1
|
Lou N, Gu X, Fu L, Li J, Xue C. Significant roles of RNA 5-methylcytosine methylation in cancer. Cell Signal 2025; 126:111529. [PMID: 39615772 DOI: 10.1016/j.cellsig.2024.111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/06/2024]
Abstract
Cancer stands as a leading cause of mortality and poses an escalating threat to global health. Epigenetic dysregulation is pivotal in the onset and advancement of cancer. Recent research on RNA 5-methylcytosine (m5C) methylation has underscored its significant role in cancer. RNA m5C methylation is a key component in gene expression regulation and is intricately linked to cancer development, offering valuable insights for cancer diagnosis, treatment, and prognosis. This review provides an in-depth examination of the three types of regulators associated with RNA m5C methylation and their biological functions. It further investigates the expression and impact of RNA m5C methylation and its regulators in cancer, focusing on their mechanisms in cancer progression and clinical relevance. The current research on inhibitors targeting RNA m5C methylation-related regulators remains underdeveloped, necessitating further exploration and discovery.
Collapse
Affiliation(s)
- Na Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Leiya Fu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
2
|
Lu Y, Yang L, Feng Q, Liu Y, Sun X, Liu D, Qiao L, Liu Z. RNA 5-Methylcytosine Modification: Regulatory Molecules, Biological Functions, and Human Diseases. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae063. [PMID: 39340806 PMCID: PMC11634542 DOI: 10.1093/gpbjnl/qzae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
RNA methylation modifications influence gene expression, and disruptions of these processes are often associated with various human diseases. The common RNA methylation modification 5-methylcytosine (m5C), which is dynamically regulated by writers, erasers, and readers, widely occurs in transfer RNAs (tRNAs), messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), enhancer RNAs (eRNAs), and other non-coding RNAs (ncRNAs). RNA m5C modification regulates metabolism, stability, nuclear export, and translation of RNA molecules. An increasing number of studies have revealed the critical roles of the m5C RNA modification and its regulators in the development, diagnosis, prognosis, and treatment of various human diseases. In this review, we summarized the recent studies on RNA m5C modification and discussed the advances in its detection methodologies, distribution, and regulators. Furthermore, we addressed the significance of RNAs modified with m5C marks in essential biological processes as well as in the development of various human disorders, from neurological diseases to cancers. This review provides a new perspective on the diagnosis, treatment, and monitoring of human diseases by elucidating the complex regulatory network of the epigenetic m5C modification.
Collapse
Affiliation(s)
- Yanfang Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Liu Yang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Yong Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Xiaohui Sun
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Long Qiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| |
Collapse
|
3
|
Xu Q, Yang C, Wang L, Zhou J. Unveiling the role of RNA methylation in glioma: Mechanisms, prognostic biomarkers, and therapeutic targets. Cell Signal 2024; 124:111380. [PMID: 39236835 DOI: 10.1016/j.cellsig.2024.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Gliomas, the most prevalent malignant brain tumors in the central nervous system, are marked by rapid growth, high recurrence rates, and poor prognosis. Glioblastoma (GBM) stands out as the most aggressive subtype, characterized by significant heterogeneity. The etiology of gliomas remains elusive. RNA modifications, particularly reversible methylation, play a crucial role in regulating transcription and translation throughout the RNA lifecycle. Increasing evidence highlights the prevalence of RNA methylation in primary central nervous system malignancies, underscoring its pivotal role in glioma pathogenesis. This review focuses on recent findings regarding changes in RNA methylation expression and their effects on glioma development and progression, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G). Given the extensive roles of RNA methylation in gliomas, the potential of RNA methylation-related regulators as prognostic markers and therapeutic targets was also explored, aiming to enhance clinical management and improve patient outcomes.
Collapse
Affiliation(s)
- Qichen Xu
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Chunsong Yang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Liyun Wang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Jing Zhou
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China.
| |
Collapse
|
4
|
Fang K, Xu H, Yuan S, Li X, Chen X, Fan X, Gao X, Zhang L, Sun S, Zhu X. LncRNA mediated metabolic reprogramming: the chief culprits of solid tumor malignant progression: an update review. Nutr Metab (Lond) 2024; 21:89. [PMID: 39516895 PMCID: PMC11549785 DOI: 10.1186/s12986-024-00866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolism reprogramming (MR) is one of the top ten hallmarks of malignant tumors. The aberrant activation of MR has been recognized as a critical contributory factor to the malignant progression of solid tumors. Moreover, various long non-coding RNAs (lncRNAs) are implicated in the aberrant activation of MR in solid tumor cells. Therefore, in this review, we mainly focus on summarizing the functional relevance and molecular mechanistic underpinnings of lncRNAs in modulating MR of solid tumors by targeting glucose metabolism, lipid metabolism, affecting mitochondrial function, and regulating interactions between tumor and non-tumor cells in tumor microenvironment. Besides, we also underscore the potential for constructing lncRNAs-centered tumor metabolic regulation networks and developing novel anti-tumor strategies by targeting lncRNAs and abnormal MR. Ultimately, this review seeks to offer new targets and avenues for the clinical treatment of solid tumors in the future.
Collapse
Affiliation(s)
- Kun Fang
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Huizhe Xu
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Shuai Yuan
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiaoxi Li
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiaoyu Chen
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiushi Fan
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiaoxin Gao
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Lu Zhang
- Department of Human Resources, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China.
| | - Shulan Sun
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China.
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China.
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
5
|
Li P, Huang D. NSUN2-mediated RNA methylation: Molecular mechanisms and clinical relevance in cancer. Cell Signal 2024; 123:111375. [PMID: 39218271 DOI: 10.1016/j.cellsig.2024.111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide, necessitating the ongoing investigation of molecular targets for improved diagnosis, prognosis, and therapy. Among these targets, RNA modifications, particularly N5-methylcytosine (m5C) in RNA, have emerged as critical regulators of gene expression and cellular functions. NOP2/Sun RNA methyltransferase family member 2 (NSUN2) is a key enzyme in m5C modification, significantly influencing various biological processes and tumorigenesis. NSUN2 methylates multiple RNA species, including transfer RNAs (tRNAs), messenger RNAs (mRNAs), and non-coding RNAs, impacting RNA stability, translation efficiency, and cellular stress responses. These modifications, in turn, affect cell proliferation, differentiation, and survival. In cancer, NSUN2 is frequently upregulated, associated with aggressive tumor phenotypes, poor prognosis, and therapy resistance. Its role in oncogenic signaling pathways further underscores its importance in cancer biology. This review offers a comprehensive overview of NSUN2's role in cancer, focusing on its involvement in RNA methylation and its implications for tumor initiation and progression. Additionally, we explore the potential of NSUN2 as a biomarker for cancer diagnosis and prognosis, and its promise as a therapeutic target.
Collapse
Affiliation(s)
- Penghui Li
- Department of gastrointestinal surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
6
|
Wu F, Li D. YB1 and its role in osteosarcoma: a review. Front Oncol 2024; 14:1452661. [PMID: 39497723 PMCID: PMC11532169 DOI: 10.3389/fonc.2024.1452661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
YB1 (Y box binding protein 1), a multifunctional protein capable of binding to DNA/RNA, is present in most cells and acts as a splicing factor. It is involved in numerous cellular processes such as transcription, translation, and DNA repair, significantly affecting cell proliferation, differentiation, and apoptosis. Abnormal expression of this protein is closely linked to the formation of various malignancies (osteosarcoma, nasopharyngeal carcinoma, breast cancer, etc.). This review examines the multifaceted functions of YB1 and its critical role in osteosarcoma progression, providing new perspectives for potential therapeutic strategies.
Collapse
Affiliation(s)
| | - Dapeng Li
- Affiliated Hospital of Jiangsu University, Zhenjiang,
Jiangsu, China
| |
Collapse
|
7
|
Yu L, Xu H, Xiong H, Yang C, Wu Y, Zhang Q. The role of m5C RNA modification in cancer development and therapy. Heliyon 2024; 10:e38660. [PMID: 39444404 PMCID: PMC11497397 DOI: 10.1016/j.heliyon.2024.e38660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/13/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
RNA modifications have been demonstrated to affect the function, stability, processing, and interactions of RNA, including pseudouridylation, acetylation and methylation. RNA methylation products, such as N6-methyladenosine (m6A), 5-methylcytidine (m5C), N7-methylguanosine (m7G), 2'-O-dimethyladenosine (m6Am), and N1-methyladenosine (m1A), have been reported to participate in tumorigenesis and tumor progression. The role of m6A in carcinogenesis has been well studied and summarized. In this review, we described the biological functions of m5C RNA modifications in tumorigenesis and tumor progression. Moreover, we highlighted the molecular mechanisms of m5C RNA modification in oncogenesis. Furthermore, we discussed whether targeting m5C regulator-associated genes could be a novel strategy for improving therapeutic outcomes in patients with cancer.
Collapse
Affiliation(s)
- Li Yu
- Cancer Center, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongen Xu
- Department of Oncology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hanchu Xiong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chunju Yang
- Cancer Center, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wu
- Cancer Center, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiong Zhang
- Cancer Center, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Meng H, Miao H, Zhang Y, Chen T, Yuan L, Wan Y, Jiang Y, Zhang L, Cheng W. YBX1 promotes homologous recombination and resistance to platinum-induced stress in ovarian cancer by recognizing m5C modification. Cancer Lett 2024; 597:217064. [PMID: 38880223 DOI: 10.1016/j.canlet.2024.217064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Platinum-based chemotherapy causes genetic damage and induces apoptosis in ovarian cancer cells. Enhancing the ability to resist platinum drug-induced DNA damage and apoptotic stress is critical for tumor cells to acquire drug resistance. Here, we found that Y-box binding protein 1 (YBX1) was highly expressed in cisplatin-resistant patient-derived organoids (PDOs) and was a crucial gene for alleviating platinum-induced stress and maintaining drug resistance characteristics in ovarian cancer cells. Mechanistically, YBX1 recognized m5C modifications in CHD3 mRNA and maintained mRNA stability by recruiting PABPC1 protein. This regulatory process enhanced chromatin accessibility and improved the efficiency of homologous recombination (HR) repair, facilitating tumor cells to withstand platinum-induced apoptotic stress. In addition, SU056, an inhibitor of YBX1, exhibited the potential to reverse platinum resistance in subcutaneous and PDO orthotopic xenograft models. In conclusion, YBX1 is critical for ovarian cancer cells to alleviate the platinum-induced stress and may be a potential target for reversing drug-resistant therapies.
Collapse
Affiliation(s)
- Huangyang Meng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huixian Miao
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yashuang Zhang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tian Chen
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China
| | - Lin Yuan
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China
| | - Yicong Wan
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China
| | - Yi Jiang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China
| | - Lin Zhang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wenjun Cheng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Yu M, Ni M, Xu F, Liu C, Chen L, Li J, Xia S, Diao Y, Chen J, Zhu J, Wu X, Tang M, Li J, Ke G. NSUN6-mediated 5-methylcytosine modification of NDRG1 mRNA promotes radioresistance in cervical cancer. Mol Cancer 2024; 23:139. [PMID: 38970106 PMCID: PMC11225205 DOI: 10.1186/s12943-024-02055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Radioresistance is the leading cause of death in advanced cervical cancer (CC). Dysregulation of RNA modification has recently emerged as a regulatory mechanism in radiation and drug resistance. We aimed to explore the biological function and clinical significance of 5-methylcytosine (m5C) in cervical cancer radiosensitivity. METHODS The abundance of RNA modification in radiotherapy-resistant and sensitive CC specimens was quantified by liquid chromatography-tandem mass spectrometry. The essential RNA modification-related genes involved in CC radiosensitivity were screened via RNA sequencing. The effect of NSUN6 on radiosensitivity was verified in CC cell lines, cell-derived xenograft (CDX), and 3D bioprinted patient-derived organoid (PDO). The mechanisms of NSUN6 in regulating CC radiosensitivity were investigated by integrative m5C sequencing, mRNA sequencing, and RNA immunoprecipitation. RESULTS We found a higher abundance of m5C modification in resistant CC samples, and NSUN6 was the essential m5C-regulating gene concerning radiosensitivity. NSUN6 overexpression was clinically correlated with radioresistance and poor prognosis in cervical cancer. Functionally, higher NSUN6 expression was associated with radioresistance in the 3D PDO model of cervical cancer. Moreover, silencing NSUN6 increased CC radiosensitivity in vivo and in vitro. Mechanistically, NDRG1 was one of the downstream target genes of NSUN6 identified by integrated m5C-seq, mRNA-seq, and functional validation. NSUN6 promoted the m5C modification of NDRG1 mRNA, and the m5C reader ALYREF bound explicitly to the m5C-labeled NDRG1 mRNA and enhanced NDRG1 mRNA stability. NDRG1 overexpression promoted homologous recombination-mediated DNA repair, which in turn led to radioresistance in cervical cancer. CONCLUSIONS Aberrant m5C hypermethylation and NSUN6 overexpression drive resistance to radiotherapy in cervical cancer. Elevated NSUN6 expression promotes radioresistance in cervical cancer by activating the NSUN6/ALYREF-m5C-NDRG1 pathway. The low expression of NSUN6 in cervical cancer indicates sensitivity to radiotherapy and a better prognosis.
Collapse
Affiliation(s)
- Min Yu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Mengdong Ni
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Fei Xu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Chaohua Liu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Lihua Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jiana Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Siyu Xia
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yixin Diao
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jiaxin Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jun Zhu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Min Tang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiajia Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Guihao Ke
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| |
Collapse
|
10
|
Wang K, Yang C, Xie J, Zhang X, Wei T, Yan Z. Long non-coding RNAs in ferroptosis and cuproptosis impact on prognosis and treatment in hepatocellular carcinoma. Clin Exp Med 2024; 24:135. [PMID: 38907744 PMCID: PMC11193701 DOI: 10.1007/s10238-024-01397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/08/2024] [Indexed: 06/24/2024]
Abstract
Ferroptosis and cuproptosis are recently discovered forms of cell death that have gained interest as potential cancer treatments, particularly for hepatocellular carcinoma. Long non-coding RNAs (lncRNAs) influence cancer cell activity by interacting with various nucleic acids and proteins. However, the role of ferroptosis and cuproptosis-related lncRNAs (FCRLs) in cancer remains underexplored. Ferroptosis and cuproptosis scores for each sample were assessed using Gene Set Variation Analysis (GSVA). Weighted correlation network analysis identified the FCRLs most relevant to our study. A risk model based on FCRLs was developed to categorize patients into high-risk and low-risk groups. We then compared overall survival (OS), tumor immune microenvironment, and clinical characteristics between these groups. The IPS score and ImmuCellAI webpage were used to predict the association between FCRL-related signatures and immunotherapy response. Finally, we validated the accuracy of FCRLs in hepatocellular carcinoma cell lines using induction agents (elesclomol and erastin). Patients in different risk subgroups showed significant differences in OS, immune cell infiltration, pathway activity, and clinical characteristics. Cellular assays revealed significant changes in the expression of AC019080.5, AC145207.5, MIR210HG, and LINC01063 in HCC cell lines following the addition of ferroptosis and cuproptosis inducers. We created a signature of four FCRLs that accurately predicted survival in HCC patients, laid the foundation for basic research related to ferroptosis and cuproptosis in hepatocellular carcinoma, and provided therapeutic recommendations for HCC patients.
Collapse
Affiliation(s)
- Kun Wang
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Chunqian Yang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingen Xie
- Department of General Medicine, Huai'an Cancer Hospital, Huai'an, China
| | - Xiao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Ting Wei
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, China.
| | - Zhu Yan
- Emergency Medicine Department, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huaian, China.
| |
Collapse
|
11
|
Zhang X, An K, Ge X, Sun Y, Wei J, Ren W, Wang H, Wang Y, Du Y, He L, Li O, Zhou S, Shi Y, Ren T, Yang YG, Kan Q, Tian X. NSUN2/YBX1 promotes the progression of breast cancer by enhancing HGH1 mRNA stability through m 5C methylation. Breast Cancer Res 2024; 26:94. [PMID: 38844963 PMCID: PMC11155144 DOI: 10.1186/s13058-024-01847-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND RNA m5C methylation has been extensively implicated in the occurrence and development of tumors. As the main methyltransferase, NSUN2 plays a crucial regulatory role across diverse tumor types. However, the precise impact of NSUN2-mediated m5C modification on breast cancer (BC) remains unclear. Our study aims to elucidate the molecular mechanism underlying how NSUN2 regulates the target gene HGH1 (also known as FAM203) through m5C modification, thereby promoting BC progression. Additionally, this study targets at preliminarily clarifying the biological roles of NSUN2 and HGH1 in BC. METHODS Tumor and adjacent tissues from 5 BC patients were collected, and the m5C modification target HGH1 in BC was screened through RNA sequencing (RNA-seq) and single-base resolution m5C methylation sequencing (RNA-BisSeq). Methylation RNA immunoprecipitation-qPCR (MeRIP-qPCR) and RNA-binding protein immunoprecipitation-qPCR (RIP-qPCR) confirmed that the methylation molecules NSUN2 and YBX1 specifically recognized and bound to HGH1 through m5C modification. In addition, proteomics, co-immunoprecipitation (co-IP), and Ribosome sequencing (Ribo-Seq) were used to explore the biological role of HGH1 in BC. RESULTS As the main m5C methylation molecule, NSUN2 is abnormally overexpressed in BC and increases the overall level of RNA m5C. Knocking down NSUN2 can inhibit BC progression in vitro or in vivo. Combined RNA-seq and RNA-BisSeq analysis identified HGH1 as a potential target of abnormal m5C modifications. We clarified the mechanism by which NSUN2 regulates HGH1 expression through m5C modification, a process that involves interactions with the YBX1 protein, which collectively impacts mRNA stability and protein synthesis. Furthermore, this study is the first to reveal the binding interaction between HGH1 and the translation elongation factor EEF2, providing a comprehensive understanding of its ability to regulate transcript translation efficiency and protein synthesis in BC cells. CONCLUSIONS This study preliminarily clarifies the regulatory role of the NSUN2-YBX1-m5C-HGH1 axis from post-transcriptional modification to protein translation, revealing the key role of abnormal RNA m5C modification in BC and suggesting that HGH1 may be a new epigenetic biomarker and potential therapeutic target for BC.
Collapse
Affiliation(s)
- Xuran Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ke An
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xin Ge
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuanyuan Sun
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jingyao Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Weihong Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Han Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yueqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lulu He
- Biobank of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ouwen Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shaoxuan Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yong Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Tong Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yun-Gui Yang
- China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
12
|
Cui Y, Lv P, Zhang C. NSUN6 mediates 5-methylcytosine modification of METTL3 and promotes colon adenocarcinoma progression. J Biochem Mol Toxicol 2024; 38:e23749. [PMID: 38800929 DOI: 10.1002/jbt.23749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/12/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Colon adenocarcinoma (COAD) is a common and fatal malignant tumor of digestive system with complex etiology. 5-Methylcytosine (m5C) modification of RNA by the NSUN gene family (NSUN1-NSUN7) and DNMT2 reshape cell biology and regulate tumor development. However, the expression profile, prognostic significance and function of these m5C modifiers in COAD remain largely unclear. By mining multiple integrated tumor databases, we found that NSUN1, NSUN2, NSUN5, and NSUN6 were overexpressed in COAD tumor samples relative to normal samples. Clinically, high expression of NSUN6 was significantly associated with shorter survival (including both disease-free survival and overall survival) in COAD patients. NSUN6 was further confirmed to be upregulated at both tissue and cellular levels of COAD, suggesting that NSUN6 plays a critical role in disease progression. Through comprehensive gene enrichment analysis and cell-based functional validation, it was revealed that NSUN6 promoted the cell cycle progression and cell proliferation of COAD. Mechanistically, NSUN6 upregulates the expression of oncogenic METTL3 and catalyzes its m5C modification in COAD cells. Overexpression of METTL3 significantly relieved the cell cycle inhibition of COAD caused by NSUN6 deficiency. Furthermore, NSUN6 was negatively associated with the abundance of infiltrating immune cells in COAD tumors, such as activated B cells, natural killer cells, effector memory CD8 T cells, and regulatory T cells. Importantly, pan-cancer analysis further uncovered that NSUN6 was dysregulated and heterogeneous in various tumors. Thus our findings extend the role of m5C transferase in COAD and suggest that NSUN6 is a potential biomarker and target for this malignancy.
Collapse
Affiliation(s)
- Yuanbo Cui
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Pengju Lv
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyan Zhang
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Chen Y, Jiang Z, Zhang C, Zhang L, Chen H, Xiao N, Bai L, Liu H, Wan J. 5-Methylcytosine transferase NSUN2 drives NRF2-mediated ferroptosis resistance in non-small cell lung cancer. J Biol Chem 2024; 300:106793. [PMID: 38403250 PMCID: PMC11065752 DOI: 10.1016/j.jbc.2024.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
RNA 5-methylcytosine (m5C) is an abundant chemical modification in mammalian RNAs and plays crucial roles in regulating vital physiological and pathological processes, especially in cancer. However, the dysregulation of m5C and its underlying mechanisms in non-small cell lung cancer (NSCLC) remain unclear. Here we identified that NSUN2, a key RNA m5C methyltransferase, is highly expressed in NSCLC tumor tissue. We found elevated NSUN2 expression levels strongly correlate with tumor grade and size, predicting poor outcomes for NSCLC patients. Furthermore, RNA-seq and subsequent confirmation studies revealed the antioxidant-promoting transcription factor NRF2 is a target of NSUN2, and depleting NSUN2 decreases the expression of NRF2 and increases the sensitivity of NSCLC cells to ferroptosis activators both in vitro and in vivo. Intriguingly, the methylated-RIP-qPCR assay results indicated that NRF2 mRNA has a higher m5C level when NSUN2 is overexpressed in NSCLC cells but shows no significant changes in the NSUN2 methyltransferase-deficient group. Mechanistically, we confirmed that NSUN2 upregulates the expression of NRF2 by enhancing the stability of NRF2 mRNA through the m5C modification within its 5'UTR region recognized by the specific m5C reader protein YBX1, rather than influencing its translation. In subsequent rescue experiments, we show knocking down NRF2 diminished the proliferation, migration, and ferroptosis tolerance mediated by NSUN2 overexpression. In conclusion, our study unveils a novel regulatory mechanism in which NSUN2 sustains NRF2 expression through an m5C-YBX1-axis, suggesting that targeting NSUN2 and its regulated ferroptosis pathway might offer promising therapeutic strategies for NSCLC patients.
Collapse
Affiliation(s)
- Youming Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zuli Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lindong Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huanxiang Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Nan Xiao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Bai
- Department of General Surgery, Zhecheng People's Hospital, Shangqiu, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
14
|
Zeng Y, Yu T, Lou Z, Chen L, Pan L, Ruan B. Emerging function of main RNA methylation modifications in the immune microenvironment of digestive system tumors. Pathol Res Pract 2024; 256:155268. [PMID: 38547773 DOI: 10.1016/j.prp.2024.155268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/07/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Digestive system tumors have been reported in more than 25% of all cancer cases worldwide, bringing a huge burden on the healthcare system. RNA methylation modification-an important post-transcriptional modification-has become an active research area in gene regulation. It is a dynamic and reversible process involving several enzymes, such as methyltransferases, demethylases, and methylation reader proteins. This review provides insights into the role of three major methylation modifications, namely m6A, m5C, and m1A, in the development of digestive system tumors, specifically in the development of tumor immune microenvironment (TIME) of these malignancies. Abnormal methylation modification affects immunosuppression and antitumor immune response by regulating the recruitment of immune cells and the release of immune factors. Understanding the mechanisms by which RNA methylation regulates digestive system tumors will be helpful in exploring new therapeutic targets.
Collapse
Affiliation(s)
- Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tao Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhuoqi Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Liya Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Bing Ruan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
15
|
Zhang Q, Wang C, He L. ORAI Ca 2+ Channels in Cancers and Therapeutic Interventions. Biomolecules 2024; 14:417. [PMID: 38672434 PMCID: PMC11048467 DOI: 10.3390/biom14040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The ORAI proteins serve as crucial pore-forming subunits of calcium-release-activated calcium (CRAC) channels, pivotal in regulating downstream calcium-related signaling pathways. Dysregulated calcium homeostasis arising from mutations and post-translational modifications in ORAI can lead to immune disorders, myopathy, cardiovascular diseases, and even cancers. Small molecules targeting ORAI present an approach for calcium signaling modulation. Moreover, emerging techniques like optogenetics and optochemistry aim to offer more precise regulation of ORAI. This review focuses on the role of ORAI in cancers, providing a concise overview of their significance in the initiation and progression of cancers. Additionally, it highlights state-of-the-art techniques for ORAI channel modulation, including advanced optical tools, potent pharmacological inhibitors, and antibodies. These novel strategies offer promising avenues for the functional regulation of ORAI in research and may inspire innovative approaches to cancer therapy targeting ORAI.
Collapse
Affiliation(s)
| | | | - Lian He
- Department of Pharmacology, Joint Laboratory of Guangdong–Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| |
Collapse
|
16
|
Liu K, Wang Y, Shao W, Tang C, Zhao S, Xu J, Xu P, Cheng Q, Huang S, Ji P, Qiu S. Unveiling the oncogenic role of CLDN11-secreting fibroblasts in gastric cancer peritoneal metastasis through single-cell sequencing and experimental approaches. Int Immunopharmacol 2024; 129:111647. [PMID: 38335659 DOI: 10.1016/j.intimp.2024.111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/14/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Fibroblasts are necessary to the progression of cancer. However, the role of fibroblasts in peritoneal metastasis (PM) of gastric cancer (GC) remains elusive. In this study, we would explore the role of fibroblasts mediated cell interaction in PM of GC. METHODS Single-cell sequencing data from public database GSE183904 was used to explore the specific fibroblast cluster. Fibroblasts were extracted from PM and GC tissues. The expression level of CXCR7 was verified by western blot, immunohistochemistry. The role of CLDN11 was investigate through in vitro and in vivo study. Multiple immunohistochemistry was used to characterize the tumor microenvironment. RESULTS CXCR7-positive fibroblasts were significantly enriched in PM of GC. CXCR7 could promote the expression of CLDN11 through activation of the AKT pathway in fibroblasts. Fibroblasts promote the GC proliferation and peritoneal metastasis by secreting CLDN11 in vitro and in vivo. Furthermore, it was revealed that CXCR7-positive fibroblasts were significantly associated with M2-type macrophages infiltration in tissues. CONCLUSION CXCR7-positive fibroblasts play an essential role in PM of GC via CLDN11. Therapy targeting CXCR7-positive fibroblasts or CLDN11 may be helpful in the treatment of GC with PM.
Collapse
Affiliation(s)
- Kanghui Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yanjuan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wenwen Shao
- Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Chong Tang
- Department of General Surgery, Nantong First People's Hospital, Nantong, Jiangsu Province, China
| | - Siguo Zhao
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Jiafeng Xu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Peng Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Quan Cheng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shansong Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peicheng Ji
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shengkui Qiu
- Department of General Surgery, Nantong First People's Hospital, Nantong, Jiangsu Province, China.
| |
Collapse
|
17
|
Zou S, Huang Y, Yang Z, Zhang J, Meng M, Zhang Y, Feng J, Sun R, Li W, Wang W, López JG, Fang L. NSUN2 promotes colorectal cancer progression by enhancing SKIL mRNA stabilization. Clin Transl Med 2024; 14:e1621. [PMID: 38468490 PMCID: PMC10928349 DOI: 10.1002/ctm2.1621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND NOP2/Sun domain 2 (NSUN2) is one of the important RNA methyltransferases catalyzing 5-methylcytosine (m5C) formation and participates in many critical bioprocesses. However, the roles and underlying molecular mechanisms of NSUN2-mediated m5C modification in colorectal cancer (CRC) remain unclear. METHODS To explore the NSUN2 expression in CRC, fresh tissue samples were collected and Nsun2 knockout mouse was constructed. In vitro and in vivo functional assays were conducted to assess the role of NSUN2. RNA array and bisulfite sequencing were used to investigate the potential targets. The mechanisms of NSUN2 function on SKIL were identified by m5C-methylated-RNA immunoprecipitation and RNA stability assays. Additionally, tissue microarray analysis was conducted and patient-derived tumour xenograft mouse (PDX) models were used to define the potential therapeutic targets. RESULTS NSUN2 was highly expressed in CRC and correlated with poor CRC patient survival. Moreover, silencing NSUN2 suppressed CRC tumourigenesis and progression in Nsun2 knockout mouse models. In vitro and in vivo studies suggested that NSUN2 promoted colorectal cancer cell growth. Mechanistically, SKI-like proto-oncogene (SKIL) is positively regulated by NSUN2, and the NSUN2-SKIL axis is clinically relevant to CRC. NSUN2 induced m5C modification of SKIL and stabilized its mRNA, which was mediated by Y-box binding protein 1 (YBX1). Elevated SKIL levels increased transcriptional coactivator with PDZ-binding motif (TAZ) activation. CONCLUSIONS Our findings highlight the importance of NSUN2 in the initiation and progression of CRC via m5C-YBX1-dependent stabilization of the SKIL transcript, providing a promising targeted therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Shaomin Zou
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yizhi Huang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
| | - Ziqing Yang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jieping Zhang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Manqi Meng
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yijing Zhang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Junyan Feng
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Rui Sun
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Weiyao Li
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Wencong Wang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | | | - Lekun Fang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
18
|
Xu P, Liu K, Huang S, Lv J, Yan Z, Ge H, Cheng Q, Chen Z, Ji P, Qian Y, Li B, Xu H, Yang L, Xu Z, Zhang D. N 6-methyladenosine-modified MIB1 promotes stemness properties and peritoneal metastasis of gastric cancer cells by ubiquitinating DDX3X. Gastric Cancer 2024; 27:275-291. [PMID: 38252226 DOI: 10.1007/s10120-023-01463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Peritoneal metastasis (PM), one of the most typical forms of metastasis in advanced gastric cancer (GC), indicates a poor prognosis. Exploring the potential molecular mechanism of PM is urgently necessary, as it has not been well studied. E3 ubiquitin ligase has been widely established to exert a biological function in various cancers, but its mechanism of action in GC with PM remains unknown. METHODS The effect of MIB1 on PM of GC was confirmed in vitro and in vivo. Co-immunoprecipitation (Co-IP) and mass spectrometry demonstrated the association between MIB1 and DDX3X. Western blot, flow cytometry and immunofluorescence determined that DDX3X was ubiquitylated by MIB1 and promoted stemness. We further confirmed that METTL3 promoted the up-regulation of MIB1 by RNA immunoprecipitation (RIP), luciferase reporter assay and other experiments. RESULTS We observed that the E3 ubiquitin ligase Mind bomb 1 (MIB1) was highly expressed in PMs, and patients with PM with high MIB1 expression showed a worse prognosis than those with low MIB1 expression. Mechanistically, our study demonstrated that the E3 ubiquitin ligase MIB1 promoted epithelial-mesenchymal transition (EMT) progression and stemness in GC cells by degrading DDX3X. In addition, METTL3 mediated m6A modification to stabilize MIB1, which required the m6A reader IGF2BP2. CONCLUSIONS Our study elucidated the specific molecular mechanism by which MIB1 promotes PM of GC, and suggested that targeting the METTL3-MIB1-DDX3X axis may be a promising therapeutic strategy for GC with PM.
Collapse
Affiliation(s)
- Peng Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kanghui Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shansong Huang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhengyuan Yan
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Surgery, Nanjing Lishui People's Hospital, Nanjing, 211200, China
| | - Han Ge
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Quan Cheng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zetian Chen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peicheng Ji
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yawei Qian
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bowen Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hao Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Diancai Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
19
|
Zhang C, Yuan L, Zou Q, Shao C, Jia Y, Li J, Liao Y, Zhao X, Wen W, Jing X, Yang G, Wang W, Jiang H, Yao S. CircMAST1 inhibits cervical cancer progression by hindering the N4-acetylcytidine modification of YAP mRNA. Cell Mol Biol Lett 2024; 29:25. [PMID: 38331765 PMCID: PMC10854152 DOI: 10.1186/s11658-024-00540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Cervical cancer (CCa) is the fourth most common cancer among females, with high incidence and mortality rates. Circular RNAs (circRNAs) are key regulators of various biological processes in cancer. However, the biological role of circRNAs in cervical cancer (CCa) remains largely unknown. This study aimed to elucidate the role of circMAST1 in CCa. METHODS CircRNAs related to CCa progression were identified via a circRNA microarray. The relationship between circMAST1 levels and clinicopathological features of CCa was evaluated using the clinical specimens and data of 131 patients with CCa. In vivo and in vitro experiments, including xenograft animal models, cell proliferation assay, transwell assay, RNA pull-down assay, whole-transcriptome sequencing, RIP assay, and RNA-FISH, were performed to investigate the effects of circMAST1 on the malignant behavior of CCa. RESULTS CircMAST1 was significantly downregulated in CCa tissues, and low expression of CircMAST1 was correlated with a poor prognosis. Moreover, our results demonstrated that circMAST1 inhibited tumor growth and lymph node metastasis of CCa. Mechanistically, circMAST1 competitively sequestered N-acetyltransferase 10 (NAT10) and hindered Yes-associated protein (YAP) mRNA ac4C modification to promote its degradation and inhibit tumor progression in CCa. CONCLUSIONS CircMAST1 plays a major suppressive role in the tumor growth and metastasis of CCa. In particular, circMAST1 can serve as a potential biomarker and novel target for CCa.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Li Yuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Qiaojian Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Caixia Shao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Yan Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Jiaying Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Yan Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Xueyuan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Weijia Wen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Guofen Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Hongye Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| |
Collapse
|
20
|
Cai HB, Zhao MY, Li XH, Li YQ, Yu TH, Wang CZ, Wang LN, Xu WY, Liang B, Cai YP, Zhang F, Hong WM. Single cell sequencing revealed the mechanism of CRYAB in glioma and its diagnostic and prognostic value. Front Immunol 2024; 14:1336187. [PMID: 38274814 PMCID: PMC10808695 DOI: 10.3389/fimmu.2023.1336187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Background We explored the characteristics of single-cell differentiation data in glioblastoma and established prognostic markers based on CRYAB to predict the prognosis of glioblastoma patients. Aberrant expression of CRYAB is associated with invasive behavior in various tumors, including glioblastoma. However, the specific role and mechanisms of CRYAB in glioblastoma are still unclear. Methods We assessed RNA-seq and microarray data from TCGA and GEO databases, combined with scRNA-seq data on glioma patients from GEO. Utilizing the Seurat R package, we identified distinct survival-related gene clusters in the scRNA-seq data. Prognostic pivotal genes were discovered through single-factor Cox analysis, and a prognostic model was established using LASSO and stepwise regression algorithms. Moreover, we investigated the predictive potential of these genes in the immune microenvironment and their applicability in immunotherapy. Finally, in vitro experiments confirmed the functional significance of the high-risk gene CRYAB. Results By analyzing the ScRNA-seq data, we identified 28 cell clusters representing seven cell types. After dimensionality reduction and clustering analysis, we obtained four subpopulations within the oligodendrocyte lineage based on their differentiation trajectory. Using CRYAB as a marker gene for the terminal-stage subpopulation, we found that its expression was associated with poor prognosis. In vitro experiments demonstrated that knocking out CRYAB in U87 and LN229 cells reduced cell viability, proliferation, and invasiveness. Conclusion The risk model based on CRYAB holds promise in accurately predicting glioblastoma. A comprehensive study of the specific mechanisms of CRYAB in glioblastoma would contribute to understanding its response to immunotherapy. Targeting the CRYAB gene may be beneficial for glioblastoma patients.
Collapse
Affiliation(s)
- Hua-Bao Cai
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meng-Yu Zhao
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin-Han Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu-Qing Li
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Tian-Hang Yu
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cun-Zhi Wang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li-Na Wang
- School of Nursing, Anhui Medical University, Hefei, China
| | - Wan-Yan Xu
- School of Nursing, Anhui Medical University, Hefei, China
| | - Bo Liang
- Department of Dermatology and Venereology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong-Ping Cai
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Fang Zhang
- School of Nursing, Anhui Medical University, Hefei, China
| | - Wen-Ming Hong
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Open Project of Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Dinh NTM, Nguyen TM, Park MK, Lee CH. Y-Box Binding Protein 1: Unraveling the Multifaceted Role in Cancer Development and Therapeutic Potential. Int J Mol Sci 2024; 25:717. [PMID: 38255791 PMCID: PMC10815159 DOI: 10.3390/ijms25020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Y-box binding protein 1 (YBX1), a member of the Cold Shock Domain protein family, is overexpressed in various human cancers and is recognized as an oncogenic gene associated with poor prognosis. YBX1's functional diversity arises from its capacity to interact with a broad range of DNA and RNA molecules, implicating its involvement in diverse cellular processes. Independent investigations have unveiled specific facets of YBX1's contribution to cancer development. This comprehensive review elucidates YBX1's multifaceted role in cancer across cancer hallmarks, both in cancer cell itself and the tumor microenvironment. Based on this, we proposed YBX1 as a potential target for cancer treatment. Notably, ongoing clinical trials addressing YBX1 as a target in breast cancer and lung cancer have showcased its promise for cancer therapy. The ramp up in in vitro research on targeting YBX1 compounds also underscores its growing appeal. Moreover, the emerging role of YBX1 as a neural input is also proposed where the high level of YBX1 was strongly associated with nerve cancer and neurodegenerative diseases. This review also summarized the up-to-date advanced research on the involvement of YBX1 in pancreatic cancer.
Collapse
Affiliation(s)
- Ngoc Thi Minh Dinh
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| |
Collapse
|
22
|
Chen Y, Xu J, Liu X, Guo L, Yi P, Cheng C. Potential therapies targeting nuclear metabolic regulation in cancer. MedComm (Beijing) 2023; 4:e421. [PMID: 38034101 PMCID: PMC10685089 DOI: 10.1002/mco2.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023] Open
Abstract
The interplay between genetic alterations and metabolic dysregulation is increasingly recognized as a pivotal axis in cancer pathogenesis. Both elements are mutually reinforcing, thereby expediting the ontogeny and progression of malignant neoplasms. Intriguingly, recent findings have highlighted the translocation of metabolites and metabolic enzymes from the cytoplasm into the nuclear compartment, where they appear to be intimately associated with tumor cell proliferation. Despite these advancements, significant gaps persist in our understanding of their specific roles within the nuclear milieu, their modulatory effects on gene transcription and cellular proliferation, and the intricacies of their coordination with the genomic landscape. In this comprehensive review, we endeavor to elucidate the regulatory landscape of metabolic signaling within the nuclear domain, namely nuclear metabolic signaling involving metabolites and metabolic enzymes. We explore the roles and molecular mechanisms through which metabolic flux and enzymatic activity impact critical nuclear processes, including epigenetic modulation, DNA damage repair, and gene expression regulation. In conclusion, we underscore the paramount significance of nuclear metabolic signaling in cancer biology and enumerate potential therapeutic targets, associated pharmacological interventions, and implications for clinical applications. Importantly, these emergent findings not only augment our conceptual understanding of tumoral metabolism but also herald the potential for innovative therapeutic paradigms targeting the metabolism-genome transcriptional axis.
Collapse
Affiliation(s)
- Yanjie Chen
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jie Xu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaoyi Liu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Linlin Guo
- Department of Microbiology and ImmunologyThe Indiana University School of MedicineIndianapolisIndianaUSA
| | - Ping Yi
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Chunming Cheng
- Department of Radiation OncologyJames Comprehensive Cancer Center and College of Medicine at The Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
23
|
Jin Z, Sheng J, Hu Y, Zhang Y, Wang X, Huang Y. Shining a spotlight on m6A and the vital role of RNA modification in endometrial cancer: a review. Front Genet 2023; 14:1247309. [PMID: 37886684 PMCID: PMC10598767 DOI: 10.3389/fgene.2023.1247309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
RNA modifications are mostly dynamically reversible post-transcriptional modifications, of which m6A is the most prevalent in eukaryotic mRNAs. A growing number of studies indicate that RNA modification can finely tune gene expression and modulate RNA metabolic homeostasis, which in turn affects the self-renewal, proliferation, apoptosis, migration, and invasion of tumor cells. Endometrial carcinoma (EC) is the most common gynecologic tumor in developed countries. Although it can be diagnosed early in the onset and have a preferable prognosis, some cases might develop and become metastatic or recurrent, with a worse prognosis. Fortunately, immunotherapy and targeted therapy are promising methods of treating endometrial cancer patients. Gene modifications may also contribute to these treatments, as is especially the case with recent developments of new targeted therapeutic genes and diagnostic biomarkers for EC, even though current findings on the relationship between RNA modification and EC are still very limited, especially m6A. For example, what is the elaborate mechanism by which RNA modification affects EC progression? Taking m6A modification as an example, what is the conversion mode of methylation and demethylation for RNAs, and how to achieve selective recognition of specific RNA? Understanding how they cope with various stimuli as part of in vivo and in vitro biological development, disease or tumor occurrence and development, and other processes is valuable and RNA modifications provide a distinctive insight into genetic information. The roles of these processes in coping with various stimuli, biological development, disease, or tumor development in vivo and in vitro are self-evident and may become a new direction for cancer in the future. In this review, we summarize the category, characteristics, and therapeutic precis of RNA modification, m6A in particular, with the purpose of seeking the systematic regulation axis related to RNA modification to provide a better solution for the treatment of EC.
Collapse
Affiliation(s)
- Zujian Jin
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jingjing Sheng
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yingying Hu
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yu Zhang
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Xiaoxia Wang
- Reproductive Medicine Center, School of Medicine, The Fourth Affiliated Hospital, Zhejiang University, Yiwu, Zhejiang, China
| | - Yiping Huang
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
24
|
Bai Y, Zhao H, Liu H, Wang W, Dong H, Zhao C. RNA methylation, homologous recombination repair and therapeutic resistance. Biomed Pharmacother 2023; 166:115409. [PMID: 37659205 DOI: 10.1016/j.biopha.2023.115409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Homologous recombination (HR) repair of DNA double-strand breaks (DSBs) is critical for maintaining genomic integrity and stability. Defects in HR increase the risk of tumorigenesis. However, many human tumors exhibit enhanced HR repair capabilities, consequently endowing tumor cells with resistance to DNA-damaging chemotherapy and radiotherapy. This review summarizes the role of RNA methylation in HR repair and therapeutic resistance in human tumors. We also analyzed the interactions between RNA methylation and other HR-modulating modifications including histone acetylation, histone deacetylation, ubiquitination, deubiquitination, protein arginine methylation, and gene transcription. This review proposes that targeting RNA methylation is a promising approach to overcoming HR-mediated therapeutic resistance.
Collapse
Affiliation(s)
- Yu Bai
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China; Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hanlin Zhao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Haijun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Hongming Dong
- Department of Anatomy, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
25
|
Yan Z, Liu K, Xu P, Chen Z, Zhang P, Pei S, Cheng Q, Huang S, Li B, Lv J, Xu Z, Xu H, Yang L, Zhang D. ACLY promotes gastric tumorigenesis and accelerates peritoneal metastasis of gastric cancer regulated by HIF-1A. Cell Cycle 2023; 22:2288-2301. [PMID: 38009671 PMCID: PMC10730177 DOI: 10.1080/15384101.2023.2286805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Mounting evidence indicates the potential involvement of ATP-citrate lyase (ACLY) in the modulation of various cancer types. Nevertheless, the precise biological significance of ACLY in gastric cancer (GC) remains elusive. This study sought to elucidate the biological function of ACLY and uncover its influence on peritoneal metastasis in GC. The expression of ACLY was assessed using both real-time quantitative PCR and western blot techniques. To investigate the impact of ACLY on the proliferation of gastric cancer (GC) cells, colony formation and 5-ethynyl-2'-deoxyuridine (EdU) assays were performed. The migratory and invasive abilities of GC were evaluated using wound healing and transwell assays. Additionally, a bioinformatics analysis was employed to predict the correlation between ACLY and HIF-1A. This interaction was subsequently confirmed through a chromatin immunoprecipitation (ChIP) assay. ACLY exhibited upregulation in gastric cancer (GC) as well as in peritoneal metastasis. Its overexpression was found to facilitate the proliferation and metastasis of GC cells in both in vitro and in vivo experiments. Moreover, ACLY was observed to play a role in promoting angiogenesis and epithelial-mesenchymal transition (EMT). Notably, under hypoxic conditions, HIF-1A levels were elevated, thereby acting as a transcription factor to upregulate ACLY expression. Under the regulatory influence of HIF-1A, ACLY exerts a significant impact on the progression of gastric cancer, thereby facilitating peritoneal metastasis.
Collapse
Affiliation(s)
- Zhengyuan Yan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Surgery, Nanjing Lishui People’s Hospital, Nanjing, China
| | - Kanghui Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peng Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhengwei Chen
- Department of Surgery, Nanjing Lishui People’s Hospital, Nanjing, China
| | - Pengpeng Zhang
- Department of Thoracic Surgery, The Second Hospital of Nanjing, Nanjing, China
| | - Shengbin Pei
- Department of Breast Surgical Oncology, National Cancer Center Cancer Hospital, Beijing, China
| | - Quan Cheng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shansong Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|