, overexpression of RBMX mitigated MPP+-induced generation of 112-syn and also reduced intracellular α-syn aggregates. Overall, our study identified the pivotal role of the splicing regulator, RBMX, in the pathophysiology of PD.
Collapse
Affiliation(s)
- Swaroop Thonda
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ravali L Vinnakota
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swathi V Kona
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shasi V Kalivendi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
39
|
Hao C, Zheng Y, Jönsson J, Cui X, Yu H, Wu C, Kajitani N, Schwartz S. hnRNP G/RBMX enhances HPV16 E2 mRNA splicing through a novel splicing enhancer and inhibits production of spliced E7 oncogene mRNAs. Nucleic Acids Res 2022; 50:3867-3891. [PMID: 35357488 PMCID: PMC9023273 DOI: 10.1093/nar/gkac213] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 12/27/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) E2 is an essential HPV16 protein. We have investigated how HPV16 E2 expression is regulated and have identifed a splicing enhancer that is required for production of HPV16 E2 mRNAs. This uridine-less splicing enhancer sequence (ACGAGGACGAGGACAAGGA) contains 84% adenosine and guanosine and 16% cytosine and consists of three ‘AC(A/G)AGG’-repeats. Mutational inactivation of the splicing enhancer reduced splicing to E2-mRNA specific splice site SA2709 and resulted in increased levels of unspliced E1-encoding mRNAs. The splicing enhancer sequence interacted with cellular RNA binding protein hnRNP G that promoted splicing to SA2709 and enhanced E2 mRNA production. The splicing-enhancing function of hnRNP G mapped to amino acids 236–286 of hnRNP G that were also shown to interact with splicing factor U2AF65. The interactions between hnRNP G and HPV16 E2 mRNAs and U2AF65 increased in response to keratinocyte differentiation as well as by the induction of the DNA damage response (DDR). The DDR reduced sumoylation of hnRNP G and pharmacological inhibition of sumoylation enhanced HPV16 E2 mRNA splicing and interactions between hnRNP G and E2 mRNAs and U2AF65. Intriguingly, hnRNP G also promoted intron retention of the HPV16 E6 coding region thereby inhibiting production of spliced E7 oncogene mRNAs.
Collapse
Affiliation(s)
- Chengyu Hao
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Yunji Zheng
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden.,School of Pharmacy, Binzhou Medical University, 264003 Yantai, China
| | - Johanna Jönsson
- Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, BMC-B9, 751 23 Uppsala, Sweden.,Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Xiaoxu Cui
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Haoran Yu
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Chengjun Wu
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, 116024 Dalian, China
| | - Naoko Kajitani
- Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, BMC-B9, 751 23 Uppsala, Sweden.,Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Stefan Schwartz
- Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, BMC-B9, 751 23 Uppsala, Sweden.,Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| |
Collapse
|
40
|
Soubise B, Jiang Y, Douet-Guilbert N, Troadec MB. RBM22, a Key Player of Pre-mRNA Splicing and Gene Expression Regulation, Is Altered in Cancer. Cancers (Basel) 2022; 14:cancers14030643. [PMID: 35158909 PMCID: PMC8833553 DOI: 10.3390/cancers14030643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023] Open
Abstract
RNA-Binding Proteins (RBP) are very diverse and cover a large number of functions in the cells. This review focuses on RBM22, a gene encoding an RBP and belonging to the RNA-Binding Motif (RBM) family of genes. RBM22 presents a Zinc Finger like and a Zinc Finger domain, an RNA-Recognition Motif (RRM), and a Proline-Rich domain with a general structure suggesting a fusion of two yeast genes during evolution: Cwc2 and Ecm2. RBM22 is mainly involved in pre-mRNA splicing, playing the essential role of maintaining the conformation of the catalytic core of the spliceosome and acting as a bridge between the catalytic core and other essential protein components of the spliceosome. RBM22 is also involved in gene regulation, and is able to bind DNA, acting as a bona fide transcription factor on a large number of target genes. Undoubtedly due to its wide scope in the regulation of gene expression, RBM22 has been associated with several pathologies and, notably, with the aggressiveness of cancer cells and with the phenotype of a myelodysplastic syndrome. Mutations, enforced expression level, and haploinsufficiency of RBM22 gene are observed in those diseases. RBM22 could represent a potential therapeutic target in specific diseases, and, notably, in cancer.
Collapse
Affiliation(s)
- Benoît Soubise
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
| | - Yan Jiang
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Nathalie Douet-Guilbert
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
| | - Marie-Bérengère Troadec
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- Correspondence: ; Tel.: +33-2-98-01-64-55
| |
Collapse
|
41
|
Jiang L, Yu H, Ness S, Mao P, Guo F, Tang J, Guo Y. Comprehensive Analysis of Co-Mutations Identifies Cooperating Mechanisms of Tumorigenesis. Cancers (Basel) 2022; 14:415. [PMID: 35053577 PMCID: PMC8774165 DOI: 10.3390/cancers14020415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Somatic mutations are one of the most important factors in tumorigenesis and are the focus of most cancer-sequencing efforts. The co-occurrence of multiple mutations in one tumor has gained increasing attention as a means of identifying cooperating mutations or pathways that contribute to cancer. Using multi-omics, phenotypical, and clinical data from 29,559 cancer subjects and 1747 cancer cell lines covering 78 distinct cancer types, we show that co-mutations are associated with prognosis, drug sensitivity, and disparities in sex, age, and race. Some co-mutation combinations displayed stronger effects than their corresponding single mutations. For example, co-mutation TP53:KRAS in pancreatic adenocarcinoma is significantly associated with disease specific survival (hazard ratio = 2.87, adjusted p-value = 0.0003) and its prognostic predictive power is greater than either TP53 or KRAS as individually mutated genes. Functional analyses revealed that co-mutations with higher prognostic values have higher potential impact and cause greater dysregulation of gene expression. Furthermore, many of the prognostically significant co-mutations caused gains or losses of binding sequences of RNA binding proteins or micro RNAs with known cancer associations. Thus, detailed analyses of co-mutations can identify mechanisms that cooperate in tumorigenesis.
Collapse
Affiliation(s)
- Limin Jiang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Hui Yu
- Department of Internal Medicine, Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA; (H.Y.); (S.N.); (P.M.)
| | - Scott Ness
- Department of Internal Medicine, Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA; (H.Y.); (S.N.); (P.M.)
| | - Peng Mao
- Department of Internal Medicine, Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA; (H.Y.); (S.N.); (P.M.)
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha 410083, China;
| | - Jijun Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Yan Guo
- Department of Internal Medicine, Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA; (H.Y.); (S.N.); (P.M.)
| |
Collapse
|
42
|
Chen J, Liao Y, Li R, Luo M, Wu G, Tan R, Xiao Z. Immunotherapeutic Significance of a Prognostic Alternative Splicing Signature in Bladder Cancer. Technol Cancer Res Treat 2022; 21:15330338221090093. [PMID: 35509211 PMCID: PMC9083046 DOI: 10.1177/15330338221090093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: Bladder cancer is the fourth most common malignancy in men in the United States. Aberrant alternative splicing (AS) events are involved in the carcinogenesis, but the association between AS and bladder cancer remains unclear. This study aimed to construct an AS-based prognostic signature and elucidate the role of the tumor immune microenvironment (TIME) and the response to immunotherapy and chemotherapy in bladder cancer. Methods: Univariate Cox regression analysis was performed to detect prognosis-related AS events. The least absolute shrinkage and selection operator (LASSO) and multivariate Cox analyses were employed to build prognostic signatures. Kaplan-Meier survival analysis, multivariate Cox regression analysis, and receiver operating characteristic (ROC) curves were conducted to validate the prognostic signatures. Then, the Estimation of Stromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) and tumor immune estimation resource (TIMER) databases were searched and the single-sample gene set enrichment analysis (ssGSEA) algorithm and CIBERSORT method were performed to uncover the context of TIME in bladder cancer. The Tumor Immune Dysfunction and Exclusion (TIDE) web tool and pRRophetic algorithm were used to predict the response to immunotherapy and chemotherapy. Finally, we constructed a correlation network between splicing factors (SFs) and survival-related AS events. Results: A total of 4684 AS events were significantly associated with overall survival in patients with bladder cancer. Eight prognostic signatures of bladder cancer were established, and a clinical survival prediction model was built. In addition, the consolidated prognostic signature was closely related to immune infiltration and the response to immunotherapy and chemotherapy. Furthermore, the correlation identified EIF3A, DDX21, SDE2, TNPO1, and RNF40 as hub SFs, and function analysis found ubiquitin-mediated proteolysis is correlated most significantly with survival-associated AS events. Conclusion: Our findings highlight the prognostic value of AS for patients with bladder cancer and reveal pivotal players of AS events in the context of TIME and the response to immunotherapy and chemotherapy, which may be important for patient management and treatment.
Collapse
Affiliation(s)
- Jiang Chen
- The Second Affiliated Hospital, Hengyang Medical School, 34706University of South China, Hengyang, China
| | - Yangjie Liao
- 504354The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Rui Li
- 22494Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA.,Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingjiang Luo
- The Second Affiliated Hospital, Hengyang Medical School, 34706University of South China, Hengyang, China
| | - Guanlin Wu
- School of Basic Medical Sciences, 58305Fudan University, Shanghai, China
| | - Ruirong Tan
- 22494Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA.,International Center for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Zhihong Xiao
- The Second Affiliated Hospital, Hengyang Medical School, 34706University of South China, Hengyang, China
| |
Collapse
|
43
|
Yang YF, Chuang HW, Kuo WT, Lin BS, Chang YC. Current Development and Application of Anaerobic Glycolytic Enzymes in Urothelial Cancer. Int J Mol Sci 2021; 22:ijms221910612. [PMID: 34638949 PMCID: PMC8508954 DOI: 10.3390/ijms221910612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Urothelial cancer is a malignant tumor with metastatic ability and high mortality. Malignant tumors of the urinary system include upper tract urothelial cancer and bladder cancer. In addition to typical genetic alterations and epigenetic modifications, metabolism-related events also occur in urothelial cancer. This metabolic reprogramming includes aberrant expression levels of genes, metabolites, and associated networks and pathways. In this review, we summarize the dysfunctions of glycolytic enzymes in urothelial cancer and discuss the relevant phenotype and signal transduction. Moreover, we describe potential prognostic factors and risks to the survival of clinical cancer patients. More importantly, based on several available databases, we explore relationships between glycolytic enzymes and genetic changes or drug responses in urothelial cancer cells. Current advances in glycolysis-based inhibitors and their combinations are also discussed. Combining all of the evidence, we indicate their potential value for further research in basic science and clinical applications.
Collapse
Affiliation(s)
- Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
| | - Hao-Wen Chuang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Wei-Ting Kuo
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Bo-Syuan Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Correspondence: ; Tel.: +886-2-2826-7064
| |
Collapse
|
44
|
RBMX Protein Expression in T-Cell Lymphomas Predicts Chemotherapy Response and Prognosis. Cancers (Basel) 2021; 13:cancers13194788. [PMID: 34638274 PMCID: PMC8507920 DOI: 10.3390/cancers13194788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Patients with T-cell non-Hodgkin’s lymphomas (T-NHL) are often chemotherapy refractory and subsequently have poor prognosis. So far, mechanisms leading to this primary chemotherapy refractoriness and factors identifying such cases are not well established. This study investigated the prognostic relevance of the RNA binding protein X (RBMX) in 53 T-NHL cases using conventional immunohistochemistry. As shown, low RBMX expression was associated with better response to anthracycline-containing first-line treatment. Furthermore, low RBMX expression predicted an improved overall survival (OS) and progression-free survival (PFS). These results suggest that RBMX protein expression levels might be a contributing factor towards chemotherapy resistance and thus affect prognosis of patients with T-cell lymphomas. Abstract T-cell non-Hodgkin’s lymphomas (T-NHL) are a heterogeneous group of lymphomas with a mature T-cell phenotype. While in some hematological diseases the prognosis improved over the last decades, T-NHL cases often relapse early or present with an initially refractory course. Recently, it has been shown that RNA binding proteins have a crucial role for malignant tumor initiation, progression and treatment response while contributing to chemotherapy resistance. Therefore, we investigated the protein expression of the RNA binding protein X (RBMX), which has been shown to be of great relevance in disease initiation and progression in hematological diseases in 53 T-NHL cases using conventional immunohistochemistry. Low RBMX expression was associated with better response to anthracycline-containing first-line treatment. Furthermore, low RBMX expression predicted an improved overall survival and progression-free survival in univariate analysis. Multivariable Cox regression revealed RBMX as an independent prognostic marker for overall survival (p = 0.007; hazard ratio (HR) = 0.204; 95% confidence interval (CI): 0.064–0.646) and progression-free survival (p = 0.006; HR = 0.235; 95% CI: 0.083–0.666). The study identifies low RBMX expression to predict better chemotherapy response, overall survival and progression-free survival in patients with T-cell non-Hodgkin’s lymphomas. These results suggest that RBMX protein expression levels might be a contributing factor towards chemotherapy resistance and thus affect prognosis. Hence, RBMX may be a potential therapeutic target and prognostic marker in T-cell lymphomas.
Collapse
|
45
|
Yu C, Diao R, Khan R, Deng C, Ma H, Chang Z, Jiang X, Shi Q. The Dispensable Roles of X-Linked Ubl4a and Its Autosomal Counterpart Ubl4b in Spermatogenesis Represent a New Evolutionary Type of X-Derived Retrogenes. Front Genet 2021; 12:689902. [PMID: 34249105 PMCID: PMC8267814 DOI: 10.3389/fgene.2021.689902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
X-derived retrogenes contribute to genetic diversity in evolution and are usually specifically expressed in testis and perform important functions during spermatogenesis. Ubl4b is an autosomal retrogene with testis-specific expression derived from Ubl4a, an X-linked housekeeping gene. In the current study, we performed phylogenetic analysis and revealed that Ubl4a and Ubl4b are subject to purifying selection and may have conserved functions in evolution. Ubl4b was knocked out in mice using CRISPR/Cas9 genome editing technology and interestingly, we found no alterations in reproductive parameters of Ubl4b-/- male mice. To get insights into whether Ubl4a could compensate the absence of Ubl4b in vivo, we further obtained Ubl4a-/Y; Ubl4b-/- mice that lack both Ubl4a and Ubl4b, and the double knockout (dKO) mice also displayed normal spermatogenesis, showing that Ubl4a and Ubl4b are both dispensable for spermatogenesis. Thus, through the in vivo study of UBL4A and UBL4B, we provided a direct evidence for the first time that some X chromosome-derived autosomal retrogenes can be unfunctional in spermatogenesis, which represents an additional evolutionary type of X-derived retrogenes.
Collapse
Affiliation(s)
- Changping Yu
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Runjie Diao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ranjha Khan
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Hui Ma
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, National Engineering Laboratory for Anti-tumor Therapeutics, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohua Jiang
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qinghua Shi
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|