1
|
Vella M, Manfield IW, Seychell BC, Trinh CH, Rambo R, Nasir Khan G, Vassallo J, Hunter T, Hunter GJ. Mutations in the N-domain of aryl hydrocarbon receptor interacting protein affect interactions with heat shock protein 90β and phosphodiesterase 4A5. Biochimie 2025; 228:114-126. [PMID: 39299536 DOI: 10.1016/j.biochi.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
The aryl hydrocarbon receptor interacting protein (AIP) is a cytoplasmic molecular co-chaperone and tumour suppressor that assists in protein stability and complex formation involving the aryl hydrocarbon receptor. Germline mutations in the AIP gene predispose to pituitary tumourigenesis with patients exhibiting an aggressive clinical phenotype. Full length AIP proteins harbouring N-domain mutations (R9Q, R16H, V49 M and K103R) were purified from E.coli utilizing a methodology that maintained structural integrity and monomeric stability. Mutations did not significantly affect the thermal stability of the protein and caused no overall disruptive effect in the protein structure. The mutations studied lowered the binding affinity of AIP towards two of its binding partners; heat shock protein 90β and phosphodiesterase 4A5 (PDE4A5). The inhibition of phosphodiesterase activity by AIP was also greatly reduced by all mutants. While previously published data has mainly concentrated on the tetratricopeptide repeats of the C-domain of AIP, we present clear evidence that AIP N-domain mutations play a significant role in two protein:protein interactions with partner proteins. The complex interactome of AIP suggests that any observable change in one or more of its binding partners cannot be disregarded as it may have repercussions on other biochemical pathways.
Collapse
Affiliation(s)
- Marita Vella
- Department of Physiology & Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, MSD2080, Malta
| | - Iain W Manfield
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Brandon C Seychell
- Department of Physiology & Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, MSD2080, Malta
| | - Chi H Trinh
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Robert Rambo
- Soft Condensed Matter Group, Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - G Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Josanne Vassallo
- Department of Medicine, Faculty of Medicine & Surgery, University of Malta, Msida, MSD2080, Malta
| | - Thérèse Hunter
- Department of Physiology & Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, MSD2080, Malta
| | - Gary J Hunter
- Department of Physiology & Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, MSD2080, Malta.
| |
Collapse
|
2
|
Hernández-Ramírez LC, Perez-Rivas LG, Theodoropoulou M, Korbonits M. An Update on the Genetic Drivers of Corticotroph Tumorigenesis. Exp Clin Endocrinol Diabetes 2024; 132:678-696. [PMID: 38830604 DOI: 10.1055/a-2337-2265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The genetic landscape of corticotroph tumours of the pituitary gland has dramatically changed over the last 10 years. Somatic changes in the USP8 gene account for the most common genetic defect in corticotrophinomas, especially in females, while variants in TP53 or ATRX are associated with a subset of aggressive tumours. Germline defects have also been identified in patients with Cushing's disease: some are well-established (MEN1, CDKN1B, DICER1), while others are rare and could represent coincidences. In this review, we summarise the current knowledge on the genetic drivers of corticotroph tumorigenesis, their molecular consequences, and their impact on the clinical presentation and prognosis.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, Munich 80336, Germany
| | - Márta Korbonits
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
3
|
Shi D, Yao M, Wu D, Jiang M, Li J, Zheng Y, Yang Y. Detection of genetic mutations in 855 cases of papillary thyroid carcinoma by next generation sequencing and its clinicopathological features. Diagn Pathol 2024; 19:146. [PMID: 39548512 PMCID: PMC11566394 DOI: 10.1186/s13000-024-01573-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
OBJECTIVE To investigate the genetic mutations in patients with papillary thyroid carcinoma (PTC) and their clinicopathological features by next generation sequencing (NGS). METHODS NGS technology was used to detect genetic mutations in PTC patients, and clinicopathological features were collected. RESULTS ①Among 855 PTC patients, 810 patients had genetic mutations, and 45 patients had no genetic mutation. ②BRAF mutation was associated with tumor diameter (P < 0.001) and histological subtypes (P = 0.002). The abundance of V600E mutation was associated with gender (P = 0.004), tumor diameter (P < 0.001), bilateral presentation (P = 0.001), extrathyroidal extension (P < 0.001), lymphatic metastasis (P < 0.001), histological subtypes (P = 0.002) and TNM staging (P = 0.000); The different mutation abundance of V600E was associated with tumor diameter (P < 0.001), multifocal presentation (P = 0.047), bilateral presentation (P = 0.001), extrathyroidal extension (P = 0.001), lymphatic metastasis (P < 0.001), histological subtypes (P = 0.022) and TNM staging (P = 0.000). ③RET fusion was associated with tumor diameter (P < 0.001) and lymphatic metastasis (P = 0.005). ④TERT mutation was associated with gender (P = 0.043), tumor diameter (P < 0.001), extrathyroidal extension (P = 0.028) and TNM staging (P = 0.017). ⑤RAS mutation was associated with histological subtypes (P < 0.001). ⑥NTRK and PIK3CA mutations were not associated with clinicopathological features. CONCLUSION NGS technology can comprehensively analyze the genetic mutations in PTC patients, which provides important prompts for the occurrence, development, diagnosis and treatment of PTC. In addition, BRAF V600E mutation, RET fusion and TERT mutation are associated with a number of high-risk clinicopathological features. Detection of genetic mutations in PTC patients by NGS is of great significance.
Collapse
Affiliation(s)
- Dongliang Shi
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Meihong Yao
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Dan Wu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Meichen Jiang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Junkang Li
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Yuhui Zheng
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| | - Yinghong Yang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
4
|
Bizzi MF, Drummond JB, Pinheiro SVB, Paulino E, Araújo SA, Soares BS, Giannetti AV, Schweizer JRDOL, Barry S, Korbonits M, Ribeiro-Oliveira A. Activated AMP-protein kinase (pAMPK) is overexpressed in human somatotroph pituitary adenomas. Mol Cell Endocrinol 2024; 592:112318. [PMID: 38908427 DOI: 10.1016/j.mce.2024.112318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
INTRODUCTION AMPK (AMP-activated protein kinase) is an enzyme that acts as a metabolic sensor and regulates multiple pathways via phosphorylating proteins in metabolic and proliferative pathways. The aim of this work was to study the activated cellular AMPK (phosphorylated-AMPK at Thr172, pAMPK) levels in pituitary tumor samples from patients with sporadic and familial acromegaly, as well as in samples from normal human pituitary gland. METHODS We studied pituitary adenoma tissue from patients with sporadic somatotroph adenomas, familial acromegaly with heterozygote germline variants in the aryl hydrocarbon receptor interacting protein (AIP) gene (p.Q164*, p.R304* and p.F269_H275dup) and autopsy from normal pituitary glands without structural alterations. RESULTS Cellular levels of pAMPK were significantly higher in patients with sporadic acromegaly compared to normal pituitary glands (p < 0.0001). Tissues samples from patients with germline AIP mutations also showed higher cellular levels of pAMPK compared to normal pituitary glands. We did not observe a significant difference in cellular levels of pAMPK according to the cytokeratin (CAM5.2) pattern (sparsely or densely granulated) for tumor samples of sporadic acromegaly. CONCLUSION Our data show, for the first time in human cells, an increase of cellular levels of pAMPK in sporadic somatotropinomas, regardless of cytokeratin pattern, as well as in GH-secreting adenomas from patients with germline AIP mutations.
Collapse
Affiliation(s)
- Mariana Ferreira Bizzi
- Departments of Internal Medicine of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Juliana Beaudette Drummond
- Departments of Internal Medicine of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Sergio Veloso Brant Pinheiro
- Departments of Pediatrics of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Eduardo Paulino
- Departments of Pathology of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Stanley Almeida Araújo
- Departments of Pathology of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Beatriz Santana Soares
- Departments of Internal Medicine of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Alexandre V Giannetti
- Departments of Surgery of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | | | - Sayka Barry
- Centre for Endocrinology of Queen Mary University of London, London, EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology of Queen Mary University of London, London, EC1M 6BQ, UK
| | - Antonio Ribeiro-Oliveira
- Departments of Internal Medicine of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil.
| |
Collapse
|
5
|
Sampedro-Nuñez M, Herrera-Martínez AD, Ibáñez-Costa A, Rivero-Cortés E, Venegas E, Robledo M, Martínez-Hernández R, García-Martínez A, Gil J, Jordà M, López-Fernández J, Gavilán I, Maraver S, Marqués-Pamies M, Cámara R, Fajardo-Montañana C, Valassi E, Dios E, Aulinas A, Biagetti B, Álvarez Escola C, Araujo-Castro M, Blanco C, Paz DM, Villar-Taibo R, Álvarez CV, Gaztambide S, Webb SM, Castaño L, Bernabéu I, Picó A, Gálvez MÁ, Soto-Moreno A, Puig-Domingo M, Castaño JP, Marazuela M, Luque RM. Integrative clinical, hormonal, and molecular data associate with invasiveness in acromegaly: REMAH study. Eur J Endocrinol 2024; 190:421-433. [PMID: 38701338 DOI: 10.1093/ejendo/lvae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION Growth hormone (GH)-secreting pituitary tumors (GHomas) are the most common acromegaly cause. At diagnosis, most of them are macroadenomas, and up to 56% display cavernous sinus invasion. Biomarker assessment associated with tumor growth and invasion is important to optimize their management. OBJECTIVES The study aims to identify clinical/hormonal/molecular biomarkers associated with tumor size and invasiveness in GHomas and to analyze the influence of pre-treatment with somatostatin analogs (SSAs) or dopamine agonists (DAs) in key molecular biomarker expression. METHODS Clinical/analytical/radiological variables were evaluated in 192 patients from the REMAH study (ambispective multicenter post-surgery study of the Spanish Society of Endocrinology and Nutrition). The expression of somatostatin/ghrelin/dopamine system components and key pituitary/proliferation markers was evaluated in GHomas after the first surgery. Univariate/multivariate regression studies were performed to identify association between variables. RESULTS Eighty percent of patients harbor macroadenomas (63.8% with extrasellar growth). Associations between larger and more invasive GHomas with younger age, visual abnormalities, higher IGF1 levels, extrasellar/suprasellar growth, and/or cavernous sinus invasion were found. Higher GH1 and lower PRL/POMC/CGA/AVPR1B/DRD2T/DRD2L expression levels (P < .05) were associated with tumor invasiveness. Least Absolute Shrinkage and Selection Operator's penalized regression identified combinations of clinical and molecular features with areas under the curve between 0.67 and 0.82. Pre-operative therapy with DA or SSAs did not alter the expression of any of the markers analyzed except for DRD1/AVPR1B (up-regulated with DA) and FSHB/CRHR1 (down-regulated with SSAs). CONCLUSIONS A specific combination of clinical/analytical/molecular variables was found to be associated with tumor invasiveness and growth capacity in GHomas. Pre-treatment with first-line drugs for acromegaly did not significantly modify the expression of the most relevant biomarkers in our association model. These findings provide valuable insights for risk stratification and personalized management of GHomas.
Collapse
Affiliation(s)
- Miguel Sampedro-Nuñez
- Department of Endocrinology and Nutrition Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
| | - Aura Dulcinea Herrera-Martínez
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córboba, Spain
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córboba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córboba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Esther Rivero-Cortés
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córboba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Eva Venegas
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rebeca Martínez-Hernández
- Department of Endocrinology and Nutrition Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
| | - Araceli García-Martínez
- Alicante General University Hospital-Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Joan Gil
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Department of Endocrinology and Nutrition, Barcelona, Spain
| | - Mireia Jordà
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Department of Endocrinology and Nutrition, Barcelona, Spain
| | - Judith López-Fernández
- Servicio de Endocrinología y Nutrición, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Inmaculada Gavilán
- Hospital Universitario Puerta del Mar de Cádiz, Department of Endocrinology, Cádiz, Spain
| | - Silvia Maraver
- Servicio de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | | | - Rosa Cámara
- Hospital Universitari i Politecnic La Fe, Department of Endocrinology, Valencia, Spain
| | | | - Elena Valassi
- Hospital Universitari Germans Trias i Pujol, Department of Endocrinology and Nutrition, Barcelona, Spain
| | - Elena Dios
- Virgen del Rocio University Hospital, Department of Endocrinology, Sevilla, Spain
| | - Anna Aulinas
- Hospital de la Santa Creu i Sant Pau, Department of Endocrinology, IIB-Sant Pau, CIBER de Enfermedades Raras (CIBER-ER), University of Vic-Central University of Catalonia, Barcelona, Spain
| | - Betina Biagetti
- Hospital Vall d'Hebron, Department of Endocrinology, Barcelona, Spain
| | | | | | - Concepción Blanco
- Hospital Universitario Principe de Asturias, Department of Endocrinology, Alcalá de Henares, Madrid, Spain
| | - de Miguel Paz
- Hospital Clinico San Carlos, Department of Endocrinology, Madrid, Spain
| | - Rocío Villar-Taibo
- Complejo Hospitalario Universitario de Santiago de Compostela, Department of Endocrinology, La Coruña, Spain
| | - Clara V Álvarez
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Sonia Gaztambide
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, University of the Basque Country (UPV/EHU), CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Susan M Webb
- Hospital de la Santa Creu i Sant Pau, Department of Endocrinology, IIB-Sant Pau, Research Center for Pituitary Diseases, CIBERER, Univ Autonoma Barcelona, Barcelona, Spain
| | - Luis Castaño
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, University of the Basque Country (UPV/EHU), CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Ignacio Bernabéu
- Complejo Hospitalario Universitario de Santiago de Compostela, Department of Endocrinology, Santiago de Compostela, A Coruña, Spain
| | - Antonio Picó
- Department of Endocrinology and Nutrition, Alicante General University Hospital, Alicante, Spain
- Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- University Miguel Hernandez, CIBERER, Alicante, Spain
| | - María-Ángeles Gálvez
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córboba, Spain
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córboba, Spain
| | - Alfonso Soto-Moreno
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Manel Puig-Domingo
- Department of Endocrinology and Nutrition, Department of Medicine, Germans Trias i Pujol Research Institute and Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córboba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Mónica Marazuela
- Department of Endocrinology and Nutrition Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córboba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| |
Collapse
|
6
|
Rodrigues JS, Chenlo M, Bravo SB, Perez-Romero S, Suarez-Fariña M, Sobrino T, Sanz-Pamplona R, González-Prieto R, Blanco Freire MN, Nogueiras R, López M, Fugazzola L, Cameselle-Teijeiro JM, Alvarez CV. dsRNAi-mediated silencing of PIAS2beta specifically kills anaplastic carcinomas by mitotic catastrophe. Nat Commun 2024; 15:3736. [PMID: 38744818 PMCID: PMC11094195 DOI: 10.1038/s41467-024-47751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
The E3 SUMO ligase PIAS2 is expressed at high levels in differentiated papillary thyroid carcinomas but at low levels in anaplastic thyroid carcinomas (ATC), an undifferentiated cancer with high mortality. We show here that depletion of the PIAS2 beta isoform with a transcribed double-stranded RNA-directed RNA interference (PIAS2b-dsRNAi) specifically inhibits growth of ATC cell lines and patient primary cultures in vitro and of orthotopic patient-derived xenografts (oPDX) in vivo. Critically, PIAS2b-dsRNAi does not affect growth of normal or non-anaplastic thyroid tumor cultures (differentiated carcinoma, benign lesions) or cell lines. PIAS2b-dsRNAi also has an anti-cancer effect on other anaplastic human cancers (pancreas, lung, and gastric). Mechanistically, PIAS2b is required for proper mitotic spindle and centrosome assembly, and it is a dosage-sensitive protein in ATC. PIAS2b depletion promotes mitotic catastrophe at prophase. High-throughput proteomics reveals the proteasome (PSMC5) and spindle cytoskeleton (TUBB3) to be direct targets of PIAS2b SUMOylation at mitotic initiation. These results identify PIAS2b-dsRNAi as a promising therapy for ATC and other aggressive anaplastic carcinomas.
Collapse
Affiliation(s)
- Joana S Rodrigues
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Miguel Chenlo
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Susana B Bravo
- Department of Proteomics, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Sihara Perez-Romero
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Maria Suarez-Fariña
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Tomas Sobrino
- Department of NeuroAging Group - Clinical Neurosciences Research Laboratory (LINC), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Rebeca Sanz-Pamplona
- University Hospital Lozano Blesa, Institute for Health Research Aragon (IISA), ARAID Foundation, Aragon Government and CIBERESP, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Román González-Prieto
- Cell Dynamics and Signaling Department, Andalusian Center for Molecular Biology and Regenerative Medicine, Universidad de Sevilla - CSIC - Universidad Pablo de Olavide-Junta de Andalucía, 41092, Sevilla, Spain
- Department of Cell Biology, Faculty of Biology, University of Sevilla, 41012, Sevilla, Spain
| | - Manuel Narciso Blanco Freire
- Department of Surgery, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Ruben Nogueiras
- Molecular Metabolism, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Laura Fugazzola
- Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS); Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - José Manuel Cameselle-Teijeiro
- Department of Pathology, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| | - Clara V Alvarez
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
7
|
Ramírez-Rentería C, Hernández-Ramírez LC. Genetic diagnosis in acromegaly and gigantism: From research to clinical practice. Best Pract Res Clin Endocrinol Metab 2024; 38:101892. [PMID: 38521632 DOI: 10.1016/j.beem.2024.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
It is usually considered that only 5% of all pituitary neuroendocrine tumours are due to inheritable causes. Since this estimate was reported, however, multiple genetic defects driving syndromic and nonsyndromic somatotrophinomas have been unveiled. This heterogeneous genetic background results in overlapping phenotypes of GH excess. Genetic tests should be part of the approach to patients with acromegaly and gigantism because they can refine the clinical diagnoses, opening the possibility to tailor the clinical conduct to each patient. Even more, genetic testing and clinical screening of at-risk individuals have a positive impact on disease outcomes, by allowing for the timely detection and treatment of somatotrophinomas at early stages. Future research should focus on determining the actual frequency of novel genetic drivers of somatotrophinomas in the general population, developing up-to-date disease-specific multi-gene panels for clinical use, and finding strategies to improve access to modern genetic testing worldwide.
Collapse
Affiliation(s)
- Claudia Ramírez-Rentería
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
8
|
Shen AL, Moran SM, Glover EN, Lin BC, Carney PR, Bradfield CA. Familial isolated pituitary adenoma is independent of Ahr genotype in a novel mouse model of disease. Heliyon 2024; 10:e28231. [PMID: 38590848 PMCID: PMC10999881 DOI: 10.1016/j.heliyon.2024.e28231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Human familial isolated pituitary adenoma (FIPA) has been linked to germline heterozygous mutations in the gene encoding the aryl hydrocarbon receptor-interacting protein (AIP, also known as ARA9, XAP2, FKBP16, or FKBP37). To investigate the hypothesis that AIP is a pituitary adenoma tumor suppressor via its role in aryl hydrocarbon receptor (AHR) signaling, we have compared the pituitary phenotype of our global null Aip (AipΔC) mouse model with that of a conditional null Aip model (Aipfx/fx) carrying the same deletion, as well as pituitary phenotypes of Ahr global null and Arnt conditional null animals. We demonstrate that germline AipΔC heterozygosity results in a high incidence of pituitary tumors in both sexes, primarily somatotropinomas, at 16 months of age. Biallelic deletion of Aip in Pit-1 cells (Aipfx/fx:rGHRHRcre) increased pituitary tumor incidence and also accelerated tumor progression, supporting a loss-of-function/loss-of-heterozygosity model of tumorigenesis. Tumor development exhibited sexual dimorphism in wildtype and Aipfx/fx:rGHRHRcre animals. Despite the role of AHR as a tumor suppressor in other cancers, the observation that animals lacking AHR in all tissues, or ARNT in Pit-1 cells, do not develop somatotropinomas argues against the hypothesis that pituitary tumorigenesis in AIP-associated FIPA is related to decreased activities of either the Ahr or Arnt gene products.
Collapse
Affiliation(s)
- Anna L Shen
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Susan M Moran
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Edward N Glover
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Bernice C Lin
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Current address, Lin-Zhi International, 2945, Oakmead Village Court, Santa Clara, CA, 95051, United States
| | - Patrick R Carney
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Christopher A Bradfield
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
| |
Collapse
|
9
|
Li J, Song H, Chen T, Zhang S, Zhang C, Ma C, Zhang L, Wang T, Qian Y, Deng X. Lysine Methyltransferase 5A Promotes the Progression of Growth Hormone Pituitary Neuroendocrine Tumors through the Wnt/β-Catenin Signaling Pathway. Neuroendocrinology 2024; 114:589-601. [PMID: 38565081 PMCID: PMC11152009 DOI: 10.1159/000538560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Growth hormone (GH) secreting pituitary adenoma is considered one of the most harmful types of Pituitary Neuroendocrine Tumors (PitNETs). Our previous research has found that high expression of Lysine methyltransferase 5A (KMT5A) is closely related to the proliferation of PitNETs. The aim of this study was to investigate the role and molecular mechanism of KMT5A in the progression of GH PitNETs. METHODS Immunohistochemistry, qRT-PCR, and Western blot (WB) were used to assess the expression levels of KMT5A in human normal pituitary and GH PitNETs, as well as in rat normal pituitary and GH3 cells. Additionally, we utilized RNA interference technology and treatment with a selective KMT5A inhibitor to decrease the expression of KMT5A in GH3 cells. CCK-8, EdU, flow cytometry (FCM), clone formation, and WB assay were further employed to evaluate the impact of KMT5A on the proliferation of GH3 cells in vitro. A xenograft model was established to evaluate the role of KMT5A in GH PitNETs progression in vivo. RESULTS KMT5A was highly expressed in GH PitNETs and GH3 cells. Moreover, the reduction of KMT5A expression led to inhibited growth of GH PitNETs and increased apoptosis of tumor cells, as indicated by the findings from CCK-8, EdU, clone formation, and FCM assays. Additionally, WB analysis identified the Wnt/β-catenin signaling pathway as a potential mechanism through which KMT5A promotes GH PitNETs progression. CONCLUSION Our research suggests that KMT5A may facilitate the progression of GH PitNETs via the Wnt/β-catenin signaling pathway. Therefore, KMT5A may serve as a potential therapeutic target and molecular biomarker for GH PitNETs.
Collapse
Affiliation(s)
- Junjun Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hao Song
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Guangyuan Central Hospital, Guangyuan, China
| | - Ting Chen
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Sixi Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chao Zhang
- Xiangyang First People’s Hospital, Xiangyang, China
| | - Chen Ma
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lingye Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tengfei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuan Qian
- The Clinical Medical Research Center for Obstetrics and Gynecology (Yunnan Joint Key Laboratory), Kunming City of Maternal and Child Health Hospital, Kunming City of Women and Children Hospital, Kunming, China
| | - Xingli Deng
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Puer People’s Hospital, Puer, China
| |
Collapse
|
10
|
Kazzaz SA, Tawil J, Harhaj EW. The aryl hydrocarbon receptor-interacting protein in cancer and immunity: Beyond a chaperone protein for the dioxin receptor. J Biol Chem 2024; 300:107157. [PMID: 38479600 PMCID: PMC11002312 DOI: 10.1016/j.jbc.2024.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR)-interacting protein (AIP) is a ubiquitously expressed, immunophilin-like protein best known for its role as a co-chaperone in the AhR-AIP-Hsp90 cytoplasmic complex. In addition to regulating AhR and the xenobiotic response, AIP has been linked to various aspects of cancer and immunity that will be the focus of this review article. Loss-of-function AIP mutations are associated with pituitary adenomas, suggesting that AIP acts as a tumor suppressor in the pituitary gland. However, the tumor suppressor mechanisms of AIP remain unclear, and AIP can exert oncogenic functions in other tissues. While global deletion of AIP in mice yields embryonically lethal cardiac malformations, heterozygote, and tissue-specific conditional AIP knockout mice have revealed various physiological roles of AIP. Emerging studies have established the regulatory roles of AIP in both innate and adaptive immunity. AIP interacts with and inhibits the nuclear translocation of the transcription factor IRF7 to inhibit type I interferon production. AIP also interacts with the CARMA1-BCL10-MALT1 complex in T cells to enhance IKK/NF-κB signaling and T cell activation. Taken together, AIP has diverse functions that vary considerably depending on the client protein, the tissue, and the species.
Collapse
Affiliation(s)
- Sarah A Kazzaz
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - John Tawil
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Edward W Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
11
|
Akkuş G, Korbonits M. Genetic Testing in Hereditary Pituitary Tumors. Arch Med Res 2023; 54:102920. [PMID: 38007383 DOI: 10.1016/j.arcmed.2023.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Genetic testing is becoming part of mainstream endocrinology. An increasing number of rare and not-so-rare endocrine diseases have an identifiable genetic cause, either at the germline or at the somatic level. Here we summerise germline genetic alterations in patients with pituitary neuroendocrine tumors (pituitary adenomas). These may be disorders with isolated pituitary tumors, such as X-linked acrogigantism, or AIP-related pituitary tumors, or as part of syndromic diseases, such as multiple endocrine neoplasia type 1 or Carney complex. In some cases, this could be relevant for treatment choices and follow-up, as well as for family members, as cascade screening leads to early identification of affected relatives and improved clinical outcomes.
Collapse
Affiliation(s)
- Gamze Akkuş
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
12
|
Vroonen L, Beckers A, Camby S, Cuny T, Beckers P, Jaffrain-Rea ML, Cogne M, Naves L, Ferriere A, Romanet P, Elenkova A, Karhu A, Brue T, Barlier A, Pétrossians P, Daly AF. The clinical and therapeutic profiles of prolactinomas associated with germline pathogenic variants in the aryl hydrocarbon receptor interacting protein (AIP) gene. Front Endocrinol (Lausanne) 2023; 14:1242588. [PMID: 37711900 PMCID: PMC10498111 DOI: 10.3389/fendo.2023.1242588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Prolactinomas are the most frequent type of pituitary adenoma encountered in clinical practice. Dopamine agonists (DA) like cabergoline typically provide sign/ symptom control, normalize prolactin levels and decrease tumor size in most patients. DA-resistant prolactinomas are infrequent and can occur in association with some genetic causes like MEN1 and pathogenic germline variants in the AIP gene (AIPvar). Methods We compared the clinical, radiological, and therapeutic characteristics of AIPvar-related prolactinomas (n=13) with unselected hospital-treated prolactinomas ("unselected", n=41) and genetically-negative, DA-resistant prolactinomas (DA-resistant, n=39). Results AIPvar-related prolactinomas occurred at a significantly younger age than the unselected or DA-resistant prolactinomas (p<0.01). Males were more common in the AIPvar (75.0%) and DA- resistant (49.7%) versus unselected prolactinomas (9.8%; p<0.001). AIPvar prolactinomas exhibited significantly more frequent invasion than the other groups (p<0.001) and exhibited a trend to larger tumor diameter. The DA-resistant group had significantly higher prolactin levels at diagnosis than the AIPvar group (p<0.001). Maximum DA doses were significantly higher in the AIPvar and DA-resistant groups versus unselected. DA-induced macroadenoma shrinkage (>50%) occurred in 58.3% in the AIPvar group versus 4.2% in the DA-resistant group (p<0.01). Surgery was more frequent in the AIPvar and DA- resistant groups (43.8% and 61.5%, respectively) versus unselected (19.5%: p<0.01). Radiotherapy was used only in AIPvar (18.8%) and DA-resistant (25.6%) groups. Discussion AIPvar confer an aggressive phenotype in prolactinomas, with invasive tumors occurring at a younger age. These characteristics can help differentiate rare AIPvar related prolactinomas from DA-resistant, genetically-negative tumors.
Collapse
Affiliation(s)
- Laurent Vroonen
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Liège, Belgium
| | - Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Liège, Belgium
| | - Severine Camby
- Department of Otorhinolaryngology, Centre Hospitalier Universitaire de Liège, University of Liège, Liège, Belgium
| | - Thomas Cuny
- Department of Endocrinology, Aix Marseille University, Assistance publique Hôpitaux de Marseille (APHM), INSERM, Marseille Medical Genetics (MMG), Hopital La Conception, Institut MarMaRa, Marseille, France
| | - Pablo Beckers
- Department of Human Genetics, Centre Hospitalier Universitaire de Liège, University of Liège, Liège, Belgium
| | - Marie-Lise Jaffrain-Rea
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- Department of Neuroendocrinology, Neuromed IRCCS, Pozzilli, Italy
| | - Muriel Cogne
- Department of Endocrinology, Diabetes and Nutrition, Centre Hospitalo-Universitaire de la Réunion, Saint-Pierre, France
| | - Luciana Naves
- Department of Endocrinology, University of Brasilia, Brasilia, Brazil
| | - Amandine Ferriere
- Department of Endocrinology, Hopital Haut-Leveque, Centre Hospitalier Universitaire (CHU) de Bordeaux, Pessac, France
| | - Pauline Romanet
- Laboratory of Molecular Biology, Aix Marseille University, Assistance publique Hôpitaux de Marseille (APHM), INSERM, Marseille Medical Genetics (MMG), Hospital La Conception, Institut MarMaRa, Marseille, France
| | - Atanaska Elenkova
- Department of Endocrinology, Medical University of Sofia, Sofia, Bulgaria
| | - Auli Karhu
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Thierry Brue
- Department of Endocrinology, Aix Marseille University, Assistance publique Hôpitaux de Marseille (APHM), INSERM, Marseille Medical Genetics (MMG), Hopital La Conception, Institut MarMaRa, Marseille, France
- Laboratory of Molecular Biology, Aix Marseille University, Assistance publique Hôpitaux de Marseille (APHM), INSERM, Marseille Medical Genetics (MMG), Hospital La Conception, Institut MarMaRa, Marseille, France
| | - Anne Barlier
- Laboratory of Molecular Biology, Aix Marseille University, Assistance publique Hôpitaux de Marseille (APHM), INSERM, Marseille Medical Genetics (MMG), Hospital La Conception, Institut MarMaRa, Marseille, France
| | - Patrick Pétrossians
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Liège, Belgium
| | - Adrian F. Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Liège, Belgium
| |
Collapse
|
13
|
Vamvoukaki R, Chrysoulaki M, Betsi G, Xekouki P. Pituitary Tumorigenesis-Implications for Management. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040812. [PMID: 37109772 PMCID: PMC10145673 DOI: 10.3390/medicina59040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Pituitary neuroendocrine tumors (PitNETs), the third most common intracranial tumor, are mostly benign. However, some of them may display a more aggressive behavior, invading into the surrounding structures. While they may rarely metastasize, they may resist different treatment modalities. Several major advances in molecular biology in the past few years led to the discovery of the possible mechanisms involved in pituitary tumorigenesis with a possible therapeutic implication. The mutations in the different proteins involved in the Gsa/protein kinase A/c AMP signaling pathway are well-known and are responsible for many PitNETS, such as somatotropinomas and, in the context of syndromes, as the McCune-Albright syndrome, Carney complex, familiar isolated pituitary adenoma (FIPA), and X-linked acrogigantism (XLAG). The other pathways involved are the MAPK/ERK, PI3K/Akt, Wnt, and the most recently studied HIPPO pathways. Moreover, the mutations in several other tumor suppressor genes, such as menin and CDKN1B, are responsible for the MEN1 and MEN4 syndromes and succinate dehydrogenase (SDHx) in the context of the 3PAs syndrome. Furthermore, the pituitary stem cells and miRNAs hold an essential role in pituitary tumorigenesis and may represent new molecular targets for their diagnosis and treatment. This review aims to summarize the different cell signaling pathways and genes involved in pituitary tumorigenesis in an attempt to clarify their implications for diagnosis and management.
Collapse
Affiliation(s)
- Rodanthi Vamvoukaki
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| | - Maria Chrysoulaki
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| | - Grigoria Betsi
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| | - Paraskevi Xekouki
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| |
Collapse
|
14
|
Abstract
Hereditary pituitary tumorigenesis is seen in a relatively small proportion (around 5%) of patients with pituitary neuroendocrine tumors (PitNETs). The aim of the current review is to describe the main clinical and molecular features of such pituitary tumors associated with hereditary or familial characteristics, many of which have now been genetically identified. The genetic patterns of inheritance are classified into isolated familial PitNETs and the syndromic tumors. In general, the established genetic causes of familial tumorigenesis tend to present at a younger age, often pursue a more aggressive course, and are more frequently associated with growth hormone hypersecretion compared to sporadic tumors. The mostly studied molecular pathways implicated are the protein kinase A and phosphatidyl-inositol pathways, which are in the main related to mutations in the syndromes of familial isolated pituitary adenoma (FIPA), Carney complex syndrome, and X-linked acrogigantism. Another well-documented mechanism consists of the regulation of p27 or p21 proteins, with further acceleration of the pituitary cell cycle through the check points G1/S and M/G1, mostly documented in multiple endocrine neoplasia type 4. In conclusion, PitNETs may occur in relation to well-established familial germline mutations which may determine the clinical phenotype and the response to treatment, and may require family screening.
Collapse
Affiliation(s)
- Eleni Armeni
- Dept. of Endocrinology, Royal Free Hospital, London, NW3 2QG, UK.
| | - Ashley Grossman
- Dept. of Endocrinology, Royal Free Hospital, London, NW3 2QG, UK
- Centre for Endocrinology, Barts and the London School of Medicine, London, UK
- Green Templeton College, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Trofimiuk-Müldner M, Domagała B, Sokołowski G, Skalniak A, Hubalewska-Dydejczyk A. AIP gene germline variants in adult Polish patients with apparently sporadic pituitary macroadenomas. Front Endocrinol (Lausanne) 2023; 14:1098367. [PMID: 36843582 PMCID: PMC9950257 DOI: 10.3389/fendo.2023.1098367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Up to 5% of all pituitary tumors are hereditary e.g. due to MEN1 or aryl hydrocarbon receptor-interacting protein (AIP) genes mutations. OBJECTIVES The study was aimed at the assessment of the frequency and characteristics of AIP-mutation related tumors in patients with apparently sporadic pituitary macroadenomas in the Polish population. MATERIALS AND METHODS The study included 131 patients (57 males, 74 females; median age 42 years) diagnosed with pituitary macroadenomas, and with a negative family history of familial isolated pituitary adenoma (FIPA) or multiple endocrine neoplasia type 1 (MEN1) syndromes. Sanger sequencing was used for the assessment of AIP gene variants. The study was approved by the Ethics Board of JUMC. RESULTS AIP variants were identified in five of the 131 included subjects (3.8%): one diagnosed with Cushing's disease, two with acromegaly, and two with non-secreting adenomas. Patients harboring hereditary AIP gene alterations did not differ from the rest of the study group in median age at diagnosis (41.0 vs. 42.5 years, P=0.8), median largest tumor diameter (25 vs. 24 mm, P=0.6), gender distribution (60.0% vs. 56.3% females, P=0.8), secreting tumor frequency (60.0% vs. 67.5%, P=0.7), or acromegaly diagnosis frequency (40.0% vs.37.3%, P=0.9). CONCLUSIONS In our series of apparently sporadic pituitary macroadenomas, AIP gene variant carriers did not differ substantially from patients with negative genetic testing. A risk factor-centred approach to AIP genetic screening may result in missing germline variants. Considering the clinical impact of such genetic variants and their relatively low penetrance, it is, however, doubtful if general genetic screening benefits the whole cohort of pituitary macroadenoma patients and their families.
Collapse
Affiliation(s)
- Małgorzata Trofimiuk-Müldner
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
- *Correspondence: Małgorzata Trofimiuk-Müldner,
| | - Bartosz Domagała
- Department of Endocrinology, Endocrine Oncology and Nuclear Medicine, University Hospital in Kraków, Kraków, Poland
| | - Grzegorz Sokołowski
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Skalniak
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
| | | |
Collapse
|
16
|
Abstract
Molecular therapeutic targets in growth hormone (GH)-secreting adenomas range from well-characterized surface receptors that recognize approved drugs, to surface and intracellular markers that are potential candidates for new drug development. Currently available medical therapies for patients with acromegaly bind to somatostatin receptors, GH receptor, or dopamine receptors, and lead to attainment of disease control in most patients. The degree of control is variable: however, correlates with both disease aggressiveness and tumor factors that predict treatment response including somatostatin receptor subtype expression, granulation pattern, kinases and their receptors, and other markers of proliferation. A better understanding of the mechanisms underlying these molecular markers and their relationship to outcomes holds promise for expanding treatment options as well as a more personalized approach to treating patients with acromegaly.
Collapse
Affiliation(s)
- Artak Labadzhyan
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | |
Collapse
|
17
|
Coopmans EC, Korbonits M. Molecular genetic testing in the management of pituitary disease. Clin Endocrinol (Oxf) 2022; 97:424-435. [PMID: 35349723 DOI: 10.1111/cen.14706] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Most pituitary tumours occur sporadically without a genetically identifiable germline abnormality, a small but increasing proportion present with a genetic defect that predisposes to pituitary tumour development, either isolated (e.g., aryl hydrocarbon receptor-interacting protein, AIP) or as part of a tumour-predisposing syndrome (e.g., multiple endocrine neoplasia (MEN) type 1, Carney complex, McCune-Albright syndrome or pituitary tumour and paraganglioma association). Genetic alterations in sporadic pituitary adenomas may include somatic mutations (e.g., GNAS, USP8). In this review, we take a practical approach: which genetic syndromes should be considered in case of different presentation, such as tumour type, family history, age of onset and additional clinical features of the patient. DESIGN Review of the recent literature in the field of genetics of pituitary tumours. RESULTS Genetic testing in the management of pituitary disease is recommended in a significant minority of the cases. Understanding the genetic basis of the disease helps to identify patients and at-risk family members, facilitates early diagnosis and therefore better long-term outcome and opens up new pathways leading to tumorigenesis. CONCLUSION We provide a concise overview of the genetics of pituitary tumours and discuss the current challenges and implications of these genetic findings in clinical practice.
Collapse
Affiliation(s)
- Eva C Coopmans
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Medicine, Division of Endocrinology, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Medicine, Endocrinology section, Pituitary Center Rotterdam, Erasmus University Medical Cente, Rotterdam, The Netherlands
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
18
|
Haworth O, Korbonits M. AIP: A double agent? The tissue-specific role of AIP as a tumour suppressor or as an oncogene. Br J Cancer 2022; 127:1175-1176. [PMID: 36064587 PMCID: PMC9519571 DOI: 10.1038/s41416-022-01964-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022] Open
Abstract
Aryl hydrocarbon receptor-interacting protein (AIP) is a co-chaperone to heat shock proteins and nuclear receptors. Loss-of-function heterozygote germline mutations lead to predisposition to growth hormone- or prolactin-secreting pituitary typically presenting in childhood. Based on these data AIP behaves as a tumour suppressor. However, previously in diffuse large B cell lymphoma and now in this new manuscript in the British Journal of Cancer on colorectal cancer, it seems that high expression of AIP is associated with tumour development and more aggressive disease. AIP, therefore, joins a distinguished group of proteins that can behave both as a tumour suppressor and as an oncogene.
Collapse
Affiliation(s)
- Oliver Haworth
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
19
|
Asa SL, Ezzat S. Pituitary carcinoma: reclassification and implications in the NET schema. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R14-R23. [PMID: 37435449 PMCID: PMC10259303 DOI: 10.1530/eo-22-0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 07/13/2023]
Abstract
The entity known as pituitary carcinoma has been traditionally defined as a tumor of adenohypophysial cells that metastasizes systemically or craniospinally independent of the histological appearance of the lesion. Reported cases of pituitary carcinoma have clinically and histologically resembled their non-metastatic counterparts that were classified as adenomas; the majority of cases were initially diagnosed as adenomas, and with tumor progression and spread, the diagnosis was changed to carcinoma. This classification has been challenged since the definition of malignancy in most organs is not based only on metastatic spread. The extent of local invasion resulting in an inability to completely resect an adenohypophysial tumor can have serious consequences that can cause harm and are therefore not benign. To address this dilemma, it was proposed that pituitary tumors be classified as neuroendocrine tumors. This change in nomenclature is totally appropriate since these tumors are composed of classical neuroendocrine cells; as with other neuroendocrine tumors, they have variable behavior that can be indolent but can involve metastasis. With the new nomenclature, there is no requirement for a distinction between adenomas and carcinomas. Moreover, the WHO/IARC has provided an overarching classification for neuroendocrine neoplasms at all body sites; in this new classification, the term 'neuroendocrine carcinoma' is reserved for poorly differentiated high-grade malignancies that are clinically, morphologically and genetically distinct from well-differentiated neuroendocrine tumors. It remains to be determined if there are true pituitary neuroendocrine carcinomas.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shereen Ezzat
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|