1
|
Ren F, Gan Z, Zhang Q, He D, Chen B, Wu X, Zeng X, Wu K, Xing Y, Zhang Y, Chen H. Construction and evaluation of liposomal drug delivery system for an ALK/HDACs dual-targeted inhibitor with sustained release and enhanced antitumor effect. Drug Deliv Transl Res 2025; 15:939-954. [PMID: 39112826 DOI: 10.1007/s13346-024-01647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 02/01/2025]
Abstract
ALK/HDACs dual target inhibitor (PT-54) was a 2,4-pyrimidinediamine derivative synthesized based on the pharmacophore merged strategy that inhibits both anaplastic lymphoma kinase (ALK) and histone deacetylases (HDACs), which has demonstrated significant efficacy in treating multiple cancers. However, its poor solubility in water limited its clinical application. In this study, we prepared PT-54 liposomes (PT-54-LPs) by the membrane hydration method to overcome this defect. The encapsulation efficiency (EE) and particle size were used as evaluation indicators to explore the preparation conditions of PT-54-LPs. The morphology, particle size, EE, drug loading content (DLC), drug release properties, and stability of PT-54-LPs were further investigated. In vitro drug release studies showed that PT-54-LPs exhibited significant slow-release properties compared with free PT-54. PT-54-LPs also showed better tumor inhibitory effects than free PT-54 without significant adverse effects. These results suggested that PT-54-LPs displayed sustained drug release and significantly improved the tumor selectivity of PT-54. Thus, PT-54-LPs showed significant promise in enhancing anticancer efficiency.
Collapse
Affiliation(s)
- Fang Ren
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Zongjie Gan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Qianyu Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Dan He
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Baoyan Chen
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Xianwei Wu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Xiaolin Zeng
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Kexin Wu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Yangchen Xing
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Yan Zhang
- Yaopharma Co, Ltd, No. 100, Xingguang Ave, Chongqing, 401121, China
| | - Huali Chen
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China.
| |
Collapse
|
2
|
Smith SC, Sweeney K, Evans MG, Angara K, Reynolds C, Price B, Park SJ, Elliott A, Oberley MJ, Boikos SA, Bahrami A. Genomic Profiling Uncovers a Broader Spectrum of Dermatofibrosarcoma Protuberans: Implications for Diagnosis and Therapy. Mod Pathol 2025; 38:100737. [PMID: 39956270 DOI: 10.1016/j.modpat.2025.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Dermatofibrosarcoma protuberans (DFSP) is a locally aggressive cutaneous neoplasm driven by PDGFB or, rarely, PDGFD gene fusions. In some cases, DFSP progresses to a fibrosarcomatous form with metastatic potential, which may respond to tyrosine kinase inhibitors. This study explores whether comprehensive genomic profiling can reveal a broader clinical, anatomic, and pathologic spectrum for DFSP. Using the database of a large tumor sequencing reference laboratory, we identified tumors with PDGFB or PDGFD fusions and reviewed their histologic features, clinical information, exome sequencing data, and copy number alterations. Statistical significance was determined using Mann-Whitney U and Fisher exact tests. A total of 59 cases with PDGFB or PDGFD fusions were identified: 55 COL1A1::PDGFB, 3 EMILIN2::PDGFD, and 1 COL1A2::PDGFB. The cohort included 51 primary tumors and 8 metastases (31 males, 28 females, median age 49 years). Primary tumors were mainly located in the skin and soft tissues, including 35 in the trunk, 9 in the head and neck, and 9 in the extremities. Additionally, 6 tumors arose in visceral organs (4 in the uterus, 1 in the cervix, and 1 in the lung). Among cases with slides available for pathology review, 21 were classified as classic DFSP and 31 as fibrosarcomatous-DFSP (FS-DFSP). Notably, 21 tumors (36%) were initially misclassified, often due to atypical locations or histology. FS-DFSPs displayed a higher incidence of genomic alterations beyond PDGFB/PDGFD (75% vs 23.8%; P = .0005), including TERT promoter and NF1 variants, and demonstrated a significantly elevated tumor mutational burden (P = .0037) and TERT mRNA expression (1.27 vs 0.13 transcripts per million; P < .0001) compared with classic DFSPs. These findings underscore the value of genomic profiling for recognizing FS-DFSPs with unusual clinical or histologic features, particularly in guiding targeted therapy. Furthermore, by identifying molecular features specific to fibrosarcomatous variants, such as TERT reactivation, this study offers insights into potential molecular drivers of tumor progression in DFSP.
Collapse
Affiliation(s)
- Steven Christopher Smith
- Department of Pathology, Virginia Commonwealth University School of Medicine and VCU Massey Comprehensive Cancer Center, Richmond, Virginia
| | | | | | | | | | | | - Soo J Park
- Division of Hematology/Oncology, University of California San Diego, Moores Cancer Center, La Jolla, California
| | | | | | - Sosipatros A Boikos
- Division of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Colombia
| | - Armita Bahrami
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, and Emory Winship Cancer Institute, Atlanta, Georgia.
| |
Collapse
|
3
|
Ward MB, Jones AB, Krenciute G. Therapeutic advantage of combinatorial chimeric antigen receptor T cell and chemotherapies. Pharmacol Rev 2025; 77:100011. [PMID: 39952691 DOI: 10.1124/pharmrev.124.001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapies have transformed outcomes for many patients with hematological malignancies. However, some patients do not respond to CAR T cell treatment, and adapting CAR T cells for treatment of solid and brain tumors has been met with many challenges, including a hostile tumor microenvironment and poor CAR T cell persistence. Thus, it is unlikely that CAR T cell therapy alone will be sufficient for consistent, complete tumor clearance across patients with cancer. Combinatorial therapies of CAR T cells and chemotherapeutics are a promising approach for overcoming this because chemotherapeutics could augment CAR T cells for improved antitumor activity or work in tandem with CAR T cells to clear tumors. Herein, we review efforts toward achieving successful CAR T cell and chemical drug combination therapies. We focus on combination therapies with approved chemotherapeutics because these will be more easily translated to the clinic but also review nonapproved chemotherapeutics and drug screens designed to reveal promising new CAR T cell and chemical drug combinations. Overall, this review highlights the promise of CAR T cell and chemotherapy combinations with a specific focus on how combinatorial therapy overcomes challenges faced by either monotherapy and supports the potential of this therapeutic strategy to improve outcomes for patients with cancer. SIGNIFICANCE STATEMENT: Improving currently available CAR T cell products via combinatorial therapy with chemotherapeutics has the potential to drastically expand the types of cancers and number of patients that could benefit from these therapies when neither alone has been sufficient to achieve tumor clearance. Herein, we provide a thorough review of the current efforts toward studying CAR T and chemotherapy combinatorial therapies and offer perspectives on optimal ways to identify new and effective combinations moving forward.
Collapse
Affiliation(s)
- Meghan B Ward
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Amber B Jones
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
4
|
Zhang Y, Gong S, Liu X. Spatial transcriptomics: a new frontier in accurate localization of breast cancer diagnosis and treatment. Front Immunol 2024; 15:1483595. [PMID: 39439806 PMCID: PMC11493667 DOI: 10.3389/fimmu.2024.1483595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Breast cancer is one of the most prevalent cancers in women globally. Its treatment and prognosis are significantly influenced by the tumor microenvironment and tumor heterogeneity. Precision therapy enhances treatment efficacy, reduces unwanted side effects, and maximizes patients' survival duration while improving their quality of life. Spatial transcriptomics is of significant importance for the precise treatment of breast cancer, playing a critical role in revealing the internal structural differences of tumors and the composition of the tumor microenvironment. It offers a novel perspective in studying the spatial structure and cell interactions within tumors, facilitating more effective personalized treatments for breast cancer. This article will summarize the latest findings in the diagnosis and treatment of breast cancer from the perspective of spatial transcriptomics, focusing on the revelation of the tumor microenvironment, identification of new therapeutic targets, enhancement of disease diagnostic accuracy, comprehension of tumor progression and metastasis, assessment of drug responses, creation of high-resolution maps of tumor cells, representation of tumor heterogeneity, and support for clinical decision-making, particularly in elucidating the tumor microenvironment, tumor heterogeneity, immunotherapy and their correlation with clinical outcomes.
Collapse
Affiliation(s)
- Yang Zhang
- Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Shuhua Gong
- Department of Student Affair, Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Xiaofei Liu
- Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| |
Collapse
|
5
|
Kast RE. IC Regimen: Delaying Resistance to Lorlatinib in ALK Driven Cancers by Adding Repurposed Itraconazole and Cilostazol. Cells 2024; 13:1175. [PMID: 39056757 PMCID: PMC11274432 DOI: 10.3390/cells13141175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Lorlatinib is a pharmaceutical ALK kinase inhibitor used to treat ALK driven non-small cell lung cancers. This paper analyses the intersection of past published data on the physiological consequences of two unrelated drugs from general medical practice-itraconazole and cilostazol-with the pathophysiology of ALK positive non-small cell lung cancer. A conclusion from that data analysis is that adding itraconazole and cilostazol may make lorlatinib more effective. Itraconazole, although marketed worldwide as a generic antifungal drug, also inhibits Hedgehog signaling, Wnt signaling, hepatic CYP3A4, and the p-gp efflux pump. Cilostazol, marketed worldwide as a generic thrombosis preventative drug, acts by inhibiting phosphodiesterase 3, and, by so doing, lowers platelets' adhesion, thereby partially depriving malignant cells of the many tumor trophic growth factors supplied by platelets. Itraconazole may enhance lorlatinib effectiveness by (i) reducing or stopping a Hedgehog-ALK amplifying feedback loop, by (ii) increasing lorlatinib's brain levels by p-gp inhibition, and by (iii) inhibiting growth drive from Wnt signaling. Cilostazol, surprisingly, carries minimal bleeding risk, lower than that of aspirin. Risk/benefit assessment of the combination of metastatic ALK positive lung cancer being a low-survival disease with the predicted safety of itraconazole-cilostazol augmentation of lorlatinib favors a trial of this drug trio in ALK positive lung cancer.
Collapse
|
6
|
Wang H, Zhao J, Nie Q, Zheng C, Sun X. Dissecting Spatiotemporal Structures in Spatial Transcriptomics via Diffusion-Based Adversarial Learning. RESEARCH (WASHINGTON, D.C.) 2024; 7:0390. [PMID: 38812530 PMCID: PMC11134684 DOI: 10.34133/research.0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Recent advancements in spatial transcriptomics (ST) technologies offer unprecedented opportunities to unveil the spatial heterogeneity of gene expression and cell states within tissues. Despite these capabilities of the ST data, accurately dissecting spatiotemporal structures (e.g., spatial domains, temporal trajectories, and functional interactions) remains challenging. Here, we introduce a computational framework, PearlST (partial differential equation [PDE]-enhanced adversarial graph autoencoder of ST), for accurate inference of spatiotemporal structures from the ST data using PDE-enhanced adversarial graph autoencoder. PearlST employs contrastive learning to extract histological image features, integrates a PDE-based diffusion model to enhance characterization of spatial features at domain boundaries, and learns the latent low-dimensional embeddings via Wasserstein adversarial regularized graph autoencoders. Comparative analyses across multiple ST datasets with varying resolutions demonstrate that PearlST outperforms existing methods in spatial clustering, trajectory inference, and pseudotime analysis. Furthermore, PearlST elucidates functional regulations of the latent features by linking intercellular ligand-receptor interactions to most contributing genes of the low-dimensional embeddings, as illustrated in a human breast cancer dataset. Overall, PearlST proves to be a powerful tool for extracting interpretable latent features and dissecting intricate spatiotemporal structures in ST data across various biological contexts.
Collapse
Affiliation(s)
- Haiyun Wang
- College of Mathematics and System Sciences,
Xinjiang University, Urumqi, China
| | - Jianping Zhao
- College of Mathematics and System Sciences,
Xinjiang University, Urumqi, China
| | - Qing Nie
- Department of Mathematics and Department of Developmental and Cell Biology, NSF-Simons Center for Multiscale Cell Fate Research,
University of California Irvine, Irvine, CA, USA
| | - Chunhou Zheng
- School of Artificial Intelligence,
Anhui University, Hefei, China
| | - Xiaoqiang Sun
- School of Mathematics,
Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Bugide S, Reddy DS, Malvi P, Gupta R, Wajapeyee N. ALK inhibitors suppress HCC and synergize with anti-PD-1 therapy and ABT-263 in preclinical models. iScience 2024; 27:109800. [PMID: 38741708 PMCID: PMC11089374 DOI: 10.1016/j.isci.2024.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/09/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) currently lacks effective therapies, leaving a critical need for new treatment options. A previous study identified the anaplastic lymphoma kinase (ALK) amplification in HCC patients, raising the question of whether ALK inhibitors could be a viable treatment. Here, we showed that both ALK inhibitors and ALK knockout effectively halted HCC growth in cell cultures. Lorlatinib, a potent ALK inhibitor, suppressed HCC tumor growth and metastasis across various mouse models. Additionally, in an advanced immunocompetent humanized mouse model, when combined with an anti-PD-1 antibody, lorlatinib more potently suppressed HCC tumor growth, surpassing individual drug efficacy. Lorlatinib induced apoptosis and senescence in HCC cells, and the senolytic agent ABT-263 enhanced the efficacy of lorlatinib. Additional studies identified that the apoptosis-inducing effect of lorlatinib was mediated via GGN and NRG4. These findings establish ALK inhibitors as promising HCC treatments, either alone or in combination with immunotherapies or senolytic agents.
Collapse
Affiliation(s)
- Suresh Bugide
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Dhana Sekhar Reddy
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
8
|
Song M, Qu Y, Jia H, Zhang Y, Liu S, Laster KV, Choi BY, Tian J, Gu T, Chen H, Liu K, Lee MH, Dong Z. Targeting TAOK1 with resveratrol inhibits esophageal squamous cell carcinoma growth in vitro and in vivo. Mol Carcinog 2024; 63:991-1008. [PMID: 38376345 DOI: 10.1002/mc.23703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
The worldwide incidence and mortality rates of esophageal squamous cell carcinoma (ESCC) have increased over the last decade. Moreover, molecular targets that may benefit the therapeutics of patients with ESCC have not been fully characterized. Our study discovered that thousand and one amino-acid protein kinase 1 (TAOK1) is highly expressed in ESCC tumor tissues and cell lines. Knock-down of TAOK1 suppresses ESCC cell proliferation in vitro and patient-derived xenograft or cell-derived xenograft tumors growth in vivo. Moreover, TAOK1 overexpression promotes ESCC growth in vitro and in vivo. Additionally, we identified that the natural small molecular compound resveratrol binds to TAOK1 directly and diminishes the kinase activity of TAOK1. Targeting TAOK1 directly with resveratrol significantly inhibits cell proliferation, induces cell cycle arrest and apoptosis, and suppresses tumor growth in ESCC. Furthermore, the silencing of TAOK1 or the application of resveratrol attenuated the activation of TAOK1 downstream signaling effectors. Interestingly, combining resveratrol with paclitaxel, cisplatin, or 5-fluorouracil synergistically enhanced their therapeutic effects against ESCC. In conclusion, this work illustrates the underlying oncogenic function of TAOK1 and provides a theoretical basis for the application of targeting TAOK1 therapy to the clinical treatment of ESCC.
Collapse
Affiliation(s)
- Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Yingzi Qu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Huajie Jia
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yunqing Zhang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Shihui Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | | | - Bu Young Choi
- Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju, South Korea
| | - Jie Tian
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Tingxuan Gu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China
| | - Mee-Hyun Lee
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- College of Korean Medicine, Dongshin University, Naju, Republic of Korea
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China
| |
Collapse
|
9
|
Mousa DPV, Mavrovounis G, Argyropoulos D, Stranjalis G, Kalamatianos T. Anaplastic Lymphoma Kinase (ALK) in Posterior Cranial Fossa Tumors: A Scoping Review of Diagnostic, Prognostic, and Therapeutic Perspectives. Cancers (Basel) 2024; 16:650. [PMID: 38339401 PMCID: PMC10854950 DOI: 10.3390/cancers16030650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Anaplastic Lymphoma Kinase (ALK) has been implicated in several human cancers. This review aims at mapping the available literature on the involvement of ALK in non-glial tumors localized in the posterior cranial fossa and at identifying diagnostic, prognostic, and therapeutic considerations. Following the PRISMA-ScR guidelines, studies were included if they investigated ALK's role in primary CNS, non-glial tumors located in the posterior cranial fossa. A total of 210 manuscripts were selected for full-text review and 16 finally met the inclusion criteria. The review included 55 cases of primary, intracranial neoplasms with ALK genetic alterations and/or protein expression, located in the posterior fossa, comprising of medulloblastoma, anaplastic large-cell lymphoma, histiocytosis, inflammatory myofibroblastic tumors, and intracranial myxoid mesenchymal tumors. ALK pathology was investigated via immunohistochemistry or genetic analysis. Several studies provided evidence for potential diagnostic and prognostic value for ALK assessment as well as therapeutic efficacy in its targeting. The available findings on ALK in posterior fossa tumors are limited. Nevertheless, previous findings suggest that ALK assessment is of diagnostic and prognostic value in medulloblastoma (WNT-activated). Interestingly, a substantial proportion of ALK-positive/altered CNS histiocytoses thus far identified have been localized in the posterior fossa. The therapeutic potential of ALK inhibition in histiocytosis warrants further investigation.
Collapse
Affiliation(s)
| | - Georgios Mavrovounis
- Department of Neurosurgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larissa, Greece;
- Department of Neurosurgery, Evangelismos Hospital, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, 10676 Athens, Greece;
| | - Dionysios Argyropoulos
- Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - George Stranjalis
- Department of Neurosurgery, Evangelismos Hospital, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, 10676 Athens, Greece;
| | - Theodosis Kalamatianos
- Department of Neurosurgery, Evangelismos Hospital, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, 10676 Athens, Greece;
| |
Collapse
|
10
|
Fujii T, Nakano Y, Hagita D, Onishi N, Endo A, Nakagawa M, Yoshiura T, Otsuka Y, Takeuchi S, Suzuki M, Shimizu Y, Toyooka T, Matsushita Y, Hibiya Y, Tomura S, Kondo A, Wada K, Ichimura K, Tomiyama A. KLC1-ROS1 Fusion Exerts Oncogenic Properties of Glioma Cells via Specific Activation of JAK-STAT Pathway. Cancers (Basel) 2023; 16:9. [PMID: 38201436 PMCID: PMC10778328 DOI: 10.3390/cancers16010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Here, we investigated the detailed molecular oncogenic mechanisms of a novel receptor tyrosine kinase (RTK) fusion, KLC1-ROS1, with an adapter molecule, KLC1, and an RTK, ROS1, discovered in pediatric glioma, and we explored a novel therapeutic target for glioma that possesses oncogenic RTK fusion. When wild-type ROS1 and KLC1-ROS1 fusions were stably expressed in the human glioma cell lines A172 and U343MG, immunoblotting revealed that KLC1-ROS1 fusion specifically activated the JAK2-STAT3 pathway, a major RTK downstream signaling pathway, when compared with wild-type ROS1. Immunoprecipitation of the fractionated cell lysates revealed a more abundant association of the KLC1-ROS1 fusion with JAK2 than that observed for wild-type ROS1 in the cytosolic fraction. A mutagenesis study of the KLC1-ROS1 fusion protein demonstrated the fundamental roles of both the KLC1 and ROS1 domains in the constitutive activation of KLC1-ROS1 fusion. Additionally, in vitro assays demonstrated that KLC1-ROS1 fusion upregulated cell proliferation, invasion, and chemoresistance when compared to wild-type ROS1. Combination treatment with the chemotherapeutic agent temozolomide and an inhibitor of ROS1, JAK2, or a downstream target of STAT3, demonstrated antitumor effects against KLC1-ROS1 fusion-expressing glioma cells. Our results demonstrate that KLC1-ROS1 fusion exerts oncogenic activity through serum-independent constitutive activation, resulting in specific activation of the JAK-STAT pathway. Our data suggested that molecules other than RTKs may serve as novel therapeutic targets for RTK fusion in gliomas.
Collapse
Affiliation(s)
- Takashi Fujii
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.F.); (D.H.); (Y.M.); (Y.H.); (K.I.)
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Yoshiko Nakano
- Department of Pediatrics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan;
| | - Daichi Hagita
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.F.); (D.H.); (Y.M.); (Y.H.); (K.I.)
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Nobuyuki Onishi
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan;
| | - Arumu Endo
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Masaya Nakagawa
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Toru Yoshiura
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Yohei Otsuka
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Satoru Takeuchi
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Mario Suzuki
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Yuzaburo Shimizu
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Terushige Toyooka
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Yuko Matsushita
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.F.); (D.H.); (Y.M.); (Y.H.); (K.I.)
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Yuko Hibiya
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.F.); (D.H.); (Y.M.); (Y.H.); (K.I.)
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Satoshi Tomura
- Division of Traumatology, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan;
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Kojiro Wada
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.F.); (D.H.); (Y.M.); (Y.H.); (K.I.)
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Arata Tomiyama
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.F.); (D.H.); (Y.M.); (Y.H.); (K.I.)
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| |
Collapse
|
11
|
Lei Y, Zeng S, Li X, Shu P, Wang W, Wang Y. Partial treatment response to alectinib in metastatic non-small cell lung cancer with KIDINS220-ALK fusion. PRECISION CLINICAL MEDICINE 2023; 6:pbad011. [PMID: 37305526 PMCID: PMC10251428 DOI: 10.1093/pcmedi/pbad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Affiliation(s)
| | | | - Xiaoyu Li
- Clinical Trial Center, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Pei Shu
- Clinical Trial Center, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Weiya Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | | |
Collapse
|