1
|
Miera-Maluenda M, Pérez-Torres M, Mañas A, Rubio-San-Simón A, Butjosa-Espín M, Ruiz-Duran P, Seoane JA, Moreno L, Segura MF. Advances in the approaches used to repurpose drugs for neuroblastoma. Expert Opin Drug Discov 2024; 19:1309-1319. [PMID: 39258785 DOI: 10.1080/17460441.2024.2402413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Neuroblastoma (NB) remains a challenging pediatric malignancy with limited treatment options, particularly for high-risk cases. Drug repurposing offers a convenient and cost-effective strategy for treating rare diseases like NB. Using existing drugs with known safety profiles accelerates the availability of new treatments, reduces development costs, and mitigates risks, offering hope for improved patient outcomes in challenging conditions. AREAS COVERED This review provides an overview of the advances in approaches used to repurpose drugs for NB therapy. The authors discuss strategies employed in drug repurposing, including computational and experimental methods, and rational drug design, highlighting key examples of repurposed drugs with promising clinical results. Additionally, the authors examine the challenges and opportunities associated with drug repurposing in NB and discuss future directions and potential areas for further research. EXPERT OPINION The fact that only one new drug has been approved in the last 30 years for the treatment of neuroblastoma plus a significant proportion of high-risk NB patients that remain uncurable, evidences the need for new fast and cost-effective alternatives. Drug repurposing may accelerate the treatment development process while reducing expenses and risks. This approach can swiftly bring effective NB therapies to market, enhancing survival rates and patient quality of life.
Collapse
Affiliation(s)
- Marta Miera-Maluenda
- Childhood Cancer and Blood Disorders Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Pérez-Torres
- Department of Pediatric Oncology and Hematology, Vall D'Hebron University Hospital, Barcelona, Spain
| | - Adriana Mañas
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alba Rubio-San-Simón
- Pediatric Oncology and Hematology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Maria Butjosa-Espín
- Cancer Computational Biology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paula Ruiz-Duran
- Childhood Cancer and Blood Disorders Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jose A Seoane
- Cancer Computational Biology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Lucas Moreno
- Childhood Cancer and Blood Disorders Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Pediatric Oncology and Hematology, Vall D'Hebron University Hospital, Barcelona, Spain
| | - Miguel F Segura
- Childhood Cancer and Blood Disorders Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Capossela L, Gatto A, Ferretti S, Di Sarno L, Graglia B, Massese M, Soligo M, Chiaretti A. Multifaceted Roles of Nerve Growth Factor: A Comprehensive Review with a Special Insight into Pediatric Perspectives. BIOLOGY 2024; 13:546. [PMID: 39056738 PMCID: PMC11273967 DOI: 10.3390/biology13070546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Nerve growth factor (NGF) is a neurotrophic peptide largely revealed for its ability to regulate the growth and survival of peripheral sensory, sympathetic, and central cholinergic neurons. The pro-survival and regenerative properties of neurotrophic factors propose a therapeutic potential in a wide range of brain diseases, and NGF, in particular, has appeared as an encouraging potential treatment. In this review, a summary of clinical studies regarding NGF and its therapeutic effects published to date, with a specific interest in the pediatric context, will be attempted. NGF has been studied in neurological disorders such as hypoxic-ischemic encephalopathy, traumatic brain injury, neurobehavioral and neurodevelopmental diseases, congenital malformations, cerebral infections, and in oncological and ocular diseases. The potential of NGF to support neuronal survival, repair, and plasticity in these contexts is highlighted. Emerging therapeutic strategies for NGF delivery, including intranasal administration as well as advanced nanotechnology-based methods, are discussed. These techniques aim to enhance NGF bioavailability and target specificity, optimizing therapeutic outcomes while minimizing systemic side effects. By synthesizing current research, this review underscores the promise and challenges of NGF-based therapies in pediatric neurology, advocating for continued innovation in delivery methods to fully harness NGF's therapeutic potential.
Collapse
Affiliation(s)
- Lavinia Capossela
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| | - Antonio Gatto
- Institute of Pediatrics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.G.); (M.M.)
| | - Serena Ferretti
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| | - Lorenzo Di Sarno
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| | - Benedetta Graglia
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| | - Miriam Massese
- Institute of Pediatrics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.G.); (M.M.)
| | - Marzia Soligo
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle Ricerche (CNR), 00133 Rome, Italy;
| | - Antonio Chiaretti
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| |
Collapse
|
3
|
Song M, Sun Y, Hu Y, Wang C, Jin Y, Liu Y, Da Y, Zhao Q, Zheng R, Li L. Comprehensive quantifications of tumour microenvironment to predict the responsiveness to immunotherapy and prognosis for paediatric neuroblastomas. Int Immunopharmacol 2024; 133:112145. [PMID: 38691920 DOI: 10.1016/j.intimp.2024.112145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
Treatment strategies for paediatric neuroblastoma as well as many other cancers are limited by the unfavourable tumour microenvironment (TME). In this study, the TMEs of neuroblastoma were grouped by their genetic signatures into four distinct subtypes: immune enriched, immune desert, non-proliferative and fibrotic. An Immune Score and a Proliferation Score were constructed based on the molecular features of the subtypes to quantify the immune microenvironment or malignancy degree of cancer cells in neuroblastoma, respectively. The Immune Score correlated with a patient's response to immunotherapy; the Proliferation Score was an independent prognostic biomarker for neuroblastoma and proved to be more accurate than the existing clinical predictors. This double scoring system was further validated and the conserved molecular pattern associated with immune landscape and malignancy degree was confirmed. Axitinib and BI-2536 were confirmed as candidate drugs for neuroblastoma by the double scoring system. Both in vivo and in vitro experiments demonstrated that axitinib-induced pyroptosis of neuroblastoma cells activated anti-tumour immunity and inhibited tumour growth; BI-2536 induced cell cycle arrest at the S phase in neuroblastoma cells. The comprehensive double scoring system of neuroblastoma may predict prognosis and screen for therapeutic strategies which could provide personalized treatments.
Collapse
Affiliation(s)
- Mingkun Song
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin 300070, China; Department of Paediatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Paediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yiming Sun
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Yikai Hu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Chong Wang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin 300070, China; Class of 2019, Program in Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yan Jin
- Department of Paediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yun Liu
- Department of Paediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yurong Da
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin 300070, China.
| | - Qiang Zhao
- Department of Paediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| | - Rongxiu Zheng
- Department of Paediatrics, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Long Li
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin 300070, China; Department of Paediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| |
Collapse
|
4
|
Ferraguti G, Terracina S, Tarani L, Fanfarillo F, Allushi S, Caronti B, Tirassa P, Polimeni A, Lucarelli M, Cavalcanti L, Greco A, Fiore M. Nerve Growth Factor and the Role of Inflammation in Tumor Development. Curr Issues Mol Biol 2024; 46:965-989. [PMID: 38392180 PMCID: PMC10888178 DOI: 10.3390/cimb46020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Nerve growth factor (NGF) plays a dual role both in inflammatory states and cancer, acting both as a pro-inflammatory and oncogenic factor and as an anti-inflammatory and pro-apoptotic mediator in a context-dependent way based on the signaling networks and its interaction with diverse cellular components within the microenvironment. This report aims to provide a summary and subsequent review of the literature on the role of NGF in regulating the inflammatory microenvironment and tumor cell growth, survival, and death. The role of NGF in inflammation and tumorigenesis as a component of the inflammatory system, its interaction with the various components of the respective microenvironments, its ability to cause epigenetic changes, and its role in the treatment of cancer have been highlighted in this paper.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Allushi
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University Hospital of Rome, 00185 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Cavalcanti
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
5
|
Zhao Q, Wang J, Qu S, Gong Z, Duan Y, Han L, Wang J, Wang C, Tan J, Yuan Q, Zhang Y. Neuro-Inspired Biomimetic Microreactor for Sensory Recovery and Hair Follicle Neogenesis under Skin Burns. ACS NANO 2023; 17:23115-23131. [PMID: 37934769 DOI: 10.1021/acsnano.3c09107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Deep burns are one of the most severe skin wounds, with typical symptoms being a contradiction between initial severe pain and a subsequent loss of sensation. Although it has long been known that sensory nerves promote skin regeneration and modulate skin function, no proven burn management strategies target sensory nerves. Here, a neuro-inspired biomimetic microreactor is designed based on the immune escape outer membrane of neuroblastoma cells and neural-associated intracellular proteins. The microreactor is constructed on a metal-organic framework (MOF) with a neuroblastoma membrane coating the surface and intracellular proteins loaded inside, called Neuro-MOF. It is loaded into a therapeutic hydrogel and triggers the release of its content proteins upon excitation by near-infrared light. The proteins compensate the skin microenvironment for permanent neurological damage after burns to initiate peripheral nerve regeneration and hair follicle niche formation. In addition, the neuroblastoma cell membrane is displayed on the surface of the Neuro-MOF microreactor, decreasing its immunogenicity and suppressing local inflammation. In a mouse model of deep skin burns, the Neuro-MOF microreactor exhibited significant functional skin regeneration effects, particularly sensory recovery and hair follicle neogenesis.
Collapse
Affiliation(s)
- Qin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Jinyang Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Shuyuan Qu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Zijian Gong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Yiling Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Litian Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Jiaolong Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Can Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Jie Tan
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|
6
|
Kamashev D, Shaban N, Lebedev T, Prassolov V, Suntsova M, Raevskiy M, Gaifullin N, Sekacheva M, Garazha A, Poddubskaya E, Sorokin M, Buzdin A. Human Blood Serum Can Diminish EGFR-Targeted Inhibition of Squamous Carcinoma Cell Growth through Reactivation of MAPK and EGFR Pathways. Cells 2023; 12:2022. [PMID: 37626832 PMCID: PMC10453612 DOI: 10.3390/cells12162022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Regardless of the presence or absence of specific diagnostic mutations, many cancer patients fail to respond to EGFR-targeted therapeutics, and a personalized approach is needed to identify putative (non)responders. We found previously that human peripheral blood and EGF can modulate the activities of EGFR-specific drugs on inhibiting clonogenity in model EGFR-positive A431 squamous carcinoma cells. Here, we report that human serum can dramatically abolish the cell growth rate inhibition by EGFR-specific drugs cetuximab and erlotinib. We show that this phenomenon is linked with derepression of drug-induced G1S cell cycle transition arrest. Furthermore, A431 cell growth inhibition by cetuximab, erlotinib, and EGF correlates with a decreased activity of ERK1/2 proteins. In turn, the EGF- and human serum-mediated rescue of drug-treated A431 cells restores ERK1/2 activity in functional tests. RNA sequencing revealed 1271 and 1566 differentially expressed genes (DEGs) in the presence of cetuximab and erlotinib, respectively. Erlotinib- and cetuximab-specific DEGs significantly overlapped. Interestingly, the expression of 100% and 75% of these DEGs restores to the no-drug level when EGF or a mixed human serum sample, respectively, is added along with cetuximab. In the case of erlotinib, EGF and human serum restore the expression of 39% and 83% of DEGs, respectively. We further assessed differential molecular pathway activation levels and propose that EGF/human serum-mediated A431 resistance to EGFR drugs can be largely explained by reactivation of the MAPK signaling cascade.
Collapse
Affiliation(s)
- Dmitri Kamashev
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (N.S.); (A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
| | - Nina Shaban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (N.S.); (A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
| | - Timofey Lebedev
- Engelhardt Institute of Molecular Biology, Moscow 119991, Russia; (T.L.); (V.P.)
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Moscow 119991, Russia; (T.L.); (V.P.)
| | - Maria Suntsova
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Mikhail Raevskiy
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Nurshat Gaifullin
- Department of Pathology, Faculty of Medicine, Lomonosov Moscow State University, Moscow 119992, Russia;
| | - Marina Sekacheva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Andrew Garazha
- Oncobox Ltd., Moscow 121205, Russia;
- Omicsway Corp., Walnut, CA 91789, USA
| | - Elena Poddubskaya
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Maksim Sorokin
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia;
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (N.S.); (A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| |
Collapse
|
7
|
Sorokin M, Buzdin AA, Guryanova A, Efimov V, Suntsova MV, Zolotovskaia MA, Koroleva EV, Sekacheva MI, Tkachev VS, Garazha A, Kremenchutckaya K, Drobyshev A, Seryakov A, Gudkov A, Alekseenko IV, Rakitina O, Kostina MB, Vladimirova U, Moisseev A, Bulgin D, Radomskaya E, Shestakov V, Baklaushev VP, Prassolov V, Shegay PV, Li X, Poddubskaya EV, Gaifullin N. Large-scale assessment of pros and cons of autopsy-derived or tumor-matched tissues as the norms for gene expression analysis in cancers. Comput Struct Biotechnol J 2023; 21:3964-3986. [PMID: 37635765 PMCID: PMC10448432 DOI: 10.1016/j.csbj.2023.07.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/29/2023] Open
Abstract
Normal tissues are essential for studying disease-specific differential gene expression. However, healthy human controls are typically available only in postmortal/autopsy settings. In cancer research, fragments of pathologically normal tissue adjacent to tumor site are frequently used as the controls. However, it is largely underexplored how cancers can systematically influence gene expression of the neighboring tissues. Here we performed a comprehensive pan-cancer comparison of molecular profiles of solid tumor-adjacent and autopsy-derived "healthy" normal tissues. We found a number of systemic molecular differences related to activation of the immune cells, intracellular transport and autophagy, cellular respiration, telomerase activation, p38 signaling, cytoskeleton remodeling, and reorganization of the extracellular matrix. The tumor-adjacent tissues were deficient in apoptotic signaling and negative regulation of cell growth including G2/M cell cycle transition checkpoint. We also detected an extensive rearrangement of the chemical perception network. Molecular targets of 32 and 37 cancer drugs were over- or underexpressed, respectively, in the tumor-adjacent norms. These processes may be driven by molecular events that are correlated between the paired cancer and adjacent normal tissues, that mostly relate to inflammation and regulation of intracellular molecular pathways such as the p38, MAPK, Notch, and IGF1 signaling. However, using a model of macaque postmortal tissues we showed that for the 30 min - 24-hour time frame at 4ºC, an RNA degradation pattern in lung biosamples resulted in an artifact "differential" expression profile for 1140 genes, although no differences could be detected in liver. Thus, such concerns should be addressed in practice.
Collapse
Affiliation(s)
- Maksim Sorokin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- Omicsway Corp., Walnut, CA 91789, USA
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Anton A. Buzdin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium
| | - Anastasia Guryanova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Victor Efimov
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria V. Suntsova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Marianna A. Zolotovskaia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- Omicsway Corp., Walnut, CA 91789, USA
| | - Elena V. Koroleva
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Marina I. Sekacheva
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Victor S. Tkachev
- Omicsway Corp., Walnut, CA 91789, USA
- Oncobox Ltd., Moscow 121205, Russia
| | - Andrew Garazha
- Omicsway Corp., Walnut, CA 91789, USA
- Oncobox Ltd., Moscow 121205, Russia
| | | | - Aleksey Drobyshev
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | | | - Alexander Gudkov
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Irina V. Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", 2, Kurchatov Square, Moscow 123182, Russian
- FSBI "National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov" Ministry of Healthcare of the Russian Federation, Moscow 117198, Russia
| | - Olga Rakitina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Maria B. Kostina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Uliana Vladimirova
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Oncobox Ltd., Moscow 121205, Russia
| | - Aleksey Moisseev
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Dmitry Bulgin
- Research Institute of Medical Primatology, 177 Mira str., Veseloye, Sochi 354376, Russia
| | - Elena Radomskaya
- Research Institute of Medical Primatology, 177 Mira str., Veseloye, Sochi 354376, Russia
| | - Viktor Shestakov
- Research Institute of Medical Primatology, 177 Mira str., Veseloye, Sochi 354376, Russia
| | | | - Vladimir Prassolov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow 119991, Russia
| | - Petr V. Shegay
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia
| | - Xinmin Li
- UCLA Technology Center for Genomics & Bioinformatics, Department of Pathology & Laboratory Medicine, 650 Charles E Young Dr., Los Angeles, CA 90095, USA
| | | | - Nurshat Gaifullin
- Department of Physiology and General Pathology, Faculty of Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
8
|
Nasehi R, Abdallah AT, Pantile M, Zanon C, Vogt M, Rütten S, Fischer H, Aveic S. 3D geometry orchestrates the transcriptional landscape of metastatic neuroblastoma cells in a multicellular in vitro bone model. Mater Today Bio 2023; 19:100596. [PMID: 36910273 PMCID: PMC9999213 DOI: 10.1016/j.mtbio.2023.100596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
A key challenge for the discovery of novel molecular targets and therapeutics against pediatric bone metastatic disease is the lack of bona fide in vitro cell models. Here, we show that a beta-tricalcium phosphate (β-TCP) multicellular 3D in vitro bone microtissue model reconstitutes key phenotypic and transcriptional patterns of native metastatic tumor cells while promoting their stemness and proinvasive features. Comparing planar with interconnected channeled scaffolds, we identified geometry as a dominant orchestrator of proangiogenic traits in neuroblastoma tumor cells. On the other hand, the β-TCP-determined gene signature was DNA replication related. Jointly, the geometry and chemical impact of β-TCP revealed a prometastatic landscape of the engineered tumor microenvironment. The proposed 3D multicellular in vitro model of pediatric bone metastatic disease may advance further analysis of the molecular, genetic and metabolic bases of the disease and allow more efficient preclinical target validations.
Collapse
Affiliation(s)
- Ramin Nasehi
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Ali T Abdallah
- Interdisciplinary Center for Clinical Research, RWTH Aachen University Hospital, 52074, Aachen, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marcella Pantile
- Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica Fondazione Città Della Speranza, 35127, Padova, Italy
| | - Carlo Zanon
- Bioinformatics Core Facility, Istituto di Ricerca Pediatrica Fondazione Città Della Speranza, 35127, Padova, Italy
| | - Michael Vogt
- Interdisciplinary Center for Clinical Research, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Stephan Rütten
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074, Aachen, Germany.,Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica Fondazione Città Della Speranza, 35127, Padova, Italy
| |
Collapse
|
9
|
Merhi M, Ahmad F, Taib N, Inchakalody V, Uddin S, Shablak A, Dermime S. The complex network of transcription factors, immune checkpoint inhibitors and stemness features in colorectal cancer: A recent update. Semin Cancer Biol 2023; 89:1-17. [PMID: 36621515 DOI: 10.1016/j.semcancer.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Cancer immunity is regulated by several mechanisms that include co-stimulatory and/or co-inhibitory molecules known as immune checkpoints expressed by the immune cells. In colorectal cancer (CRC), CTLA-4, LAG3, TIM-3 and PD-1 are the major co-inhibitory checkpoints involved in tumor development and progression. On the other hand, the deregulation of transcription factors and cancer stem cells activity plays a major role in the development of drug resistance and in the spread of metastatic disease in CRC. In this review, we describe how the modulation of such transcription factors affects the response of CRC to therapies. We also focus on the role of cancer stem cells in tumor metastasis and chemoresistance and discuss both preclinical and clinical approaches for targeting stem cells to prevent their tumorigenic effect. Finally, we provide an update on the clinical applications of immune checkpoint inhibitors in CRC and discuss the regulatory effects of transcription factors on the expression of the immune inhibitory checkpoints with specific focus on the PD-1 and PD-L1 molecules.
Collapse
Affiliation(s)
- Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Alaaeldin Shablak
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
10
|
Wang Y, Zhang Y, Chen R, Tian X. Autocrine EGF and TGF-α promote primary and acquired resistance to ALK/c-Met kinase inhibitors in non-small-cell lung cancer. Pharmacol Res Perspect 2023; 11:e01047. [PMID: 36583451 PMCID: PMC9801488 DOI: 10.1002/prp2.1047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Drug resistance severely limits the clinical therapeutic value of molecularly targeted drugs. Growth factors gain a tremendous amount of focus due to the ability to promote drug resistance in non-small-cell lung cancer (NSCLC). However, whether tumor cells themselves can mediate drug resistance by secreting growth factors needs further clarification. Here, we first screened growth factors to identify autocrine epidermal growth factor (EGF) and transforming growth factor alpha (TGF-α) that caused primary resistance to the ALK inhibitor TAE684 in H3122 cells and the c-MET-specific inhibitor SGX-523 in EBC-1 cells. Next, we discovered increased autocrine production of EGF and TGF-α in established acquired resistant H3122/TR and EBC-1/SR cells. Importantly, overexpression of EGF and TGF-α in two NSCLC cell lines produced resistance to TAE684 and SGX-523. Clinically, NSCLC patients with high expression of EGF and TGF-α developed primary resistance to crizotinib. Mechanistically, autocrine EGF and TGF-α activated EGFR signaling pathways to survive targeted c-Met and ALK inhibition. Furthermore, combined treatment with gefitinib circumvented EGF- and TGF-α-mediated primary and acquired resistance to TAE684/SGX-523. Taken together, these results suggested increased autocrine EGF and TGF-α conferred primary and acquired resistance to ALK/c-Met kinase inhibitors in NSCLC.
Collapse
Affiliation(s)
- Yueqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Ruiying Chen
- Department of Respiratory medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Ferraguti G, Terracina S, Micangeli G, Lucarelli M, Tarani L, Ceccanti M, Spaziani M, D'Orazi V, Petrella C, Fiore M. NGF and BDNF in pediatrics syndromes. Neurosci Biobehav Rev 2023; 145:105015. [PMID: 36563920 DOI: 10.1016/j.neubiorev.2022.105015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Neurotrophins (NTs) as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) play multiple roles in different settings including neuronal development, function and survival in both the peripheral and the central nervous systems from early stages. This report aims to provide a summary and subsequent review of evidences on the role of NTs in rare and non-common pediatric human diseases associated with changes in neurodevelopment. A variety of diseases has been analyzed and many have been linked to NTs neurobiological effects, including chronic granulomatous disease, hereditary sensory and autonomic neuropathy, Duchenne muscular dystrophy, Bardet-Biedl syndrome, Angelman syndrome, fragile X syndrome, trisomy 16, Williams-Beuren syndrome, Prader-Willi syndrome, WAGR syndrome, fetal alcohol spectrum disorders, Down syndrome and Klinefelter Syndrome. NTs alterations have been associated with numerous pathologic manifestations including cognitive defects, behavioral abnormalities, epilepsy, obesity, tumorigenesis as well as muscle-skeletal, immunity, bowel, pain sensibility and cilia diseases. In this report, we discuss that further studies are needed to clear a possible therapeutic role of NTs in these still often uncurable diseases.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ginevra Micangeli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Rome, Italy
| | - Matteo Spaziani
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Valerio D'Orazi
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy.
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy.
| |
Collapse
|
12
|
Yu Y, Zhao Y, Choi J, Shi Z, Guo L, Elizarraras J, Gu A, Cheng F, Pei Y, Lu D, Fabbri M, Agarwal S, Zhang C, Jung SY, Foster JH, Yang J. ERK Inhibitor Ulixertinib Inhibits High-Risk Neuroblastoma Growth In Vitro and In Vivo. Cancers (Basel) 2022; 14:cancers14225534. [PMID: 36428626 PMCID: PMC9688897 DOI: 10.3390/cancers14225534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric tumor of the peripheral nervous system. Approximately 80% of relapsed NB show RAS-MAPK pathway mutations that activate ERK, resulting in the promotion of cell proliferation and drug resistance. Ulixertinib, a first-in-class ERK-specific inhibitor, has shown promising antitumor activity in phase 1 clinical trials for advanced solid tumors. Here, we show that ulixertinib significantly and dose-dependently inhibits cell proliferation and colony formation in different NB cell lines, including PDX cells. Transcriptomic analysis revealed that ulixertinib extensively inhibits different oncogenic and neuronal developmental pathways, including EGFR, VEGF, WNT, MAPK, NGF, and NTRK1. The proteomic analysis further revealed that ulixertinib inhibits the cell cycle and promotes apoptosis in NB cells. Additionally, ulixertinib treatment significantly sensitized NB cells to the conventional chemotherapeutic agent doxorubicin. Furthermore, ulixertinib potently inhibited NB tumor growth and prolonged the overall survival of the treated mice in two different NB mice models. Our preclinical study demonstrates that ulixertinib, either as a single agent or in combination with current therapies, is a novel and practical therapeutic approach for NB.
Collapse
Affiliation(s)
- Yang Yu
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Yanling Zhao
- Texas Children’s Hospital, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jongmin Choi
- Advanced Technology Cores/Office of Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhongcheng Shi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77003, USA
| | - Linjie Guo
- Texas Children’s Hospital, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - John Elizarraras
- Texas Children’s Hospital, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andy Gu
- Texas Children’s Hospital, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng Cheng
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Yanxin Pei
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - Dai Lu
- Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Muller Fabbri
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - Saurabh Agarwal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Chunchao Zhang
- Texas Children’s Hospital, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77003, USA
| | - Jennifer H. Foster
- Texas Children’s Hospital, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (J.H.F.); (J.Y.); Tel.: +1-832-822-4556 (J.H.F.); +1-202-476-5772 (J.Y.)
| | - Jianhua Yang
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Correspondence: (J.H.F.); (J.Y.); Tel.: +1-832-822-4556 (J.H.F.); +1-202-476-5772 (J.Y.)
| |
Collapse
|
13
|
Mañas A, Aaltonen K, Andersson N, Hansson K, Adamska A, Seger A, Yasui H, van den Bos H, Radke K, Esfandyari J, Bhave MS, Karlsson J, Spierings D, Foijer F, Gisselsson D, Bexell D. Clinically relevant treatment of PDX models reveals patterns of neuroblastoma chemoresistance. SCIENCE ADVANCES 2022; 8:eabq4617. [PMID: 36306349 PMCID: PMC9616506 DOI: 10.1126/sciadv.abq4617] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Chemotherapy resistance and relapses are common in high-risk neuroblastoma (NB). Here, we developed a clinically relevant in vivo treatment protocol mimicking the first-line five-chemotherapy treatment regimen of high-risk NB and applied this protocol to mice with MYCN-amplified NB patient-derived xenografts (PDXs). Genomic and transcriptomic analyses were used to reveal NB chemoresistance mechanisms. Intrinsic resistance was associated with high genetic diversity and an embryonic phenotype. Relapsed NB with acquired resistance showed a decreased adrenergic phenotype and an enhanced immature mesenchymal-like phenotype, resembling multipotent Schwann cell precursors. NBs with a favorable treatment response presented a lineage-committed adrenergic phenotype similar to normal neuroblasts. Novel integrated phenotypic gene signatures reflected treatment response and patient prognosis. NB organoids established from relapsed PDX tumors retained drug resistance, tumorigenicity, and transcriptional cell states. This work sheds light on the mechanisms of NB chemotherapy response and emphasizes the importance of transcriptional cell states in chemoresistance.
Collapse
Affiliation(s)
- Adriana Mañas
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
| | - Kristina Aaltonen
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
| | - Natalie Andersson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund 22185, Sweden
| | - Karin Hansson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Aleksandra Adamska
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
| | - Alexandra Seger
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
| | - Hiroaki Yasui
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund 22185, Sweden
- Department of Gynecologic Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, AV, Groningen 9713, Netherlands
| | - Katarzyna Radke
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
| | - Javanshir Esfandyari
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
| | - Madhura Satish Bhave
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
| | - Jenny Karlsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund 22185, Sweden
| | - Diana Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, AV, Groningen 9713, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, AV, Groningen 9713, Netherlands
| | - David Gisselsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund 22185, Sweden
- Department of Pathology, Laboratory Medicine, Skane University Hospital, Lund 22184, Sweden
| | - Daniel Bexell
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
| |
Collapse
|
14
|
Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther 2022; 7:329. [PMID: 36115852 PMCID: PMC9482625 DOI: 10.1038/s41392-022-01168-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractProtein tyrosine kinases (PTKs) are a class of proteins with tyrosine kinase activity that phosphorylate tyrosine residues of critical molecules in signaling pathways. Their basal function is essential for maintaining normal cell growth and differentiation. However, aberrant activation of PTKs caused by various factors can deviate cell function from the expected trajectory to an abnormal growth state, leading to carcinogenesis. Inhibiting the aberrant PTK function could inhibit tumor growth. Therefore, tyrosine kinase inhibitors (TKIs), target-specific inhibitors of PTKs, have been used in treating malignant tumors and play a significant role in targeted therapy of cancer. Currently, drug resistance is the main reason for limiting TKIs efficacy of cancer. The increasing studies indicated that tumor microenvironment, cell death resistance, tumor metabolism, epigenetic modification and abnormal metabolism of TKIs were deeply involved in tumor development and TKI resistance, besides the abnormal activation of PTK-related signaling pathways involved in gene mutations. Accordingly, it is of great significance to study the underlying mechanisms of TKIs resistance and find solutions to reverse TKIs resistance for improving TKIs efficacy of cancer. Herein, we reviewed the drug resistance mechanisms of TKIs and the potential approaches to overcome TKI resistance, aiming to provide a theoretical basis for improving the efficacy of TKIs.
Collapse
|
15
|
Lebedev TD, Khabusheva ER, Mareeva SR, Ivanenko KA, Morozov AV, Spirin PV, Rubtsov PM, Snezhkina AV, Kudryavtseva AV, Sorokin MI, Buzdin AA, Prassolov VS. Identification of cell type-specific correlations between ERK activity and cell viability upon treatment with ERK1/2 inhibitors. J Biol Chem 2022; 298:102226. [PMID: 35787369 PMCID: PMC9358475 DOI: 10.1016/j.jbc.2022.102226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/05/2022] Open
Abstract
Increased MAPK signaling is a hallmark of various cancers and is a central regulator of cell survival. Direct ERK1/2 inhibition is considered a promising approach to avoid ERK1/2 reactivation caused by upstream kinases BRAF, MEK1/2, and KRAS, as well as by receptor tyrosine kinase inhibitors, but the dynamics and selectivity of ERK1/2 inhibitors are much less studied compared with BRAF or MEK inhibitors. Using ERK1/2 and downstream kinase ELK1 reporter cell lines of lung cancer (H1299; NRASQ61K), colon cancer (HCT-116; KRASG13D), neuroblastoma (SH-SY5Y), and leukemia (U937), we examined the relationship between ERK inhibition and drug-induced toxicity for five ERK inhibitors: SCH772984, ravoxertinib, LY3214996, ulixertinib, and VX-11e, as well as one MEK inhibitor, PD0325901. Comparing cell viability and ERK inhibition revealed different ERK dependencies for these cell lines. We identify several drugs, such as SCH772984 and VX-11e, which induce excessive toxicity not directly related to ERK1/2 inhibition in specific cell lines. We also show that PD0325901, LY3214996, and ulixertinib are prone to ERK1/2 reactivation over time. We distinguished two types of ERK1/2 reactivation: the first could be reversed by adding a fresh dose of inhibitors, while the second persists even after additional treatments. We also showed that cells that became resistant to the MEK1/2 inhibitor PD0325901 due to ERK1/2 reactivation remained sensitive to ERK1/2 inhibitor ulixertinib. Our data indicate that correlation of ERK inhibition with drug-induced toxicity in multiple cell lines may help to find more selective and effective ERK1/2 inhibitors.
Collapse
Affiliation(s)
- Timofey D Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Elmira R Khabusheva
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sofia R Mareeva
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
| | - Karina A Ivanenko
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey V Morozov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel V Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Petr M Rubtsov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya V Snezhkina
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Kudryavtseva
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maxim I Sorokin
- Institute of Personalized Oncology, Sechenov First Moscow State Medical University, Moscow, Russia; Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Department of Bioinformatics and Molecular Networks, OmicsWay Corp, Walnut, California, USA
| | - Anton A Buzdin
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia; Institute of Personalized Oncology, Sechenov First Moscow State Medical University, Moscow, Russia; Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Department of Bioinformatics and Molecular Networks, OmicsWay Corp, Walnut, California, USA
| | - Vladimir S Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Subtype of Neuroblastoma Cells with High KIT Expression Are Dependent on KIT and Its Knockdown Induces Compensatory Activation of Pro-Survival Signaling. Int J Mol Sci 2022; 23:ijms23147724. [PMID: 35887076 PMCID: PMC9324519 DOI: 10.3390/ijms23147724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric cancer with high clinical and molecular heterogeneity, and patients with high-risk tumors have limited treatment options. Receptor tyrosine kinase KIT has been identified as a potential marker of high-risk NB and a promising target for NB treatment. We investigated 19,145 tumor RNA expression and molecular pathway activation profiles for 20 cancer types and detected relatively high levels of KIT expression in NB. Increased KIT expression was associated with activation of cell survival pathways, downregulated apoptosis induction, and cell cycle checkpoint control pathways. KIT knockdown with shRNA encoded by lentiviral vectors in SH-SY5Y cells led to reduced cell proliferation and apoptosis induction up to 50%. Our data suggest that apoptosis induction was caused by mitotic catastrophe, and there was a 2-fold decrease in percentage of G2-M cell cycle phase after KIT knockdown. We found that KIT knockdown in NB cells leads to strong upregulation of other pro-survival growth factor signaling cascades such as EPO, NGF, IL-6, and IGF-1 pathways. NGF, IGF-1 and EPO were able to increase cell proliferation in KIT-depleted cells in an ERK1/2-dependent manner. Overall, we show that KIT is a promising therapeutic target in NB, although such therapy efficiency could be impeded by growth factor signaling activation.
Collapse
|
17
|
Investigating How Reproducibility and Geometrical Representation in UMAP Dimensionality Reduction Impact the Stratification of Breast Cancer Tumors. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advances in next-generation sequencing have provided high-dimensional RNA-seq datasets, allowing the stratification of some tumor patients based on their transcriptomic profiles. Machine learning methods have been used to reduce and cluster high-dimensional data. Recently, uniform manifold approximation and projection (UMAP) was applied to project genomic datasets in low-dimensional Euclidean latent space. Here, we evaluated how different representations of the UMAP embedding can impact the analysis of breast cancer (BC) stratification. We projected BC RNA-seq data on Euclidean, spherical, and hyperbolic spaces, and stratified BC patients via clustering algorithms. We also proposed a pipeline to yield more reproducible clustering outputs. The results show how the selection of the latent space can affect downstream stratification results and suggest that the exploration of different geometrical representations is recommended to explore data structure and samples’ relationships.
Collapse
|
18
|
Vagapova E, Kozlov M, Lebedev T, Ivanenko K, Leonova O, Popenko V, Spirin P, Kochetkov S, Prassolov V. Selective Inhibition of HDAC Class I Sensitizes Leukemia and Neuroblastoma Cells to Anticancer Drugs. Biomedicines 2021; 9:1846. [PMID: 34944663 PMCID: PMC8698907 DOI: 10.3390/biomedicines9121846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
The acquired resistance of neuroblastoma (NB) and leukemia cells to anticancer therapy remains the major challenge in the treatment of patients with these diseases. Although targeted therapy, such as receptor tyrosine kinase (RTK) inhibitors, has been introduced into clinical practice, its efficacy is limited to patients harboring mutant kinases. Through the analysis of transcriptomic data of 701 leukemia and NB patient samples and cell lines, we revealed that the expression of RTK, such as KIT, FLT3, AXL, FGFR3, and NTRK1, is linked with HDAC class I. Although HDAC inhibitors have antitumor activity, they also have high whole-body toxicity. We developed a novel belinostat derivative named hydrazostat, which targets HDAC class I with limited off-target effects. We compared the toxicity of these drugs within the panel of leukemia and NB cell lines. Next, we revealed that HDAC inhibition with hydrazostat reactivates NTRK1, FGFR3, ROR2, KIT, and FLT3 expression. Based on this finding, we tested the efficacy of hydrazostat in combination with RTK inhibitor imatinib. Additionally, we show the ability of hydrazostat to enhance venetoclax-induced apoptosis. Thus, we reveal the connection between HDACs and RTK and describe a useful strategy to overcome the complications of single-agent therapies.
Collapse
Affiliation(s)
- Elmira Vagapova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (T.L.); (K.I.); (O.L.); (V.P.); (P.S.); (S.K.); (V.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia
| | - Maxim Kozlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (T.L.); (K.I.); (O.L.); (V.P.); (P.S.); (S.K.); (V.P.)
| | - Timofey Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (T.L.); (K.I.); (O.L.); (V.P.); (P.S.); (S.K.); (V.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia
| | - Karina Ivanenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (T.L.); (K.I.); (O.L.); (V.P.); (P.S.); (S.K.); (V.P.)
| | - Olga Leonova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (T.L.); (K.I.); (O.L.); (V.P.); (P.S.); (S.K.); (V.P.)
| | - Vladimir Popenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (T.L.); (K.I.); (O.L.); (V.P.); (P.S.); (S.K.); (V.P.)
| | - Pavel Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (T.L.); (K.I.); (O.L.); (V.P.); (P.S.); (S.K.); (V.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia
| | - Sergey Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (T.L.); (K.I.); (O.L.); (V.P.); (P.S.); (S.K.); (V.P.)
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (T.L.); (K.I.); (O.L.); (V.P.); (P.S.); (S.K.); (V.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia
| |
Collapse
|