1
|
Meng W, Yu S, Li Y, Wang H, Feng Y, Sun W, Liu Y, Sun S, Liu H. Mutant p53 achieves function by regulating EGR1 to induce epithelial mesenchymal transition. Tissue Cell 2024; 90:102510. [PMID: 39126833 DOI: 10.1016/j.tice.2024.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
The epithelial-mesenchymal transition (EMT) plays a crucial role in lung cancer metastasis, rendering it a promising therapeutic target. Research has shown that non-small cell lung cancer (NSCLC) with p53 mutations exhibits an increased tendency for cancer metastasis. However, the exact contribution of the p53-R273H mutation to tumor metastasis remains uncertain in the current literature. Our study established the H1299-p53-R273H cell model successfully by transfecting the p53-R273H plasmid into H1299 cells. We observed that p53-R273H promotes cell proliferation, migration, invasion, and EMT through CCK-8, wound healing, transwell, western blot and immunofluorescence assays. Notably, the expression of EGR1 was increased in H1299-p53-R273H cells. Knocking out EGR1 in these cells hindered the progression of EMT. ChIP-PCR experiments revealed that p53-R273H binds to the EGR1 promoter sequence, thereby regulating its expression. These findings suggest that p53-R273H triggers EMT by activating EGR1, thereby offering a potential therapeutic approach for lung cancer treatment.
Collapse
Affiliation(s)
- Weipei Meng
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Yu
- Interventional Center, Jilin Cancer Hospital, No. 1018 Huguang Rd, Chaoyang, Changchun 130012, China
| | - Yan Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Haichen Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Yuqing Feng
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Wanyue Sun
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Haifeng Liu
- Interventional Center, Jilin Cancer Hospital, No. 1018 Huguang Rd, Chaoyang, Changchun 130012, China.
| |
Collapse
|
2
|
Yoo YA, Quan S, Yang W, Guo Q, Rodríguez Y, Chalmers ZR, Dufficy MF, Lackie B, Sagar V, Unno K, Truica MI, Chandel NS, Abdulkadir SA. Asparagine Dependency Is a Targetable Metabolic Vulnerability in TP53-Altered Castration-Resistant Prostate Cancer. Cancer Res 2024; 84:3004-3022. [PMID: 38959335 PMCID: PMC11405136 DOI: 10.1158/0008-5472.can-23-2910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/07/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
TP53 tumor suppressor is frequently altered in lethal, castration-resistant prostate cancer (CRPC). However, to date there are no effective treatments that specifically target TP53 alterations. Using transcriptomic and metabolomic analyses, we have shown here that TP53-altered prostate cancer exhibits an increased dependency on asparagine (Asn) and overexpresses Asn synthetase (ASNS), the enzyme catalyzing the synthesis of Asn. Mechanistically, the loss or mutation of TP53 transcriptionally activated ASNS expression, directly and via mTORC1-mediated ATF4 induction, driving de novo Asn biosynthesis to support CRPC growth. TP53-altered CRPC cells were sensitive to Asn restriction by knockdown of ASNS or L-asparaginase treatment to deplete the intracellular and extracellular sources of Asn, respectively, and cell viability was rescued by Asn addition. Notably, pharmacological inhibition of intracellular Asn biosynthesis using a glutaminase inhibitor and depletion of extracellular Asn with L-asparaginase significantly reduced Asn production and effectively impaired CRPC growth. This study highlights the significance of ASNS-mediated metabolic adaptation as a synthetic vulnerability in CRPC with TP53 alterations, providing a rationale for targeting Asn production to treat these lethal prostate cancers. Significance: TP53-mutated castration-resistant prostate cancer is dependent on asparagine biosynthesis due to upregulation of ASNS and can be therapeutically targeted by approaches that deplete intracellular and extracellular asparagine.
Collapse
Affiliation(s)
- Young A Yoo
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Songhua Quan
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William Yang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Qianyu Guo
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yara Rodríguez
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Zachary R Chalmers
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mary F Dufficy
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Barbara Lackie
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Vinay Sagar
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kenji Unno
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mihai I Truica
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
3
|
Toscano-Guerra E, Maggio V, García J, Semidey ME, Celma A, Morote J, de Torres I, Giralt M, Ferrer-Costa R, Paciucci R. Association of the rs1042522 SNP with prostate cancer risk: a study of cancer tissues, primary tumor cultures, and serum samples from a Spanish Caucasian population. Front Oncol 2024; 14:1398411. [PMID: 39193388 PMCID: PMC11347290 DOI: 10.3389/fonc.2024.1398411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Background Prostate cancer (PCa) is a leading cause of cancer-related deaths in European men, emphasizing the urgent need for effective risk assessment strategies. The TP53 gene, a tumor suppressor gene frequently mutated in cancer, commonly harbors the rs1042522 single nucleotide polymorphism (SNP), known as the P72R SNP, which may influence PCa susceptibility. This study investigated the prevalence of the P72R SNP in European Caucasian PCa samples and its association with PCa risk. Methods Genotyping was conducted on 12 hormone-naïve aggressive PCa cultures (hnPCs) from untreated patients (Gleason ≥8), 11 radical prostatectomies (RP), and 94 serum samples using DNA Sanger sequencing and melting curve analysis. Comparative analysis utilized data from the GnomAD database's European Caucasian non-cancer population. Results Our results demonstrate a significantly higher frequency of the P72R SNP in PCa samples and serums compared to the general European non-cancer population. A robust and statistically significant association (p < 0.0001) between the SNP and prostate cancer risk was identified, with an odds ratio of 7.937 (95% CI 5.37-11.00). Notably, the G allele (R72) showed a pronounced prevalence in high Gleason score (≥8) patients, although statistical significance was not reached. These results highlight a potential association with undifferentiated and malignant PCa lesions. Conclusion The compelling association between the P72R SNP and prostate cancer risk underscores the potential utility of this marker for the early identification of patients at risk of aggressive metastatic prostate cancer. This insight could empower further research to intervene at an early stage by offering enhanced opportunities for timely and targeted interventions.
Collapse
Affiliation(s)
- Emily Toscano-Guerra
- Cell Signaling and Cancer Progression Laboratory, Vall d’Hebron Institute of Research (VHIR), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
- Clinical Biochemistry Department, Biochemistry Service, Vall d’Hebron Hospital, Barcelona, Spain
- Facultad Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Valentina Maggio
- Cell Signaling and Cancer Progression Laboratory, Vall d’Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Javier García
- Cell Signaling and Cancer Progression Laboratory, Vall d’Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Maria Eugenia Semidey
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
- Department of Pathology, Vall d’Hebron Hospital, Barcelona, Spain
| | - Ana Celma
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
- Department of Urology, Vall d’Hebron Hospital, Barcelona, Spain
| | - Juan Morote
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
- Department of Pathology, Vall d’Hebron Hospital, Barcelona, Spain
| | - Inés de Torres
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
- Department of Pathology, Vall d’Hebron Hospital, Barcelona, Spain
| | - Marina Giralt
- Clinical Biochemistry Department, Biochemistry Service, Vall d’Hebron Hospital, Barcelona, Spain
| | - Roser Ferrer-Costa
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
- Clinical Biochemistry Department, Biochemistry Service, Vall d’Hebron Hospital, Barcelona, Spain
| | - Rosanna Paciucci
- Cell Signaling and Cancer Progression Laboratory, Vall d’Hebron Institute of Research (VHIR), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
- Clinical Biochemistry Department, Biochemistry Service, Vall d’Hebron Hospital, Barcelona, Spain
| |
Collapse
|
4
|
Wang Y, Peng J, Yang D, Xing Z, Jiang B, Ding X, Jiang C, Ouyang B, Su L. From metabolism to malignancy: the multifaceted role of PGC1α in cancer. Front Oncol 2024; 14:1383809. [PMID: 38774408 PMCID: PMC11106418 DOI: 10.3389/fonc.2024.1383809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
PGC1α, a central player in mitochondrial biology, holds a complex role in the metabolic shifts seen in cancer cells. While its dysregulation is common across major cancers, its impact varies. In some cases, downregulation promotes aerobic glycolysis and progression, whereas in others, overexpression escalates respiration and aggression. PGC1α's interactions with distinct signaling pathways and transcription factors further diversify its roles, often in a tissue-specific manner. Understanding these multifaceted functions could unlock innovative therapeutic strategies. However, challenges exist in managing the metabolic adaptability of cancer cells and refining PGC1α-targeted approaches. This review aims to collate and present the current knowledge on the expression patterns, regulators, binding partners, and roles of PGC1α in diverse cancers. We examined PGC1α's tissue-specific functions and elucidated its dual nature as both a potential tumor suppressor and an oncogenic collaborator. In cancers where PGC1α is tumor-suppressive, reinstating its levels could halt cell proliferation and invasion, and make the cells more receptive to chemotherapy. In cancers where the opposite is true, halting PGC1α's upregulation can be beneficial as it promotes oxidative phosphorylation, allows cancer cells to adapt to stress, and promotes a more aggressive cancer phenotype. Thus, to target PGC1α effectively, understanding its nuanced role in each cancer subtype is indispensable. This can pave the way for significant strides in the field of oncology.
Collapse
Affiliation(s)
- Yue Wang
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Jianing Peng
- Division of Biosciences, University College London, London, United Kingdom
| | - Dengyuan Yang
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Zhongjie Xing
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Bo Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Xu Ding
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Chaoyu Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Bing Ouyang
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Lei Su
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Ding L, Wang Y, Tang Z, Ni C, Zhang Q, Zhai Q, Liang C, Li J. Exploration of vitamin D metabolic activity-related biological effects and corresponding therapeutic targets in prostate cancer. Nutr Metab (Lond) 2024; 21:17. [PMID: 38566155 PMCID: PMC10988890 DOI: 10.1186/s12986-024-00791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Previous studies have unequivocally demonstrated that the vitamin D (VD) metabolism pathway significantly influences prognosis and sensitivity to hormone therapy in prostate cancer (PCa). However, the precise underlying mechanism remains unclear. METHODS We performed molecular profiling of 1045 PCa patients, leveraging genes linked to VD synthesis and VD receptors. We then identified highly variable gene modules with substantial associations with patient stratification. Subsequently, we intersected these modules with differentially expressed genes between PCa and adjacent paracancerous tissues. Following a meticulous process involving single-factor regression and LASSO regression to eliminate extraneous variables and construct a prognostic model. Within the high-risk subgroup defined by the calculated risk score, we analyzed their differences in cell infiltration, immune status, mutation landscape, and drug sensitivity. Finally, we selected Apolipoprotein E (APOE), which featured prominently in this model for further experimental exploration to evaluate its potential as a therapeutic target. RESULTS The prognostic model established in this study had commendable predictive efficacy. We observed diminished infiltration of various T-cell subtypes and reduced expression of co-stimulatory signals from antigen-presenting cells. Mutation analysis revealed that the high-risk cohort harbored a higher frequency of mutations in the TP53 and FOXA genes. Notably, drug sensitivity analysis suggested the heightened responsiveness of high-risk patients to molecular inhibitors targeting the Bcl-2 and MAPK pathways. Finally, our investigation also confirmed that APOE upregulates the proliferative and invasive capacity of PCa cells and concurrently enhances resistance to androgen receptor antagonist therapy. CONCLUSION This comprehensive study elucidated the potential mechanisms through which this metabolic pathway orchestrates the biological behavior of PCa and findings hold promise in advancing the development of combination therapies in PCa.
Collapse
Affiliation(s)
- Lei Ding
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Yong Wang
- Department of Urology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, 214023, Suqian, China
| | - Zhentao Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Chenbo Ni
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Qian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Qidi Zhai
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China.
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China.
| |
Collapse
|
6
|
Jung J, Han H. The diverse influences of relaxin-like peptide family on tumor progression: Potential opportunities and emerging challenges. Heliyon 2024; 10:e24463. [PMID: 38298643 PMCID: PMC10828710 DOI: 10.1016/j.heliyon.2024.e24463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Relaxin-like peptide family exhibit differential expression patterns in various types of cancers and play a role in cancer development. This family participates in tumorigenic processes encompassing proliferation, migration, invasion, tumor microenvironment, immune microenvironment, and anti-cancer resistance, ultimately influencing patient prognosis. In this review, we explore the mechanisms underlying the interaction between the RLN-like peptide family and tumors and provide an overview of therapeutic approaches utilizing this interaction.
Collapse
Affiliation(s)
| | - Hyunho Han
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
7
|
Coan M, Toso M, Cesaratto L, Rigo I, Borgna S, Dalla Pietà A, Zandonà L, Iuri L, Zucchetto A, Piazza C, Baldassarre G, Spizzo R, Nicoloso MS. LINC01605 Is a Novel Target of Mutant p53 in Breast and Ovarian Cancer Cell Lines. Int J Mol Sci 2023; 24:13736. [PMID: 37762037 PMCID: PMC10531163 DOI: 10.3390/ijms241813736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
TP53 is the most frequently mutated gene in human cancers. Most TP53 genomic alterations are missense mutations, which cause a loss of its tumour suppressor functions while providing mutant p53 (mut_p53) with oncogenic features (gain-of-function). Loss of p53 tumour suppressor functions alters the transcription of both protein-coding and non-protein-coding genes. Gain-of-function of mut_p53 triggers modification in gene expression as well; however, the impact of mut_p53 on the transcription of the non-protein-coding genes and whether these non-protein-coding genes affect oncogenic properties of cancer cell lines are not fully explored. In this study, we suggested that LINC01605 (also known as lincDUSP) is a long non-coding RNA regulated by mut_p53 and proved that mut_p53 directly regulates LINC01605 by binding to an enhancer region downstream of the LINC01605 locus. We also showed that the loss or downregulation of LINC01605 impairs cell migration in a breast cancer cell line. Eventually, by performing a combined analysis of RNA-seq data generated in mut_TP53-silenced and LINC01605 knockout cells, we showed that LINC01605 and mut_p53 share common gene pathways. Overall, our findings underline the importance of ncRNAs in the mut_p53 network in breast and ovarian cancer cell lines and in particular the importance of LINC01605 in mut_p53 pro-migratory pathways.
Collapse
Affiliation(s)
- Michela Coan
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Martina Toso
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Laura Cesaratto
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Ilenia Rigo
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Silvia Borgna
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Anna Dalla Pietà
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Luigi Zandonà
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Lorenzo Iuri
- Department of Mathematics, Informatics and Physics, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Antonella Zucchetto
- Division of Clinical and Experimental Onco-Hematology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Carla Piazza
- Department of Mathematics, Informatics and Physics, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Riccardo Spizzo
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Milena Sabrina Nicoloso
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| |
Collapse
|
8
|
Sasaki K, Takahashi S, Ouchi K, Otsuki Y, Wakayama S, Ishioka C. Different impacts of TP53 mutations on cell cycle-related gene expression among cancer types. Sci Rep 2023; 13:4868. [PMID: 36964217 PMCID: PMC10039000 DOI: 10.1038/s41598-023-32092-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/22/2023] [Indexed: 03/26/2023] Open
Abstract
Functional properties caused by TP53 mutations are involved in cancer development and progression. Although most of the mutations lose normal p53 functions, some of them, gain-of-function (GOF) mutations, exhibiting novel oncogenic functions. No reports have analyzed the impact of TP53 mutations on the gene expression profile of the p53 signaling pathway across cancer types. This study is a cross-cancer type analysis of the effects of TP53 mutations on gene expression. A hierarchical cluster analysis of the expression profile of the p53 signaling pathway classified 21 cancer types into two clusters (A1 and A2). Changes in the expression of cell cycle-related genes and MKI67 by TP53 mutations were greater in cluster A1 than in cluster A2. There was no distinct difference in the effects between GOF and non-GOF mutations on the gene expression profile of the p53 signaling pathway.
Collapse
Affiliation(s)
- Keiju Sasaki
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shin Takahashi
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Kota Ouchi
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yasufumi Otsuki
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shonosuke Wakayama
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan.
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan.
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
9
|
Inhibition of p53 protein aggregation as a cancer treatment strategy. Curr Opin Chem Biol 2023; 72:102230. [PMID: 36436275 DOI: 10.1016/j.cbpa.2022.102230] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
Abstract
The p53 protein plays a critical role in the prevention of genome mutations in the body, however, this protein is frequently mutated in cancer and almost all cancers exhibit malfunction along the p53 pathway. In addition to a loss of activity, mutant p53 protein is prone to unfolding and aggregation, eventually forming amyloid aggregates. There continues to be a considerable effort to develop strategies to restore normal p53 expression and activity and this review details recent advances in small-molecule stabilization of mutant p53 protein and the design of p53 aggregation inhibitors.
Collapse
|
10
|
Depletion of R270C Mutant p53 in Osteosarcoma Attenuates Cell Growth but Does Not Prevent Invasion and Metastasis In Vivo. Cells 2022; 11:cells11223614. [PMID: 36429043 PMCID: PMC9688353 DOI: 10.3390/cells11223614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Novel therapeutic targets are needed to better treat osteosarcoma, which is the most common bone malignancy. We previously developed mouse osteosarcoma cells, designated AX (accelerated bone formation) cells from bone marrow stromal cells. AX cells harbor both wild-type and mutant forms of p53 (R270C in the DNA-binding domain, which is equivalent to human R273C). In this study, we showed that mutant p53 did not suppress the transcriptional activation function of wild-type p53 in AX cells. Notably, AXT cells, which are cells derived from tumors originating from AX cells, lost wild-type p53 expression, were devoid of the intact transcription activation function, and were resistant to doxorubicin. ChIP-seq analyses revealed that this mutant form of p53 bound to chromatin in the vicinity of the transcription start sites of various genes but exhibited a different binding profile from wild-type p53. The knockout of mutant p53 in AX and AXT cells by CRISPR-Cas9 attenuated tumor growth but did not affect the invasion of these cells. In addition, depletion of mutant p53 did not prevent metastasis in vivo. Therefore, the therapeutic potency targeting R270C (equivalent to human R273C) mutant p53 is limited in osteosarcoma. However, considering the heterogeneous nature of osteosarcoma, it is important to further evaluate the biological and clinical significance of mutant p53 in various cases.
Collapse
|
11
|
Targeting Mutant p53 for Cancer Treatment: Moving Closer to Clinical Use? Cancers (Basel) 2022; 14:cancers14184499. [PMID: 36139658 PMCID: PMC9496879 DOI: 10.3390/cancers14184499] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cancer is largely caused by genetic alterations such as mutations in a group of genes known as cancer driver genes. Many of the key advances in cancer treatment in recent years have involved blocking these driver genes using a new generation of anti-cancer drugs. Although p53 is the most frequently mutated gene in human cancers, historically, it has proved difficult to develop drugs against it. However, recently, several new drugs have become available for neutralizing the cancer-promoting effects of mutant p53. The aim of this article is to discuss the most promising of these drugs, especially those that are being investigated in clinical trials. Abstract Mutant p53 is one of the most attractive targets for new anti-cancer drugs. Although traditionally regarded as difficult to drug, several new strategies have recently become available for targeting the mutant protein. One of the most promising of these involves the use of low molecular weight compounds that promote refolding and reactivation of mutant p53 to its wild-type form. Several such reactivating drugs are currently undergoing evaluation in clinical trials, including eprenetapopt (APR-246), COTI-2, arsenic trioxide and PC14586. Of these, the most clinically advanced for targeting mutant p53 is eprenetapopt which has completed phase I, II and III clinical trials, the latter in patients with mutant TP53 myelodysplastic syndrome. Although no data on clinical efficacy are currently available for eprenetapopt, preliminary results suggest that the drug is relatively well tolerated. Other strategies for targeting mutant p53 that have progressed to clinical trials involve the use of drugs promoting degradation of the mutant protein and exploiting the mutant protein for the development of anti-cancer vaccines. With all of these ongoing trials, we should soon know if targeting mutant p53 can be used for cancer treatment. If any of these trials show clinical efficacy, it may be a transformative development for the treatment of patients with cancer since mutant p53 is so prevalent in this disease.
Collapse
|
12
|
Mejía-Hernández JO, Keam SP, Saleh R, Muntz F, Fox SB, Byrne D, Kogan A, Pang L, Huynh J, Litchfield C, Caramia F, Lozano G, He H, You JM, Sandhu S, Williams SG, Haupt Y, Haupt S. Modelling aggressive prostate cancers of young men in immune-competent mice, driven by isogenic Trp53 alterations and Pten loss. Cell Death Dis 2022; 13:777. [PMID: 36075907 PMCID: PMC9465983 DOI: 10.1038/s41419-022-05211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 01/21/2023]
Abstract
Understanding prostate cancer onset and progression in order to rationally treat this disease has been critically limited by a dire lack of relevant pre-clinical animal models. We have generated a set of genetically engineered mice that mimic human prostate cancer, initiated from the gland epithelia. We chose driver gene mutations that are specifically relevant to cancers of young men, where aggressive disease poses accentuated survival risks. An outstanding advantage of our models are their intact repertoires of immune cells. These mice provide invaluable insight into the importance of immune responses in prostate cancer and offer scope for studying treatments, including immunotherapies. Our prostate cancer models strongly support the role of tumour suppressor p53 in functioning to critically restrain the emergence of cancer pathways that drive cell cycle progression; alter metabolism and vasculature to fuel tumour growth; and mediate epithelial to mesenchymal-transition, as vital to invasion. Importantly, we also discovered that the type of p53 alteration dictates the specific immune cell profiles most significantly disrupted, in a temporal manner, with ramifications for disease progression. These new orthotopic mouse models demonstrate that each of the isogenic hotspot p53 amino acid mutations studied (R172H and R245W, the mouse equivalents of human R175H and R248W respectively), drive unique cellular changes affecting pathways of proliferation and immunity. Our findings support the hypothesis that individual p53 mutations confer their own particular oncogenic gain of function in prostate cancer.
Collapse
Affiliation(s)
- Javier Octavio Mejía-Hernández
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,Present Address: Telix Pharmaceuticals Ltd, Melbourne, VIC 3051 Australia
| | - Simon P. Keam
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1135.60000 0001 1512 2287Present Address: CSL Innovation, CSL Ltd, Melbourne, VIC 3052 Australia
| | - Reem Saleh
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Fenella Muntz
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Stephen B. Fox
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Pathology Department, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - David Byrne
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1055.10000000403978434Pathology Department, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Arielle Kogan
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Lokman Pang
- grid.1018.80000 0001 2342 0938Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084 Australia
| | - Jennifer Huynh
- grid.1018.80000 0001 2342 0938Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084 Australia
| | - Cassandra Litchfield
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Franco Caramia
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Guillermina Lozano
- grid.240145.60000 0001 2291 4776Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.267308.80000 0000 9206 2401University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX USA
| | - Hua He
- grid.240145.60000 0001 2291 4776Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX USA
| | - James M. You
- grid.267308.80000 0000 9206 2401University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX USA
| | - Shahneen Sandhu
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000 Australia
| | - Scott G. Williams
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Division of Radiation Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Ygal Haupt
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,Present Address: Vittail Ltd, Melbourne, VIC 3146 Australia
| | - Sue Haupt
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| |
Collapse
|
13
|
Mejía-Hernández JO, Raghu D, Caramia F, Clemons N, Fujihara K, Riseborough T, Teunisse A, Jochemsen AG, Abrahmsén L, Blandino G, Russo A, Gamell C, Fox SB, Mitchell C, Takano EA, Byrne D, Miranda PJ, Saleh R, Thorne H, Sandhu S, Williams SG, Keam SP, Haupt Y, Haupt S. Targeting MDM4 as a Novel Therapeutic Approach in Prostate Cancer Independent of p53 Status. Cancers (Basel) 2022; 14:3947. [PMID: 36010941 PMCID: PMC9405814 DOI: 10.3390/cancers14163947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Metastatic prostate cancer is a lethal disease in patients incapable of responding to therapeutic interventions. Invasive prostate cancer spread is caused by failure of the normal anti-cancer defense systems that are controlled by the tumour suppressor protein, p53. Upon mutation, p53 malfunctions. Therapeutic strategies to directly re-empower the growth-restrictive capacities of p53 in cancers have largely been unsuccessful, frequently because of a failure to discriminate responses in diseased and healthy tissues. Our studies sought alternative prostate cancer drivers, intending to uncover new treatment targets. We discovered the oncogenic potency of MDM4 in prostate cancer cells, both in the presence and absence of p53 and also its mutation. We uncovered that sustained depletion of MDM4 is growth inhibitory in prostate cancer cells, involving either apoptosis or senescence, depending on the cell and genetic context. We identified that the potency of MDM4 targeting could be potentiated in prostate cancers with mutant p53 through the addition of a first-in-class small molecule drug that was selected as a p53 reactivator and has the capacity to elevate oxidative stress in cancer cells to drive their death.
Collapse
Affiliation(s)
- Javier Octavio Mejía-Hernández
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Dinesh Raghu
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Franco Caramia
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicholas Clemons
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kenji Fujihara
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Thomas Riseborough
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Amina Teunisse
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2333 Leiden, The Netherlands
| | - Aart G. Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2333 Leiden, The Netherlands
| | | | - Giovanni Blandino
- Translational Oncology Research Unit, IRCSS Regina Elena National Cancer Institute, 0144 Rome, Italy
| | - Andrea Russo
- Surgical Pathology Unit, Department of Research, Advanced Diagnostics and Technological Innovation, IRCSS Regina Elena National Cancer Institute, 0144 Rome, Italy
| | - Cristina Gamell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen B. Fox
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Catherine Mitchell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Elena A. Takano
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - David Byrne
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Panimaya Jeffreena Miranda
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Reem Saleh
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Heather Thorne
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shahneen Sandhu
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Scott G. Williams
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Simon P. Keam
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ygal Haupt
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sue Haupt
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
14
|
Cancer-related Mutations with Local or Long-range Effects on an Allosteric Loop of p53. J Mol Biol 2022; 434:167663. [PMID: 35659507 DOI: 10.1016/j.jmb.2022.167663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 12/31/2022]
Abstract
The tumor protein 53 (p53) is involved in transcription-dependent and independent processes. Several p53 variants related to cancer have been found to impact protein stability. Other variants, on the contrary, might have little impact on structural stability and have local or long-range effects on the p53 interactome. Our group previously identified a loop in the DNA binding domain (DBD) of p53 (residues 207-213) which can recruit different interactors. Experimental structures of p53 in complex with other proteins strengthen the importance of this interface for protein-protein interactions. We here characterized with structure-based approaches somatic and germline variants of p53 which could have a marginal effect in terms of stability and act locally or allosterically on the region 207-213 with consequences on the cytosolic functions of this protein. To this goal, we studied 1132 variants in the p53 DBD with structure-based approaches, accounting also for protein dynamics. We focused on variants predicted with marginal effects on structural stability. We then investigated each of these variants for their impact on DNA binding, dimerization of the p53 DBD, and intramolecular contacts with the 207-213 region. Furthermore, we identified variants that could modulate long-range the conformation of the region 207-213 using a coarse-grain model for allostery and all-atom molecular dynamics simulations. Our predictions have been further validated using enhanced sampling methods for 15 variants. The methodologies used in this study could be more broadly applied to other p53 variants or cases where conformational changes of loop regions are essential in the function of disease-related proteins.
Collapse
|