1
|
Guo B, Zheng Y, Fan Y, Yang Y, Wang Y, Qin L, An Y, Xu X, Zhang X, Sun G, Dou H, Shao C, Gong Y, Jiang B, Hu H. Enhanced Apc Min/+ adenoma formation after epithelial CUL4B deletion by recruitment of myeloid-derived suppressor cells. Neoplasia 2024; 53:101005. [PMID: 38761506 PMCID: PMC11127156 DOI: 10.1016/j.neo.2024.101005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Colorectal cancer (CRC) stands as a prevalent malignancy globally. A pivotal event in CRC pathogenesis involves the loss-of-function mutation in the APC gene, leading to the formation of benign polyps. Despite the well-established role of APC, the contribution of CUL4B to CRC initiation in the pre-tumorous stage remains poorly understood. In this investigation, we generated a murine model by crossing ApcMin/+ mice with Cul4bΔIEC mice to achieve specific deletion of Cul4b in the gut epithelium against an ApcMin/+ background. By employing histological methods, RNA-sequencing (RNA-seq), and flow cytometry, we assessed alterations and characterized the immune microenvironment. Our results unveiled that CUL4B deficiency in gut epithelium expedited ApcMin/+ adenoma formation. Notably, CUL4B in adenomas restrained the accumulation of tumor-infiltrating myeloid-derived suppressor cells (MDSCs). In vivo inhibition of MDSCs significantly delayed the growth of CUL4B deleted ApcMin/+ adenomas. Furthermore, the addition of MDSCs to in vitro cultured ApcMin/+; Cul4bΔIEC adenoma organoids mitigated their alterations. Mechanistically, CUL4B directly interacted with the promoter of Csf3, the gene encoding granulocyte-colony stimulating factor (G-CSF) by coordinating with PRC2. Inhibiting CUL4B epigenetically activated the expression of G-CSF, promoting the recruitment of MDSCs. These findings offer novel insights into the tumor suppressor-like roles of CUL4B in regulating ApcMin/+ adenomas, suggesting a potential therapeutic strategy for CRC initiation and progression in the context of activated Wnt signaling.
Collapse
Affiliation(s)
- Beibei Guo
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yawen Zheng
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China; Department of Obstetrics & Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yujia Fan
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yang Yang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yuxing Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Liping Qin
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yachun An
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaoran Xu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiyu Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Gongping Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Histoembryology, Shandong University Cheeloo Medical College, Shandong University School of Medicine, Jinan, China
| | - Hao Dou
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China.
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Rosell R, Codony-Servat J, González J, Santarpia M, Jain A, Shivamallu C, Wang Y, Giménez-Capitán A, Molina-Vila MA, Nilsson J, González-Cao M. KRAS G12C-mutant driven non-small cell lung cancer (NSCLC). Crit Rev Oncol Hematol 2024; 195:104228. [PMID: 38072173 DOI: 10.1016/j.critrevonc.2023.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 02/20/2024] Open
Abstract
KRAS G12C mutations in non-small cell lung cancer (NSCLC) partially respond to KRAS G12C covalent inhibitors. However, early adaptive resistance occurs due to rewiring of signaling pathways, activating receptor tyrosine kinases, primarily EGFR, but also MET and ligands. Evidence indicates that treatment with KRAS G12C inhibitors (sotorasib) triggers the MRAS:SHOC2:PP1C trimeric complex. Activation of MRAS occurs from alterations in the Scribble and Hippo-dependent pathways, leading to YAP activation. Other mechanisms that involve STAT3 signaling are intertwined with the activation of MRAS. The high-resolution MRAS:SHOC2:PP1C crystallization structure allows in silico analysis for drug development. Activation of MRAS:SHOC2:PP1C is primarily Scribble-driven and downregulated by HUWE1. The reactivation of the MRAS complex is carried out by valosin containing protein (VCP). Exploring these pathways as therapeutic targets and their impact on different chemotherapeutic agents (carboplatin, paclitaxel) is crucial. Comutations in STK11/LKB1 often co-occur with KRAS G12C, jeopardizing the effect of immune checkpoint (anti-PD1/PDL1) inhibitors.
Collapse
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain; IOR, Hospital Quiron-Dexeus, Barcelona, Spain.
| | | | - Jessica González
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Italy
| | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, India
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Yu Wang
- Genfleet Therapeutics, Shanghai, China
| | | | | | - Jonas Nilsson
- Department Radiation Sciences, Oncology, Umeå University, Sweden
| | | |
Collapse
|
3
|
Li D, Wang L, Jiang B, Jing Y, Li X. Improving cancer immunotherapy by preventing cancer stem cell and immune cell linking in the tumor microenvironment. Biomed Pharmacother 2024; 170:116043. [PMID: 38128186 DOI: 10.1016/j.biopha.2023.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer stem cells are the key link between malignant tumor progression and drug resistance. This cell population has special properties that are different from those of conventional tumor cells, and the role of cancer stem cell-related exosomes in progression of tumor malignancy is becoming increasingly clear. Cancer stem cell-derived exosomes carry a variety of functional molecules involved in regulation of the microenvironment, especially with regard to immune cells, but how these exosomes exert their functions and the specific mechanisms need to be further clarified. Here, we summarize the role of cancer stem cell exosomes in regulating immune cells in detail, aiming to provide new insights for subsequent targeted drug development and clinical strategy formulation.
Collapse
Affiliation(s)
- Dongyu Li
- Department of General Surgery & VIP In-Patient Ward, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Lei Wang
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Bo Jiang
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Yuchen Jing
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Xuan Li
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China.
| |
Collapse
|