1
|
Huang X, Zhang D, Zhang D, Guo J, Gu G, Wang Y, Wu G, Wang C, Fu B, Li K. Decoding PTEN: from biological functions to signaling pathways in tumors. Mol Biol Rep 2024; 51:1089. [PMID: 39446204 DOI: 10.1007/s11033-024-10049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
The tumor suppressor gene Phosphatase and tensin homologue deleted on chromosome 10 (PTEN), possessing both protein and lipid phosphatase activities, is frequently mutated in various human cancers. PTEN aberrations disrupt critical cellular processes like proliferation, apoptosis, migration, and invasion, thereby promoting tumor growth. In the cells, PTEN localizes to the nucleus, cytoplasm, or cell membrane, and its roles depends on the subcellular localization. PTEN is regulated at the transcriptional, post-transcriptional, and post-translational levels, implying that its functions on the tumors are complex. The relationship between PTEN abnormalities and tumors has garnered significant interest in recent years. PTEN regulates essential cellular processes involved in tumorigenesis. Mutations or deletions in the PTEN gene often correlate with unfavorable prognosis and increased cancer recurrence. Numerous studies suggest that PTEN expression levels in tumors could be a valuable biomarker for cancer diagnosis, treatment, and predicting patient outcomes. This paper provides a comprehensive review of the biological function, regulatory mechanisms, and post-translational modifications of PTEN. Furthermore, this review explores the expression and regulation of PTEN in different tumor types, as well as its interactions with environmental factors in tumorigenesis. This comprehensive analysis aims to deepen our understanding of the signaling pathways between PTEN and cancer.
Collapse
Affiliation(s)
- Xueping Huang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Dongyan Zhang
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, PR China
| | - Di Zhang
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, PR China
| | - Jianran Guo
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, PR China
| | - Guohao Gu
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, PR China
| | - Yingying Wang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Guohao Wu
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Chuanbao Wang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Bo Fu
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, PR China.
| | - Keyi Li
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, PR China.
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong Province, PR China.
| |
Collapse
|
2
|
Han R, Rao X, Zhou H, Lu L. Synergistic Immunoregulation: harnessing CircRNAs and PiRNAs to Amplify PD-1/PD-L1 Inhibition Therapy. Int J Nanomedicine 2024; 19:4803-4834. [PMID: 38828205 PMCID: PMC11144010 DOI: 10.2147/ijn.s461289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/12/2024] [Indexed: 06/05/2024] Open
Abstract
The utilization of PD-1/PD-L1 inhibitors marks a significant advancement in cancer therapy. However, the efficacy of monotherapy is still disappointing in a substantial subset of patients, necessitating the exploration of combinational strategies. Emerging from the promising results of the KEYNOTE-942 trial, RNA-based therapies, particularly circRNAs and piRNAs, have distinguished themselves as innovative sensitizers to immune checkpoint inhibitors (ICIs). These non-coding RNAs, notable for their stability and specificity, were once underrecognized but are now known for their crucial roles in regulating PD-L1 expression and bolstering anti-cancer immunity. Our manuscript offers a comprehensive analysis of selected circRNAs and piRNAs, elucidating their immunomodulatory effects and mechanisms, thus underscoring their potential as ICIs enhancers. In conjunction with the recent Nobel Prize-awarded advancements in mRNA vaccine technology, our review highlights the transformative implications of these findings for cancer treatment. We also discuss the prospects of circRNAs and piRNAs in future therapeutic applications and research. This study pioneers the synergistic application of circRNAs and piRNAs as novel sensitizers to augment PD-1/PD-L1 inhibition therapy, demonstrating their unique roles in regulating PD-L1 expression and modulating immune responses. Our findings offer a groundbreaking approach for enhancing the efficacy of cancer immunotherapy, opening new avenues for treatment strategies. This abstract aims to encapsulate the essence of our research and the burgeoning role of these non-coding RNAs in enhancing PD-1/PD-L1 inhibition therapy, encouraging further investigation into this promising field.
Collapse
Affiliation(s)
- Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
- Department of Chinese Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Xiwu Rao
- Department of Oncology, The First Hospital Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Huiling Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, People’s Republic of China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA
- School of Medicine, Center for Biomedical Data Science, Yale University, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Chen CK, Chang YM, Jiang TX, Yue Z, Liu TY, Lu J, Yu Z, Lin JJ, Vu TD, Huang TY, Harn HIC, Ng CS, Wu P, Chuong CM, Li WH. Conserved regulatory switches for the transition from natal down to juvenile feather in birds. Nat Commun 2024; 15:4174. [PMID: 38755126 PMCID: PMC11099144 DOI: 10.1038/s41467-024-48303-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
The transition from natal downs for heat conservation to juvenile feathers for simple flight is a remarkable environmental adaptation process in avian evolution. However, the underlying epigenetic mechanism for this primary feather transition is mostly unknown. Here we conducted time-ordered gene co-expression network construction, epigenetic analysis, and functional perturbations in developing feather follicles to elucidate four downy-juvenile feather transition events. We report that extracellular matrix reorganization leads to peripheral pulp formation, which mediates epithelial-mesenchymal interactions for branching morphogenesis. α-SMA (ACTA2) compartmentalizes dermal papilla stem cells for feather renewal cycling. LEF1 works as a key hub of Wnt signaling to build rachis and converts radial downy to bilateral symmetry. Novel usage of scale keratins strengthens feather sheath with SOX14 as the epigenetic regulator. We show that this primary feather transition is largely conserved in chicken (precocial) and zebra finch (altricial) and discuss the possibility that this evolutionary adaptation process started in feathered dinosaurs.
Collapse
Affiliation(s)
- Chih-Kuan Chen
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - ZhiCao Yue
- Department of Cell Biology and Medical Genetics, Shenzhen University Medical School, Shenzhen, Guangdong, China
- International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Tzu-Yu Liu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jiayi Lu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhou Yu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jinn-Jy Lin
- National Applied Research Laboratories, National Center for High-performance Computing, Hsinchu, Taiwan
| | - Trieu-Duc Vu
- Michigan Neuroscience Institute, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Tao-Yu Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hans I-Chen Harn
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chen Siang Ng
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Bioresource Conservation Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Ullah MA, Garcillán B, Whitlock E, Figgett WA, Infantino S, Eslami M, Yang S, Rahman MA, Sheng YH, Weber N, Schneider P, Tam CS, Mackay F. An unappreciated cell survival-independent role for BAFF initiating chronic lymphocytic leukemia. Front Immunol 2024; 15:1345515. [PMID: 38469292 PMCID: PMC10927009 DOI: 10.3389/fimmu.2024.1345515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Background Chronic Lymphocytic Leukemia (CLL) is characterized by the expansion of CD19+ CD5+ B cells but its origin remains debated. Mutated CLL may originate from post-germinal center B cells and unmutated CLL from CD5+ mature B cell precursors. Irrespective of precursor types, events initiating CLL remain unknown. The cytokines BAFF and APRIL each play a significant role in CLL cell survival and accumulation, but their involvement in disease initiation remains unclear. Methods We generated novel CLL models lacking BAFF or APRIL. In vivo experiments were conducted to explore the impact of BAFF or APRIL loss on leukemia initiation, progression, and dissemination. Additionally, RNA-seq and quantitative real-time PCR were performed to unveil the transcriptomic signature influenced by BAFF in CLL. The direct role of BAFF in controlling the expression of tumor-promoting genes was further assessed in patient-derived primary CLL cells ex-vivo. Results Our findings demonstrate a crucial role for BAFF, but not APRIL, in the initiation and dissemination of CLL cells. In the absence of BAFF or its receptor BAFF-R, the TCL1 transgene only increases CLL cell numbers in the peritoneal cavity, without dissemination into the periphery. While BAFF binding to BAFF-R is dispensable for peritoneal CLL cell survival, it is necessary to activate a tumor-promoting gene program, potentially linked to CLL initiation and progression. This direct role of BAFF in controlling the expression of tumor-promoting genes was confirmed in patient-derived primary CLL cells ex-vivo. Conclusions Our study, involving both mouse and human CLL cells, suggests that BAFF might initiate CLL through mechanisms independent of cell survival. Combining current CLL therapies with BAFF inhibition could offer a dual benefit by reducing peripheral tumor burden and suppressing transformed CLL cell output.
Collapse
Affiliation(s)
- Md Ashik Ullah
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - Beatriz Garcillán
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Eden Whitlock
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - William A. Figgett
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Garvan Institute of Medical Research, Kinghorn Centre for Clinical Genomics, Darlinghurst, NSW, Australia
| | - Simona Infantino
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Mahya Eslami
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland
| | - SiLing Yang
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - M. Arifur Rahman
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - Yong H. Sheng
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - Nicholas Weber
- Cancer Care Services, Royal Brisbane and Women’s Hospital, Herston, QLD, Australia
| | - Pascal Schneider
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Constantine S. Tam
- Department of Haematology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Haematology, Monash University, Melbourne, VIC, Australia
| | - Fabienne Mackay
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Department of Immunology and Pathology, Monash University, VIC, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Li M, Liu Z, Hou Z, Wang X, Shi H, Li Y, Xiao X, Tang Z, Yang J, Luo Y, Zhang M, Chen M. Oncogenic zinc finger protein ZNF687 accelerates lung adenocarcinoma cell proliferation and tumor progression by activating the PI3K/AKT signaling pathway. Thorac Cancer 2023; 14:1223-1238. [PMID: 36944484 PMCID: PMC10175037 DOI: 10.1111/1759-7714.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Zinc finger protein 687 (ZNF687) has previously been discovered as a potential oncogene in individuals with giant cell tumors of the bone, acute myeloid leukemia, and hepatocellular carcinoma. However, its role and mechanism in lung adenocarcinoma (LUAD) remain unclear. METHODS In LUAD cells, tumor, and matched adjacent tissue specimens, quantitative real-time RT- polymerase chain reaction (qRT-PCR), western blotting analyses, and immunohistochemistry staining (IHC) were conducted. Cell counting kit-8 (CCK8) assay, clonogenicity analysis, flow cytometry, and transwell assays were utilized to detect ZNF687 overexpression and knockdown impacts on cell growth, colony formation, cell cycle, migration, and invasion. Bioinformatic studies, qRT-PCR and western blotting studies were employed to validate the underlying mechanisms and signaling pathways implicated in the oncogenic effect of ZNF687. RESULTS This study demonstrated that ZNF687 expression was elevated in LUAD cells and tissues. Individuals with upregulated ZNF687 had a poorer prognosis than those with downregulatedZNF687 (p < 0.001). ZNF687 overexpression enhanced LUAD growth, migration, invasion and colony formation, and the cell cycle G1-S transition; additionally, it promoted the epithelial-mesenchymal transition (EMT). In contrast, knocking down ZNF687 showed to have the opposite impact. Moreover, these effects were associated with the activity of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling mechanism. CONCLUSION ZNF687 was upregulated in LUAD, and high ZNF687 expression levels are associated with poor prognoses. The activation of the PI3K/AKT signaling pathway by upregulated ZNF687 increased the proliferation of LUAD cells and tumor progression. ZNF687 may be a beneficial predictive marker and a therapeutic target in LUAD.
Collapse
Affiliation(s)
- Mingchun Li
- Department of Radiation Oncology, The Second Affiliated Hospital, Soochow University, Suzhou, China
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
- The Clinical Medicine Research Center, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Zhihua Liu
- Department of Pathology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zan Hou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiangcai Wang
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Huaqiu Shi
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Yamei Li
- The Clinical Medicine Research Center, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Xuewen Xiao
- Department of Pathology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Zhixian Tang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Jianqiong Yang
- The Clinical Medicine Research Center, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Yaoling Luo
- The Clinical Medicine Research Center, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Minhong Zhang
- The Clinical Medicine Research Center, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Ming Chen
- Department of Radiation Oncology, The Second Affiliated Hospital, Soochow University, Suzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Chen Y, Zuo X, Wei Q, Xu J, Liu X, Liu S, Wang H, Luo Q, Wang Y, Yang Y, Zhao H, Xu J, Liu T, Yi P. Upregulation of LRRC8A by m 5C modification-mediated mRNA stability suppresses apoptosis and facilitates tumorigenesis in cervical cancer. Int J Biol Sci 2023; 19:691-704. [PMID: 36632452 PMCID: PMC9830503 DOI: 10.7150/ijbs.79205] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/13/2022] [Indexed: 01/04/2023] Open
Abstract
Cervical cancer (CC) is one of the most common gynecological malignancies with poor prognosis for advanced CC patients. LRRC8A is a volume-regulated anion channel protein involved in cellular homeostasis, but its role in CC remains largely unknown. In this study, we found that LRRC8A is elevated in CC and associated with poor prognosis. LRRC8A maintains cell survivals under the hypotonic condition, and promotes tumorigenesis through apoptosis suppression in vitro and in vivo. Notably, LRRC8A is upregulated by NSUN2-mediated m5C modification. m5C modified-LRRC8A mRNA is bound by the RNA binding protein YBX1 followed by the increased RNA stability. Moreover, loss of NSUN2 suppresses the proliferation and metastasis of CC cells, and NSUN2 expression is positively correlated with LRRC8A expression in CC. Altogether, our study demonstrates that the NSUN2-m5C-LRRC8A axis is crucial and would be a potential therapeutic target for CC.
Collapse
Affiliation(s)
- Yanjie Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Xinzhao Zuo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Qinglv Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jie Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Shiling Liu
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Haocheng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Qingya Luo
- Department of Pathology, Southwest Hospital, Army Medical Universtiy, Chongqing 400038, China
| | - Yuya Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yu Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Hongyan Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.,Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.,✉ Corresponding authors: Ping Yi. Address: Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China. E-mail: . Tao Liu. Address: Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China. E-mail:
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.,✉ Corresponding authors: Ping Yi. Address: Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China. E-mail: . Tao Liu. Address: Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China. E-mail:
| |
Collapse
|
7
|
Li Q, Zhang L, You W, Xu J, Dai J, Hua D, Zhang R, Yao F, Zhou S, Huang W, Dai Y, Zhang Y, Baheti T, Qian X, Pu L, Xu J, Xia Y, Zhang C, Tang J, Wang X. PRDM1/BLIMP1 induces cancer immune evasion by modulating the USP22-SPI1-PD-L1 axis in hepatocellular carcinoma cells. Nat Commun 2022; 13:7677. [PMID: 36509766 PMCID: PMC9744896 DOI: 10.1038/s41467-022-35469-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Programmed death receptor-1 (PD-1) blockade have achieved some efficacy but only in a fraction of patients with hepatocellular carcinoma (HCC). Programmed cell death 1 ligand 1 (PD-L1) binds to its receptor PD1 on T cells to dampen antigen-tumor immune responses. However, the mechanisms underlying PD-L1 regulation are not fully elucidated. Herein, we identify that tumoral Prdm1 overexpression inhibits cell growth in immune-deficient mouse models. Further, tumoral Prdm1 overexpression upregulates PD-L1 levels, dampening anti-tumor immunity in vivo, and neutralizes the anti-tumor efficacy of Prdm1 overexpression in immune-competent mouse models. Mechanistically, PRDM1 enhances USP22 transcription, thus reducing SPI1 protein degradation through deubiquitination, which enhances PD-L1 transcription. Functionally, PD-1 mAb treatment reinforces the efficacy of Prdm1-overexpressing HCC immune-competent mouse models. Collectively, we demonstrate that the PRDM1-USP22-SPI1 axis regulates PD-L1 levels, resulting in infiltrated CD8+ T cell exhaustion. Furthermore, PRDM1 overexpression combined with PD-(L)1 mAb treatment provides a therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Qing Li
- grid.89957.3a0000 0000 9255 8984Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province China
| | - Liren Zhang
- grid.89957.3a0000 0000 9255 8984Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province China
| | - Wenhua You
- grid.263826.b0000 0004 1761 0489School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu Province China ,grid.89957.3a0000 0000 9255 8984Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, Jiangsu Province China
| | - Jiali Xu
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province China
| | - Jingjing Dai
- grid.412676.00000 0004 1799 0784Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province China
| | - Dongxu Hua
- grid.89957.3a0000 0000 9255 8984The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Ruizhi Zhang
- grid.89957.3a0000 0000 9255 8984Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province China
| | - Feifan Yao
- grid.89957.3a0000 0000 9255 8984Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province China
| | - Suiqing Zhou
- grid.89957.3a0000 0000 9255 8984Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province China
| | - Wei Huang
- grid.411610.30000 0004 1764 2878Department of General Surgery, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Ili, China
| | - Yongjiu Dai
- grid.89957.3a0000 0000 9255 8984Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province China
| | - Yu Zhang
- grid.411610.30000 0004 1764 2878Department of General Surgery, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Ili, China
| | - Tasiken Baheti
- grid.411610.30000 0004 1764 2878Department of General Surgery, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Ili, China
| | - Xiaofeng Qian
- grid.89957.3a0000 0000 9255 8984Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province China
| | - Liyong Pu
- grid.89957.3a0000 0000 9255 8984Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province China
| | - Jing Xu
- grid.412676.00000 0004 1799 0784Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province China
| | - Yongxiang Xia
- grid.89957.3a0000 0000 9255 8984Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province China
| | - Chuanyong Zhang
- grid.89957.3a0000 0000 9255 8984Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province China
| | - Jinhai Tang
- grid.412676.00000 0004 1799 0784Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province China
| | - Xuehao Wang
- grid.89957.3a0000 0000 9255 8984Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province China
| |
Collapse
|
8
|
Protective effect of hepatocyte-enriched lncRNA-Mir122hg by promoting hepatocyte proliferation in acute liver injury. Exp Mol Med 2022; 54:2022-2035. [PMID: 36424455 PMCID: PMC9722683 DOI: 10.1038/s12276-022-00881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/01/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022] Open
Abstract
Some long noncoding RNAs (lncRNAs), which harbor microRNAs in their gene sequence and are also known as microRNA host gene derived lncRNAs (lnc-MIRHGs), play a dominant role alongside miRNAs, or both perform biological functions synergistically or independently. However, only a small number of lnc-MIRHGs have been identified. Here, multiple liver injury datasets were analyzed to screen and identify the target lncRNA Mir122hg. Mir122hg was mainly enriched in liver tissues with human-mouse homology. In both CCl4-induced acute liver injury and Dgal/LPS-induced fulminant liver failure in mice, Mir122hg was sharply downregulated at the early stage, while a subsequent significant increase was only found in the CCl4 group with liver recovery. Overexpression and silencing assays confirmed that Mir122hg played a protective role in acute injury by promoting hepatocyte proliferation in vivo and in vitro. Consistent with the results of gene enrichment analysis, Mir122hg binding to C/EBPα affected its transcriptional repression, promoted gene transcription of downstream chemokines, Cxcl2, Cxcl3, and Cxcl5, and exerted pro-proliferative effects on hepatocytes through activation of the AKT/GSK-3β/p27 signaling pathway by CXC/CXCR2 complexes. This study identifies a novel lncRNA with protective effects in acute liver injury and demonstrates that the binding of Mir122hg-C/EBPα promotes hepatocyte proliferation via upregulation of CXC chemokine and activation of AKT signaling.
Collapse
|
9
|
Zhang YR, Zheng PS. NEK2 inactivates the Hippo pathway to advance the proliferation of cervical cancer cells by cooperating with STRIPAK complexes. Cancer Lett 2022; 549:215917. [PMID: 36115593 DOI: 10.1016/j.canlet.2022.215917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022]
Abstract
The never in mitosis gene A (NIMA)-related kinase 2 (NEK2) protein has been reported to be an oncoprotein that plays different oncogenic roles in multiple cancers. Here, we confirmed that NEK2 highly expressed in cervical cancer cells rather than in normal epithelial basal layer cells in cervical tissues and correlated with worse outcomes. We also demonstrated that NEK2 promoted the in vivo growth of subcutaneous xenograft tumors stemming from cervical cancer cells and the in vitro cell proliferation by decreasing Ser127-phosphorylation of the YAP protein retained in the cytoplasm while increasing the levels of active nucleus-associated YAP protein, which was followed by increases in the targeted proteins CTGF, CYR61 and GLI2. Furthermore, the Hippo signaling pathway was inactivated in manipulated NEK2-overexpressing cervical cancer cells by regulating the levels of MST1/2 dephosphorylation. Additionally, mass spectrometric sequencing and bilateral coimmunoprecipitation were employed suggested that NEK2 acted at an early upstream step to promote dephosphorylation of MST2 and inactivate the Hippo signaling cascade by cooperating with STRIPAK complexes. We conjecture that NEK2 may be a future target for cervical cancer therapy.
Collapse
Affiliation(s)
- Yan-Ru Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China; Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an, 710061, Shaanxi, PR China.
| |
Collapse
|