1
|
Kanda M, Kasahara Y, Shimizu D, Shinozuka T, Sasahara M, Nakamura S, Iguchi Y, Katsuno M, Kodera Y, Obika S. Dual-modified antisense oligonucleotides targeting oncogenic protocadherin to treat gastric cancer. Br J Cancer 2024; 131:1555-1566. [PMID: 39304746 PMCID: PMC11519331 DOI: 10.1038/s41416-024-02859-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The objective of this study was to develop an innovative treatment strategy utilizing antisense oligonucleotides (ASOs) that target the gene encoding protocadherin alpha 11 (PCDHA11) and to elucidate the role of PCDHA11 in gastric cancer cells. METHODS We designed and screened 54 amido-bridged nucleic acid (AmNA)-modified ASOs, selecting them based on PCDHA11-knockdown efficacy, in vitro and in vivo activity, and off-target effects. We assessed the impact of AmNA-modified anti-PCDHA11 ASOs on cellular functions and signaling pathways, and investigated the effects of Pcdha11 deficiency in mice. RESULTS AmNA-modified anti-PCDHA11 ASOs significantly reduced the proliferation of gastric cancer cells and other solid tumors, whereas overexpression of PCDHA11 enhanced cell proliferation. The selected ASOs inhibited cellular functions related to the metastatic potential of gastric cancer cells, including migration, invasiveness, spheroid formation, and cancer stemness. Our findings revealed that AmNA-modified anti-PCDHA11 ASOs disrupted the AKT/mTOR, Wnt/β-catenin, and JAK/STAT signaling pathways. In mouse models of peritoneal metastasis (gastric and pancreatic cancer), systemic metastasis, and established subcutaneous tumors, administration of AmNA-modified anti-PCDHA11 ASOs inhibited tumor growth. ASO treatment induced reversible, dose- and sequence-dependent liver damage. Pcdha11-deficient mice demonstrated normal reproductive, organ, and motor functions. CONCLUSIONS AmNA-modified anti-PCDHA11 ASOs offer a promising therapeutic strategy for the treatment of gastric cancer and other solid malignancies.
Collapse
Affiliation(s)
- Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Yuuya Kasahara
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Shinozuka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Sasahara
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shunsuke Nakamura
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Shinozuka T, Kanda M, Sato Y, Shimizu D, Umeda S, Takami H, Hattori N, Hayashi M, Tanaka C, Kodera Y. Therapeutic Potential of Antibody Targeting Neuronal Pentraxin Receptor in Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2024; 31:5674-5682. [PMID: 38717547 DOI: 10.1245/s10434-024-15353-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/09/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) has a poor prognosis despite advances in multidisciplinary treatments and immune checkpoint inhibitors. We previously reported that neural pentraxin receptor (NPTXR), a transmembrane protein mainly expressed in the brain and involved in synaptic transmission, is implicated in gastric cancer malignancy. This study evaluated the expression and function of NPTXR in ESCC, the therapeutic potential of monoclonal antibody (mAb) against NPTXR, and its prognostic value in ESCC patients. METHODS The study involved analyzing the NPTXR expression in 21 ESCC cell lines and total 371 primary ESCC tissue samples using quantitative reverse-transcription polymerase chain reaction and immunohistochemistry. The impact of NPTXR on the malignant behavior of ESCC was examined using small interfering RNA-mediated knockdown and a subsequent assessment of cell proliferation, apoptosis, and adhesion. This study further investigated the efficacy of anti-NPTXR mAb in vitro and associations between the expression of NPTXR messenger RNA (mRNA) and protein with clinicopathological factors and the prognosis. RESULTS NPTXR was overexpressed in several ESCC cell lines and primary ESCC tissues. Knockdown of NPTXR in ESCC cells resulted in reduced proliferation, increased apoptosis, and decreased cell adhesion. The mAb against NPTXR significantly inhibited ESCC cell proliferation in vitro. A high NPTXR expression in patient tissues was correlated with a worse overall survival, suggesting its potential as a prognostic biomarker. CONCLUSIONS NPTXR influences the malignant behavior of ESCC cells. Anti-NPTXR mAb may be a promising therapeutic agent, and its expression in ESCC tissues may serve as a prognostic biomarker.
Collapse
Affiliation(s)
- Takahiro Shinozuka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Yusuke Sato
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Umeda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norifumi Hattori
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Ito Y, Kanda M, Sasahara M, Tanaka C, Shimizu D, Umeda S, Inokawa Y, Hattori N, Hayashi M, Nakayama G, Kodera Y. Killer cell lectin-like receptor G2 facilitates aggressive phenotypes of gastric cancer cells via dual activation of the ERK1/2 and JAK/STAT pathways. Gastric Cancer 2024; 27:506-518. [PMID: 38386237 DOI: 10.1007/s10120-024-01480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Advanced gastric cancer (GC) has a poor prognosis. This study aimed to identify novel GC-related genes as potential therapeutic targets. METHODS Killer cell lectin-like receptor G2 (KLRG2) was identified as a candidate gene by transcriptome analysis of metastatic GC tissues. Small interfering RNA-mediated KLRG2 knockdown in human GC cell lines was used to investigate KLRG2 involvement in signaling pathways and functional behaviors in vitro and in vivo. Clinicopathological data were analyzed in patients stratified according to tumor KLRG2 mRNA expression. RESULTS KLRG2 knockdown in GC cells decreased cell proliferation, migration, and invasion; caused cell cycle arrest in G2/M phase; induced apoptosis via caspase activation; suppressed JAK/STAT and MAPK-ERK1/2 pathway activities; and upregulated p53 and p38 MAPK activities. In mouse xenograft models of peritoneal metastasis, the number and weight of disseminated GC nodules were decreased by KLRG2 knockdown. High tumor levels of KLRG2 mRNA were significantly associated with lower 5-year overall survival (OS) and relapse-free survival (RFS) rates in patients with Stage I-III GC (5-year OS rate: 64.4% vs. 80.0%, P = 0.009; 5-year RFS rate: 62.8% vs. 78.1%, P = 0.030). CONCLUSIONS KLRG2 knockdown attenuated the malignant phenotypes of GC cells via downregulation of JAK/STAT and MAPK-ERK1/2 pathway activity and upregulation of p38 MAPK and p53. Targeted suppression of KLRG2 may serve as a new treatment approach for GC.
Collapse
Affiliation(s)
- Yuki Ito
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Masahiro Sasahara
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Shinichi Umeda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Norifumi Hattori
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| |
Collapse
|
4
|
Sasahara M, Kanda M, Tanaka C, Shimizu D, Umeda S, Takami H, Inokawa Y, Hattori N, Hayashi M, Nakayama G, Kodera Y. Therapeutic antibody targeting natriuretic peptide receptor 1 inhibits gastric cancer growth via BCL-2-mediated intrinsic apoptosis. Int J Cancer 2024; 154:1272-1284. [PMID: 38151776 DOI: 10.1002/ijc.34831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/13/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Despite recent advances in the development of therapeutic antibodies, the prognosis of unresectable or metastatic gastric cancer (GC) remains poor. Here, we searched for genes involved in the malignant phenotype of GC and investigated the potential of one candidate gene to serve as a novel therapeutic target. Analysis of transcriptome datasets of GC identified natriuretic peptide receptor 1 (NPR1), a plasma membrane protein, as a potential target. We employed a panel of human GC cell lines and gene-specific small interfering RNA-mediated NPR1 silencing to investigate the roles of NPR1 in malignancy-associated functions and intracellular signaling pathways. We generated an anti-NPR1 polyclonal antibody and examined its efficacy in a mouse xenograft model of GC peritoneal dissemination. Associations between NPR1 expression in GC tissue and clinicopathological factors were also evaluated. NPR1 mRNA was significantly upregulated in several GC cell lines compared with normal epithelial cells. NPR1 silencing attenuated GC cell proliferation, invasion, and migration, and additionally induced the intrinsic apoptosis pathway associated with mitochondrial dysfunction and caspase activation via downregulation of BCL-2. Administration of anti-NPR1 antibody significantly reduced the number and volume of GC peritoneal tumors in xenografted mice. High expression of NPR1 mRNA in clinical GC specimens was associated with a significantly higher rate of postoperative recurrence and poorer prognosis. NPR1 regulates the intrinsic apoptosis pathway and plays an important role in promoting the GC malignant phenotype. Inhibition of NPR1 with antibodies may have potential as a novel therapeutic modality for unresectable or metastatic GC.
Collapse
Affiliation(s)
- Masahiro Sasahara
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Umeda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norifumi Hattori
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Huang M, Wu Y, Li Y, Chen X, Feng J, Li Z, Li J, Chen J, Lu Y, Feng Y. Circadian clock-related genome-wide mendelian randomization identifies putatively genes for ulcerative colitis and its comorbidity. BMC Genomics 2024; 25:130. [PMID: 38302916 PMCID: PMC10832088 DOI: 10.1186/s12864-024-10003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Circadian rhythm is crucial to the function of the immune system. Disorders of the circadian rhythm can contribute to inflammatory diseases such as Ulcerative colitis (UC). This Mendelian Randomization (MR) analysis applies genetic tools to represent the aggregated statistical results of exposure to circadian rhythm disorders and UC and its comorbidities, allowing for causal inferences. METHODS Summary statistics of protein, DNA methylation and gene expression quantitative trait loci in individuals of European ancestry (pQTL, mQTL, and eQTL, respectively) were used. Genetic variants located within or near 152 circadian clock-related genes and closely related to circadian rhythm disorders were selected as instrumental variables. Causal relationships with UC and its comorbidities were then estimated through employed Summary data-based Mendelian Randomization (SMR) and Inverse-Variance-Weighted MR (IVW-MR). RESULTS Through preliminary SMR analysis, we identified a potential causal relationship between circadian clock-related genes and UC along with its comorbidities, which was further confirmed by IVW-MR analysis. Our study identified strong evidence of positive correlation involving seven overlapping genes (CSNK1E, OPRL1, PIWIL2, RORC, MAX, PPP5C, and AANAT) through MWAS and TWAS in UC, four overlapping genes (OPRL1, CHRNB2, FBXL17, and SIRT1) in UC with PSC, and three overlapping genes (ARNTL, USP7, and KRAS) in UC with arthropathy. CONCLUSIONS This SMR study demonstrates the causal effect of circadian rhythm disorders in UC and its comorbidities. Furthermore, our investigation pinpointed candidate genes that could potentially serve as drug targets.
Collapse
Affiliation(s)
- Mengfen Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiting Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueru Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieni Feng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuming Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiqiang Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| | - Jiankun Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| | - Yue Lu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| | - Yan Feng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| |
Collapse
|
6
|
Shinozuka T, Kanda M, Shimizu D, Umeda S, Takami H, Inokawa Y, Hattori N, Hayashi M, Tanaka C, Nakayama G, Kodera Y. Identification of stromal cell-derived factor 4 as a liquid biopsy-based diagnostic marker in solid cancers. Sci Rep 2023; 13:15540. [PMID: 37730904 PMCID: PMC10511445 DOI: 10.1038/s41598-023-42201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
There is a need for serum diagnostic biomarkers to improve the prognosis of solid malignant tumors. Here, we conducted a single-institutional study to evaluate the diagnostic performance of serum stromal cell-derived factor 4 (SDF4) levels in cancer patients. Serum samples were collected from a total of 582 patients with solid cancers including gastric cancer (GC) and 80 healthy volunteers. SDF4 protein levels in sera, and conditioned media or lysates of human GC cell lines were measured by enzyme-linked immunosorbent assay, and those in GC tissue by immunohistochemistry. Serum SDF4 levels were higher in patients with cancer than the healthy control in all cancer type. Regarding GC, serum SDF4 levels distinguished healthy controls from GC patients with the area under the curve value of 0.973, sensitivity of 89%, and specificity of 99%. Serum SDF4 levels were significantly elevated in patient with early stage GC. In immunohistochemistry, the frequency of SDF4-positive GC tumors did not vary significantly between GC stages. The ability of human GC cell lines to both produce and secrete SDF4 was confirmed in vitro. In conclusion, serum SDF4 levels could be a promising candidate for a novel diagnostic biomarker for GC and other malignancies.
Collapse
Affiliation(s)
- Takahiro Shinozuka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Dai Shimizu
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Shinichi Umeda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Norifumi Hattori
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| |
Collapse
|
7
|
Shinozuka T, Kanda M, Kodera Y. Site-specific protein biomarkers in gastric cancer: a comprehensive review of novel biomarkers and clinical applications. Expert Rev Mol Diagn 2023; 23:701-712. [PMID: 37395000 DOI: 10.1080/14737159.2023.2232298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Gastric cancer (GC) is the fifth most common cancer and the fourth leading cause of cancer-related death worldwide, thus representing a significant global health burden. Early detection and monitoring of GC are essential to improve patient outcomes. While traditional cancer biomarkers such as carcinoembryonic antigen, carbohydrate antigen (CA) 19-9, and CA 72-4 are widely used, their limited sensitivity and specificity necessitate the exploration of alternative biomarkers. AREAS COVERED This review comprehensively analyzes the landscape of GC protein biomarkers identified from 2019 to 2022, with a focus on tissue, blood, urine, saliva, gastric juice, ascites, and exhaled breath as sample sources. We address the potential clinical applications of these biomarkers in early diagnosis, monitoring recurrence, and predicting survival and therapeutic response of GC patients. EXPERT OPINION The discovery of novel protein biomarkers holds great promise for improving the clinical management of GC. However, further validation in large, diverse cohorts is needed to establish the clinical utility of these biomarkers. Integrating these biomarkers with existing diagnostic and monitoring approaches will likely lead to improved personalized treatment plans and patient outcomes.
Collapse
Affiliation(s)
- Takahiro Shinozuka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
8
|
Yasumoto A, Fujimori H, Mochizuki M, Shibuya-Takahashi R, Nakamura-Shima M, Shindo N, Yamaguchi K, Fukushi D, Wakui Y, Sugai T, Iwai W, Abue M, Sato I, Satoh K, Katayose Y, Yasuda J, Shibata C, Tamai K. BEX2 is poor prognostic factor and required for cancer stemness in gastric cancer. Biochem Biophys Res Commun 2023; 655:59-67. [PMID: 36933308 DOI: 10.1016/j.bbrc.2023.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Gastric cancer is the fifth most common malignancy worldwide. However, targeted therapy for advanced gastric cancer is still limited. Here, we report BEX2 (Brain expressed X-linked 2) as a poor prognostic factor in two gastric cancer cohorts. BEX2 expression was increased in spheroid cells, and its knockdown decreased aldefluor activity and cisplatin resistance. BEX2 was found to upregulate CHRNB2 (Cholinergic Receptor Nicotinic Beta 2 Subunit) expression, a cancer stemness-related gene, in a transcriptional manner, and the knockdown of which also decreases aldefluor activity. Collectively, these data are suggestive of the role of BEX2 in the malignant process of gastric cancer, and as a promising therapeutic target.
Collapse
Affiliation(s)
- Akihiro Yasumoto
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan; Division of Gastoroenterologic Surgery, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyaginoku, Sendai, Miyagi, 983-8536, Japan
| | - Haruna Fujimori
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Mai Mochizuki
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Rie Shibuya-Takahashi
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Mao Nakamura-Shima
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Norihisa Shindo
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Daisuke Fukushi
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyaginoku, Sendai, Miyagi, 983-8536, Japan
| | - Yuta Wakui
- Department of Gastroenterology, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Takahiro Sugai
- Department of Gastroenterology, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Wataru Iwai
- Department of Gastroenterology, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Makoto Abue
- Department of Gastroenterology, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Ikuro Sato
- Department of Pathology, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Kennichi Satoh
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyaginoku, Sendai, Miyagi, 983-8536, Japan
| | - Yu Katayose
- Division of Hepato-biliary-pancreatic Surgery, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyaginoku, Sendai, Miyagi, 983-8536, Japan
| | - Jun Yasuda
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Chikashi Shibata
- Division of Gastoroenterologic Surgery, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyaginoku, Sendai, Miyagi, 983-8536, Japan
| | - Keiichi Tamai
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan.
| |
Collapse
|
9
|
Sawaki K, Kanda M, Baba H, Inokawa Y, Hattori N, Hayashi M, Tanaka C, Kodera Y. Gamma-aminobutyric Acid Type A Receptor Subunit Delta as a Potential Therapeutic Target in Gastric Cancer. Ann Surg Oncol 2023; 30:628-636. [PMID: 36127526 DOI: 10.1245/s10434-022-12573-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/28/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Novel therapeutic targets are needed to improve the poor prognosis of patients with advanced gastric cancer. The aim of this study was to identify a novel therapeutic target for the treatment of GC and to investigate the potential therapeutic value of an antibody raised against the target. METHODS We identified gamma-aminobutyric acid type A receptor subunit delta as a candidate therapeutic target by differential transcriptome analysis of metastatic GC tissue and adjacent nontumor tissues. GABRD mRNA levels were analyzed in 230 pairs of gastric tissue by quantitative reverse-transcription polymerase chain reaction. GABRD function was assessed in proliferation, invasion, and apoptosis assays in human GC cell lines expressing control or GABRD-targeting small interfering RNA (siRNA). Mouse anti-human polyclonal GABRD antibodies were generated and assessed for inhibition of GC cell growth in vitro and in a mouse xenograft model of peritoneal GC dissemination. RESULTS High GABRD mRNA expression level in primary human GC tissue was associated with poor prognosis. Expression of siGABRD in GC cell lines significantly decreased cell proliferation and invasion and increased apoptosis compared with control siRNA expression. Anti-GABRD polyclonal antibodies inhibited GC cell proliferation in vitro and decreased peritoneal tumor nodule size in the mouse xenograft model. CONCLUSION We identified GABRD as novel regulator of GC cell growth and function. GABRD is upregulated in GC tissue and is associated with poor prognosis, suggesting that it may be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Koichi Sawaki
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hayato Baba
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norifumi Hattori
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
10
|
Sawaki K, Kanda M, Kodera Y. ASO Author Reflections: Gamma-Aminobutyric Acid Type A Receptor Subunit Delta as a Potential Therapeutic Target in Gastric Cancer. Ann Surg Oncol 2023; 30:637-638. [PMID: 36125568 DOI: 10.1245/s10434-022-12583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Koichi Sawaki
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
11
|
Qin C, Li T, Wang Y, Zhao B, Li Z, Li T, Yang X, Zhao Y, Wang W. CHRNB2 represses pancreatic cancer migration and invasion via inhibiting β-catenin pathway. Cancer Cell Int 2022; 22:340. [DOI: 10.1186/s12935-022-02768-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Pancreatic cancer is one of the most lethal disease with highly fatal and aggressive properties. Lymph node ratio (LNR), the ratio of the number of metastatic lymph nodes to the total number of examined lymph nodes, is an important index to assess lymphatic metastasis and predict prognosis, but the molecular mechanism underlying high LNR was unclear.
Methods
Gene expression and clinical information data of pancreatic cancer were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Patients in TCGA were averagely divided into low and high LNR groups. Then, Weighted Gene Co-expression Network Analysis (WGCNA) was utilized to build co-expression network to explore LNR-related modules and hub genes. GO and KEGG analysis was performed to find key pathways related to lymph node metastasis. Next, GSE101448 and the overall survival data in TCGA was employed to further select significant genes from hub genes. Considering the key role of CHRNB2 in LNR and survival, gene set enrichment analysis (GSEA) was applied to find pathways related to CHRNB2 expression in pancreatic cancer. The contribution of CHRNB2 to migrative and invasive ability of pancreatic cancer cells was confirmed by Transwell assays. We finally explored the role of CHRNB2 in EMT and β-catenin pathway via Western Blot.
Results
High LNR was significantly related to high T stages and poor prognosis. In WGCNA, 14 hub genes (COL5A1, FN1, THBS2, etc.) were positively related to high LNR, 104 hub genes (FFAR1, SCG5, TMEM63C, etc.) were negatively related to high LNR. After taking the intersection with GSE101448, 13 genes (CDK5R2, SYT7, CACNA2D2, etc.) which might prevent lymph node metastasis were further selected. Among them, CHRNB2 showed the strongest relationship with long survival. Moreover, CHRNB2 also negatively related to the T stages and LNR. Next, knockdown of CHRNB2 expression could acetylcholine (ACh)-independently increase the migration and invasion of pancreatic cancer cells, while CHRNB2 overexpression ACh-independently decrease the migration and invasion of pancreatic cancer cells. For exploring the underlying mechanism, CHRNB2 downregulated β-catenin pathway might through controlling its upstream regulators such as SOX6, SRY, SOX17, and TCF7L2.
Conclusions
CHRNB2 negatively relates to lymph node metastasis in pancreatic cancer patients. CHRNB2 could inhibit β-catenin pathway, EMT, migration and invasion of pancreatic cancer cells via ACh-independent mechanism.
Collapse
|
12
|
In Silico Analysis of Ion Channels and Their Correlation with Epithelial to Mesenchymal Transition in Breast Cancer. Cancers (Basel) 2022; 14:cancers14061444. [PMID: 35326596 PMCID: PMC8946083 DOI: 10.3390/cancers14061444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Breast cancer involves changes in the healthy cells of the breast resulting in rapid and abnormal division of cells that later spread to other parts of the body through the process of metastasis, which involves epithelial mesenchymal transition (EMT). Ion channels play a significant role in the switch from epithelial to mesenchymal transition through their contributions to cellular motility, cell volume regulation and cell cycle progression. Comprehensive computational analyses were performed to understand the role of ion channels in tumor/metastatic samples of breast cancer and their correlation with EMT. Abstract Uncontrolled growth of breast cells due to altered gene expression is a key feature of breast cancer. Alterations in the expression of ion channels lead to variations in cellular activities, thus contributing to attributes of cancer hallmarks. Changes in the expression levels of ion channels were observed as a consequence of EMT. Additionally, ion channels were reported in the activation of EMT and maintenance of a mesenchymal phenotype. Here, to identify altered ion channels in breast cancer patients, differential gene expression and weighted gene co-expression network analyses were performed using transcriptomic data. Protein–protein interactions network analysis was carried out to determine the ion channels interacting with hub EMT-related genes in breast cancer. Thirty-two ion channels were found interacting with twenty-six hub EMT-related genes. The identified ion channels were further correlated with EMT scores, indicating mesenchymal phenotype. Further, the pathway map was generated to represent a snapshot of deregulated cellular processes by altered ion channels and EMT-related genes. Kaplan–Meier five-year survival analysis and Cox regressions indicated the expression of CACNA1B, ANO6, TRPV3, VDAC1 and VDAC2 to be potentially associated with poor survival. Deregulated ion channels correlate with EMT-related genes and have a crucial role in breast cancer-associated tumorigenesis. Most likely, they are potential candidates for the determination of prognosis in patients with breast cancer.
Collapse
|