1
|
Vlodavsky I, Kayal Y, Hilwi M, Soboh S, Sanderson RD, Ilan N. Heparanase-A single protein with multiple enzymatic and nonenzymatic functions. PROTEOGLYCAN RESEARCH 2023; 1:e6. [PMID: 37547889 PMCID: PMC10398610 DOI: 10.1002/pgr2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023]
Abstract
Heparanase (Hpa1) is expressed by tumor cells and cells of the tumor microenvironment and functions extracellularly to remodel the extracellular matrix (ECM) and regulate the bioavailability of ECM-bound factors, augmenting, among other effects, gene transcription, autophagy, exosome formation, and heparan sulfate (HS) turnover. Much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth, metastasis, and chemoresistance. The enzyme appears to fulfill some normal functions associated, for example, with vesicular traffic, lysosomal-based secretion, autophagy, HS turnover, and gene transcription. It activates cells of the innate immune system, promotes the formation of exosomes and autophagosomes, and stimulates signal transduction pathways via enzymatic and nonenzymatic activities. These effects dynamically impact multiple regulatory pathways that together drive tumor growth, dissemination, and drug resistance as well as inflammatory responses. The emerging premise is that heparanase expressed by tumor cells, immune cells, endothelial cells, and other cells of the tumor microenvironment is a key regulator of the aggressive phenotype of cancer, an important contributor to the poor outcome of cancer patients and a valid target for therapy. So far, however, antiheparanase-based therapy has not been implemented in the clinic. Unlike heparanase, heparanase-2 (Hpa2), a close homolog of heparanase (Hpa1), does not undergo proteolytic processing and hence lacks intrinsic HS-degrading activity, the hallmark of heparanase. Hpa2 retains the capacity to bind heparin/HS and exhibits an even higher affinity towards HS than heparanase, thus competing for HS binding and inhibiting heparanase enzymatic activity. It appears that Hpa2 functions as a natural inhibitor of Hpa1 regulates the expression of selected genes that maintain tissue hemostasis and normal function, and plays a protective role against cancer and inflammation, together emphasizing the significance of maintaining a proper balance between Hpa1 and Hpa2.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Yasmin Kayal
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Maram Hilwi
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Soaad Soboh
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Ralph D. Sanderson
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Neta Ilan
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| |
Collapse
|
2
|
Ostrovsky O, Beider K, Magen H, Leiba M, Sanderson RD, Vlodavsky I, Nagler A. Effect of HPSE and HPSE2 SNPs on the Risk of Developing Primary Paraskeletal Multiple Myeloma. Cells 2023; 12:913. [PMID: 36980254 PMCID: PMC10047783 DOI: 10.3390/cells12060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that is accompanied by hypercalcemia, renal failure, anemia, and lytic bone lesions. Heparanase (HPSE) plays an important role in supporting and promoting myeloma progression, maintenance of plasma cell stemness, and resistance to therapy. Previous studies identified functional single nucleotide polymorphisms (SNPs) located in the HPSE gene. In the present study, 5 functional HPSE SNPs and 11 novel HPSE2 SNPs were examined. A very significant association between two enhancer (rs4693608 and rs4693084), and two insulator (rs4364254 and rs4426765) HPSE SNPs and primary paraskeletal disease (PS) was observed. SNP rs657442, located in intron 9 of the HPSE2 gene, revealed a significant protective association with primary paraskeletal disease and lytic bone lesions. The present study demonstrates a promoting (HPSE gene) and protective (HPSE2 gene) role of gene regulatory elements in the development of paraskeletal disease and bone morbidity. The effect of signal discrepancy between myeloma cells and normal cells of the tumor microenvironment is proposed as a mechanism for the involvement of heparanase in primary PS. We suggest that an increase in heparanase-2 expression can lead to effective suppression of heparanase activity in multiple myeloma accompanied by extramedullary and osteolytic bone disease.
Collapse
Affiliation(s)
- Olga Ostrovsky
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer 5266202, Israel
| | - Katia Beider
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer 5266202, Israel
| | - Hila Magen
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer 5266202, Israel
| | - Merav Leiba
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer 5266202, Israel
| | - Ralph D. Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa 3525433, Israel
| | - Arnon Nagler
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer 5266202, Israel
| |
Collapse
|
3
|
A Promising Insight: The Potential Influence and Therapeutic Value of the Gut Microbiota in GI GVHD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2124627. [PMID: 35571252 PMCID: PMC9098338 DOI: 10.1155/2022/2124627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HSCT) is a reconstruction process of hematopoietic and immune functions that can be curative in patients with hematologic malignancies, but it carries risks of graft-versus-host disease (GVHD), thrombotic microangiopathy (TMA), Epstein–Barr virus (EBV) infection, cytomegalovirus infection, secondary hemophagocytic lymphohistiocytosis (sHLH), macrophage activation syndrome (MAS), bronchiolitis obliterans, and posterior reversible encephalopathy syndrome (PRES). Gastrointestinal graft-versus-host disease (GI GVHD), a common complication of allo-HSCT, is one of the leading causes of transplant-related death because of its high treatment difficulty, which is affected by preimplantation, antibiotic use, dietary changes, and intestinal inflammation. At present, human trials and animal studies have proven that a decrease in intestinal bacterial diversity is associated with the occurrence of GI GVHD. Metabolites produced by intestinal bacteria, such as lipopolysaccharides, short-chain fatty acids, and secondary bile acids, can affect the development of GVHD through direct or indirect interactions with immune cells. The targeted damage of GVHD on intestinal stem cells (ISCs) and Paneth cells results in intestinal dysbiosis or dysbacteriosis. Based on the effect of microbiota metabolites on the gastrointestinal tract, the clinical treatment of GI GVHD can be further optimized. In this review, we describe the mechanisms of GI GVHD and the damage it causes to intestinal cells and we summarize recent studies on the relationship between intestinal microbiota and GVHD in the gastrointestinal tract, highlighting the role of intestinal microbiota metabolites in GI GVHD. We hope to elucidate strategies for immunomodulatory combined microbiota targeting in the clinical treatment of GI GVHD.
Collapse
|
4
|
Ostrovsky O, Beider K, Morgulis Y, Bloom N, Cid-Arregui A, Shimoni A, Vlodavsky I, Nagler A. CMV Seropositive Status Increases Heparanase SNPs Regulatory Activity, Risk of Acute GVHD and Yield of CD34 + Cell Mobilization. Cells 2021; 10:cells10123489. [PMID: 34943994 PMCID: PMC8700738 DOI: 10.3390/cells10123489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Heparanase is an endo-β-glucuronidase that is best known for its pro-cancerous effects but is also implicated in the pathogenesis of various viruses. Activation of heparanase is a common strategy to increase viral spread and trigger the subsequent inflammatory cascade. Using a Single Nucleotide Polymorphisms (SNP)-associated approach we identified enhancer and insulator regions that regulate HPSE expression. Although a role for heparanase in viral infection has been noticed, the impact of HPSE functional SNPs has not been determined. We investigated the effect of cytomegalovirus (CMV) serostatus on the involvement of HPSE enhancer and insulator functional SNPs in the risk of acute graft versus host disease (GVHD) and granulocyte-colony stimulating factor related CD34+ mobilization. A significant correlation between the C alleles of insulator rs4364254 and rs4426765 and CMV seropositivity was found in healthy donors and patients with hematological malignancies. The risk of developing acute GVHD after hematopoietic stem cell transplantation was identified only in CMV-seropositive patients. A significant correlation between the enhancer rs4693608 and insulator rs28649799 and CD34+ cell mobilization was demonstrated in the CMV-seropositive donors. It is thus conceivable that latent CMV infection modulates heparanase regulatory regions and enhances the effect of functional SNPs on heparanase function in normal and pathological processes.
Collapse
Affiliation(s)
- Olga Ostrovsky
- Chaim Sheba Medical Center, Department of Hematology and Bone Marrow Transplantation, Tel-Hashomer, Ramat Gan 5266202, Israel; (K.B.); (Y.M.); (N.B.); (A.S.); (A.N.)
- Correspondence: ; Tel.: +972-3-5305770
| | - Katia Beider
- Chaim Sheba Medical Center, Department of Hematology and Bone Marrow Transplantation, Tel-Hashomer, Ramat Gan 5266202, Israel; (K.B.); (Y.M.); (N.B.); (A.S.); (A.N.)
| | - Yan Morgulis
- Chaim Sheba Medical Center, Department of Hematology and Bone Marrow Transplantation, Tel-Hashomer, Ramat Gan 5266202, Israel; (K.B.); (Y.M.); (N.B.); (A.S.); (A.N.)
| | - Nira Bloom
- Chaim Sheba Medical Center, Department of Hematology and Bone Marrow Transplantation, Tel-Hashomer, Ramat Gan 5266202, Israel; (K.B.); (Y.M.); (N.B.); (A.S.); (A.N.)
| | | | - Avichai Shimoni
- Chaim Sheba Medical Center, Department of Hematology and Bone Marrow Transplantation, Tel-Hashomer, Ramat Gan 5266202, Israel; (K.B.); (Y.M.); (N.B.); (A.S.); (A.N.)
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa 3525433, Israel;
| | - Arnon Nagler
- Chaim Sheba Medical Center, Department of Hematology and Bone Marrow Transplantation, Tel-Hashomer, Ramat Gan 5266202, Israel; (K.B.); (Y.M.); (N.B.); (A.S.); (A.N.)
| |
Collapse
|
5
|
The HPSE Gene Insulator-A Novel Regulatory Element That Affects Heparanase Expression, Stem Cell Mobilization, and the Risk of Acute Graft versus Host Disease. Cells 2021; 10:cells10102523. [PMID: 34685503 PMCID: PMC8534152 DOI: 10.3390/cells10102523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/30/2023] Open
Abstract
The HPSE gene encodes heparanase (HPSE), a key player in cancer, inflammation, and autoimmunity. We have previously identified a strong HPSE gene enhancer involved in self-regulation of heparanase by negative feedback exerted in a functional rs4693608 single-nucleotide polymorphism (SNP) dependent manner. In the present study, we analyzed the HPSE gene insulator region, located in intron 9 and containing rs4426765, rs28649799, and rs4364254 SNPs. Our results indicate that this region exhibits HPSE regulatory activity. SNP substitutions lead to modulation of a unique DNA-protein complex that affects insulator activity. Analysis of interactions between enhancer and insulator SNPs revealed that rs4693608 has a major effect on HPSE expression and the risk of post-transplantation acute graft versus host disease (GVHD). The C alleles of insulator SNPs rs4364254 and rs4426765 modify the activity of the HPSE enhancer, resulting in altered HPSE expression and increased risk of acute GVHD. Moreover, rs4426765 correlated with HPSE expression in activated mononuclear cells, as well as with CD3 levels and lymphocyte counts following G-CSF mobilization. rs4363084 and rs28649799 were found to be associated with CD34+ levels. Our study provides new insight into the mechanism of HPSE gene regulation and its impact on normal and pathological processes in the hematopoietic system.
Collapse
|
6
|
Lange M, Begolli R, Giakountis A. Non-Coding Variants in Cancer: Mechanistic Insights and Clinical Potential for Personalized Medicine. Noncoding RNA 2021; 7:47. [PMID: 34449663 PMCID: PMC8395730 DOI: 10.3390/ncrna7030047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 12/11/2022] Open
Abstract
The cancer genome is characterized by extensive variability, in the form of Single Nucleotide Polymorphisms (SNPs) or structural variations such as Copy Number Alterations (CNAs) across wider genomic areas. At the molecular level, most SNPs and/or CNAs reside in non-coding sequences, ultimately affecting the regulation of oncogenes and/or tumor-suppressors in a cancer-specific manner. Notably, inherited non-coding variants can predispose for cancer decades prior to disease onset. Furthermore, accumulation of additional non-coding driver mutations during progression of the disease, gives rise to genomic instability, acting as the driving force of neoplastic development and malignant evolution. Therefore, detection and characterization of such mutations can improve risk assessment for healthy carriers and expand the diagnostic and therapeutic toolbox for the patient. This review focuses on functional variants that reside in transcribed or not transcribed non-coding regions of the cancer genome and presents a collection of appropriate state-of-the-art methodologies to study them.
Collapse
Affiliation(s)
- Marios Lange
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Rodiola Begolli
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
- Institute for Fundamental Biomedical Research, B.S.R.C “Alexander Fleming”, 34 Fleming Str., 16672 Vari, Greece
| |
Collapse
|
7
|
Cao H, Yang S, Yu X, Xi M. Correlation between heparanase gene polymorphism and susceptibility to endometrial cancer. Mol Genet Genomic Med 2020; 8:e1257. [PMID: 32869952 PMCID: PMC7549562 DOI: 10.1002/mgg3.1257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 10/30/2019] [Accepted: 03/01/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Endometrial cancer is one of the three most common malignancies in the female genital tract. Previous studies have demonstrated the association between heparanase (HPSE, OMIM 604,724) single-nucleotide polymorphism (SNP) and cancer risk in several cancers. However, its role in endometrial cancer remains unclear. The present study investigated the effects of HPSE SNPs on the susceptibility and clinicopathological parameters in patients with endometrial cancer. METHODS HPSE SNPs of rs4693608 (G > A) and rs4364254 (C > T) were analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay in 270 endometrial cancer patients and 320 healthy controls. RESULTS The investigation indicated that the HPSE SNP rs4693608 with GG showed a protective effect from EC in both codominant (adjusted OR = 0.41, 95%CI = 0.21-0.81, p = .026) and recessive models (adjusted OR = 0.43, 95%CI = 0.22-0.82, p = .0076). No significant differences were found in the incidences of EC patients with the rs4364254 polymorphisms compared to controls. Moreover, a significantly increased distribution of A/A (rs4693608) was observed in patients with grade ≥ 2 (p = .03) and in patients with positive cervical invasion (p = .042) while patients with T/C (rs4364254) had lower tumor grade. CONCLUSION Our study suggested that HPSE SNP of rs4693608 correlated strongly with susceptibility to EC, and HPSE SNPs might be a potential biomarker for prognosis of endometrial cancer.
Collapse
Affiliation(s)
- Hanyu Cao
- Department of Gynecology and ObstetricsWest China Second University HospitalSichuan UniversityChengduChina
| | - Shuo Yang
- Key Laboratory of Obstetrics, Gynecology, Pediatric Disease, and Birth DefectsMinistry of EducationWest China Second University HospitalChengduChina
| | - Xiuzhang Yu
- Department of Gynecology and ObstetricsWest China Second University HospitalSichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationChengduChina
| | - Mingrong Xi
- Department of Gynecology and ObstetricsWest China Second University HospitalSichuan UniversityChengduChina
| |
Collapse
|
8
|
Zhou YT, Zheng LY, Wang YJ, Yang L, Xie YT, Panda I, Tian XX, Fang WG. Effect of functional variant rs11466313 on breast cancer susceptibility and TGFB1 promoter activity. Breast Cancer Res Treat 2020; 184:237-248. [PMID: 32757134 DOI: 10.1007/s10549-020-05841-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE This study aimed to investigate whether genetic polymorphisms in TGFB1 contribute to breast cancer (BC) susceptibility, and explore the mechanism of action. METHODS A total of 7 tagging SNPs (tSNPs) were genotyped in 1161 BC cases and 1337 age-matched controls among Chinese Han population. Bioinformatics analysis was used to predict functional SNP closely linked to tSNPs. Luciferase gene reporter assay was performed to determine the effect of genetic variants on promoter activity. DNA pull-down assay and mass spectrometry were used to identify the differentially binding proteins to genetic variants. RESULTS Genotyping analysis showed that rs1800469 (C>T) in the 5' regulatory region of TGFB1 was associated with reduced BC risk. Bioinformatics analysis predicted that rs11466313 (-2389_-2391 Del/AGG) in the 5' regulatory region of TGFB1, was closely linked to tSNP rs1800469 and could be functional. The genotyping of rs11466313 by PCR-SSCP showed that rs11466313 also conferred decreased BC risk. Luciferase assays demonstrated that rs11466313 minor allele reduced over ninefold of promoter activity compared with its major allele (p < 0.001). DNA pull-down assay and mass spectrometry revealed that rs11466313 minor allele lost the binding ability with FAM98B and HSP90B. Knocking down FAM98B but not HSP90B, the enhanced promoter activity driven by TGFB1 rs11466313 major allele was attenuated. CONCLUSIONS This study elucidates the impact of functional polymorphism rs11466313 in the regulatory region of TGFB1 on breast cancer susceptibility and gene expression, and could be helpful for future research to determine the value of this TGFB1 variant in the clinical setting.
Collapse
Affiliation(s)
- Yan-Ting Zhou
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Li-Yuan Zheng
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Ya-Jun Wang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Li Yang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Yun-Tao Xie
- Breast Center, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, 100142, China
| | - Ipsita Panda
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Xin-Xia Tian
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, 100191, China.
| | - Wei-Gang Fang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
9
|
Ostrovsky O, Vlodavsky I, Nagler A. Mechanism of HPSE Gene SNPs Function: From Normal Processes to Inflammation, Cancerogenesis and Tumor Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:231-249. [PMID: 32274712 DOI: 10.1007/978-3-030-34521-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Single Nucleotide Polymorphisms (SNPs) is the substitution of a single nucleotide, stably inherited, highly abundant, and distributed throughout the genome. Up today 9746 SNPs were found in the HPSE gene. During 12 years 21 SNPs were analyzed in normal and pathological samples. The most prominent SNPs are rs4693608, rs11099592, rs4693084, and rs4364254. These SNPs were found in correlation with heparanase mRNA and protein expression among healthy persons. Moreover, an association of the HPSE gene SNPs with inflammatory processes, cancer development and progression was detected. SNP investigation allowed the identification of strong HPSE gene enhancer in the intron 2. In normal leukocytes, heparanase binds to the enhancer region and regulates HPSE gene expression via negative feedback in rs4693608 SNP-dependent manner. In malignant cells, heparanase halted self-regulation of the enhancer region. Instead of heparanase, the helicase-like transcription factor (HLTF) binds to the regulatory region. These and subsequent studies will elucidate how modification in the HPSE enhancer region could be applied to develop new approaches for cancer treatment.
Collapse
Affiliation(s)
- Olga Ostrovsky
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel.
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion-Israel, Institute of Technology, Haifa, Haifa, Israel
| | - Arnon Nagler
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
10
|
Heparanase-The Message Comes in Different Flavors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:253-283. [DOI: 10.1007/978-3-030-34521-1_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Association between a TCF4 Polymorphism and Susceptibility to Schizophrenia. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1216303. [PMID: 32280673 PMCID: PMC7115149 DOI: 10.1155/2020/1216303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/09/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factor 4 (TCF4) had been identified as a susceptibility gene associated with schizophrenia (SCZ) by GWAS, but inconsistent results have been found in other studies. To validate these findings and to reveal the effects of different inheritance models, rs2958182, rs1261085, rs8766, and rs12966547 of the TCF4 gene were genotyped in the Northwest Han Chinese population (448 cases and 628 controls) via a multiplex polymerase chain reaction SNPscan assay. Single SNP, genotype, and association analyses with three different models were performed. We observed genotype and allele distributions of four SNPs that showed nonsignificant associations in the Northwest Han Chinese population. However, published datasets (51,892 cases and 68,498 controls) were collected and combined with our experimental results to ascertain the association of the TCF4 gene SNPs and SCZ, which demonstrated that rs2958182 (P=0.003) was a significant signal based on a systematic meta-analysis. To clarify the biological role of rs2958182, it is important to improve the understanding of the pathophysiology of SCZ.
Collapse
|
12
|
Cao R, Chen Y, Wang J, Chen M, Chen S, Tang W. Association of Long Noncoding RNAs Polymorphisms with the Risk of Esophagogastric Junction Adenocarcinoma: A Three-Center Study of 1063 Cases and 1677 Controls. DNA Cell Biol 2020; 39:828-835. [PMID: 32181690 DOI: 10.1089/dna.2020.5368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence suggested that long noncoding RNAs (lncRNAs) variants may be involved in the progression of various cancers. However, the association of the lncRNAs polymorphisms with the risk for esophagogastric junction adenocarcinoma (EGJA) is still unknown. In this case-control study, we selected two cancer-related lncRNAs polymorphisms (rs944289 C > T and rs7990916 C>T), and recruited a total of 1063 EGJA patients and 1677 noncancer controls to determine whether the lncRNAs rs944289 C > T and rs7990916 C > T polymorphisms could influence EGJA susceptibility and lymph node status. And SNPscan™ genotyping assay was applied to test the genotypes of the mentioned two variants. We found no statistically significant differences in the distribution of lncRNAs rs944289 C > T and rs7990916 C > T polymorphisms between EGJA patients and healthy controls. Similar negative findings were also revealed in the correlation of those polymorphisms with different lymph node status. However, after adjustment by multiple environmental factors, including gender, age, drinking, and smoking consumption, the stratified analyses showed that the lncRNAs rs944289 C > T variant was significantly related with the risk of EGJA in <60 years populations [CT vs. CC: adjusted odds ratio (OR) = 0.75, 95% confidence interval (CI) = 0.58-0.98, p = 0.032] and ever smoking populations (CT/CC vs. TT: adjusted OR = 1.65, 95% CI = 1.11-2.46, p = 0.013). In short, this population-based study highlights that lncRNAs rs944289 C > T polymorphism may be associated with genetic susceptibility to EGJA in the <60 years and ever smoking populations.
Collapse
Affiliation(s)
- Rui Cao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Yu Chen
- Department of Medical Oncology, Fujian Cancer Hospital and Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Jusi Wang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Mingduan Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Shuchen Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
13
|
Li Z, Wang M, Lin K, Xie Y, Guo J, Ye L, Zhuang Y, Teng W, Ran X, Tong Y, Xue Y, Zhang W, Zhang Y. The bread wheat epigenomic map reveals distinct chromatin architectural and evolutionary features of functional genetic elements. Genome Biol 2019; 20:139. [PMID: 31307500 PMCID: PMC6628505 DOI: 10.1186/s13059-019-1746-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/24/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Bread wheat is an allohexaploid species with a 16-Gb genome that has large intergenic regions, which presents a big challenge for pinpointing regulatory elements and further revealing the transcriptional regulatory mechanisms. Chromatin profiling to characterize the combinatorial patterns of chromatin signatures is a powerful means to detect functional elements and clarify regulatory activities in human studies. RESULTS In the present study, through comprehensive analyses of the open chromatin, DNA methylome, seven major chromatin marks, and transcriptomic data generated for seedlings of allohexaploid wheat, we detected distinct chromatin architectural features surrounding various functional elements, including genes, promoters, enhancer-like elements, and transposons. Thousands of new genic regions and cis-regulatory elements are identified based on the combinatorial pattern of chromatin features. Roughly 1.5% of the genome encodes a subset of active regulatory elements, including promoters and enhancer-like elements, which are characterized by a high degree of chromatin openness and histone acetylation, an abundance of CpG islands, and low DNA methylation levels. A comparison across sub-genomes reveals that evolutionary selection on gene regulation is targeted at the sequence and chromatin feature levels. The divergent enrichment of cis-elements between enhancer-like sequences and promoters implies these functional elements are targeted by different transcription factors. CONCLUSIONS We herein present a systematic epigenomic map for the annotation of cis-regulatory elements in the bread wheat genome, which provides new insights into the connections between chromatin modifications and cis-regulatory activities in allohexaploid wheat.
Collapse
Affiliation(s)
- Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Meiyue Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Kande Lin
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 Jiangsu China
| | - Yilin Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Jingyu Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
- Henan University, School of Life Science, Kaifeng, 457000 Henan China
| | - Luhuan Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Yili Zhuang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Wan Teng
- University of the Chinese Academy of Sciences, Beijing, 100049 China
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiaojuan Ran
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Yiping Tong
- University of the Chinese Academy of Sciences, Beijing, 100049 China
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yongbiao Xue
- University of the Chinese Academy of Sciences, Beijing, 100049 China
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 Jiangsu China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
14
|
Favia M, Fitak R, Guerra L, Pierri CL, Faye B, Oulmouden A, Burger PA, Ciani E. Beyond the Big Five: Investigating Myostatin Structure, Polymorphism and Expression in Camelus dromedarius. Front Genet 2019; 10:502. [PMID: 31231423 PMCID: PMC6566074 DOI: 10.3389/fgene.2019.00502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Myostatin, a negative regulator of skeletal muscle mass in animals, has been shown to play a role in determining muscular hypertrophy in several livestock species, and a high degree of polymorphism has been previously reported for this gene in humans and cattle. In this study, we provide a characterization of the myostatin gene in the dromedary (Camelus dromedarius) at the genomic, transcript and protein level. The gene was found to share high structural and sequence similarity with other mammals, notably Old World camelids. 3D modeling highlighted several non-conservative SNP variants compared to the bovine, as well as putative functional variants involved in the stability of the myostatin dimer. NGS data for nine dromedaries from various countries revealed 66 novel SNPs, all of them falling either upstream or downstream the coding region. The analysis also confirmed the presence of three previously described SNPs in intron 1, predicted here to alter both splicing and transcription factor binding sites (TFBS), thus possibly impacting myostatin processing and/or regulation. Several putative TFBS were identified in the myostatin upstream region, some of them belonging to the myogenic regulatory factor family. Patterns of SNP distribution across countries, as suggested by Bayesian clustering of the nine dromedaries using the 69 SNPs, pointed to weak geographic differentiation, in line with known recurrent gene flow at ancient trading centers along caravan routes. Myostatin expression was investigated in a set of 8 skeletal muscles, both at transcript and protein level, via Digital Droplet PCR and Western Blotting, respectively. No significant differences were observed at the transcript level, while, at the protein level, the only significant differences concerned the promyostatin dimer (75 kDa), in four pair-wise comparisons, all involving the tensor fasciae latae muscle. Beside the mentioned band at 75 kDa, additional bands were observed at around 40 and 25 kDa, corresponding to the promyostatin monomer and the active C-terminal myostatin dimer, respectively. Their weaker intensity suggests that the unprocessed myostatin dimers could act as important reservoirs of slowly available myostatin forms. Under this assumption, the sequential cleavage steps may contribute additional layers of control within an already complex regulatory framework.
Collapse
Affiliation(s)
- Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Robert Fitak
- Research Institute of Wildlife Ecology, Vetmeduni, Vienna, Austria.,Department of Biology, Duke University, Durham, NC, United States
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | | | - Ahmad Oulmouden
- Département Sciences du Vivant, Université de Limoges, Limoges, France
| | | | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
15
|
Song T, Spillmann D. Transcriptomic analysis reveals cell apoptotic signature modified by heparanase in melanoma cells. J Cell Mol Med 2019; 23:4559-4568. [PMID: 31044520 PMCID: PMC6584584 DOI: 10.1111/jcmm.14349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/31/2019] [Accepted: 04/09/2019] [Indexed: 01/12/2023] Open
Abstract
Heparanase has been implicated in many pathological conditions, especially inflammation and cancer, attributed to its degradation of heparan sulfate, a crucial component maintaining the integrity of the extracellular matrix. By silencing the heparanase gene (HPSE) in MDA-MB-435s melanoma cells, we investigated the impact of this protein on gene transcription. Transcriptome sequencing yielded a list of 279 differentially expressed genes, of which 140 were up-regulated and 239 down-regulated. The 140 up-regulated genes were classified into a substantial set of gene ontology defined functions, for example, positive regulation of cell death, apoptotic process, response to cytokine, while 239 down-regulated genes classify only into the two categories: nucleosome and nucleosome assembly. Our focus was drawn to an array of 28 pro-apoptotic genes regulated by heparanase: real-time PCR experiments further validated up-regulation of EGR1, TXNIP, AXL, CYR61, LIMS2 and TNFRSF12A by at least 1.5-fold, among which EGR1, CYR61, and TNFRSF12A were confirmed on protein level. We demonstrated significantly increased apoptotic cells by TUNEL staining upon HPSE silencing, mediated by activation of caspase 3/PARP1 pathway. The pro-apoptotic gene expression and observation of apoptosis were extended to another melanoma cell line, MV3 cells, thus consolidating the anti-apoptosis effect of heparanase in melanoma cells.
Collapse
Affiliation(s)
- Tianyi Song
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | - Dorothe Spillmann
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
16
|
Dewasurendra RL, Jeffreys A, Gunawardena SA, Chandrasekharan NV, Rockett K, Kwiatkowski D, Karunaweera ND. Host genetic polymorphisms and serological response against malaria in a selected population in Sri Lanka. Malar J 2018; 17:473. [PMID: 30558622 PMCID: PMC6296029 DOI: 10.1186/s12936-018-2622-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Antibodies against the merozoite surface protein 1-19 (MSP1-19) and the apical membrane antigen 1 (AMA1) of the malaria parasite (Plasmodium vivax) are proven to be important in protection against clinical disease. Differences in the production/maintenance of antibodies may be due to many factors including host genetics. This paper discusses the association of 4 anti-malarial antibodies with selected host genetic markers. METHODS Blood was collected from individuals (n = 242) with a history of malaria within past 15 years for DNA and serum. ELISA was carried out for serum to determine the concentration of anti-malarial antibodies MSP1-19 and AMA1 for both vivax and falciparum malaria. 170 SNPs related to malaria were genotyped. Associations between seropositivity, antibody levels and genetic, non-genetic factors were determined. RESULTS Age ranged 13-74 years (mean age = 40.21 years). Majority were females. Over 90% individuals possessed either one or more type(s) of anti-malarial antibodies. Five SNPs were significantly associated with seropositivity. One SNP was associated with MSP1-19_Pv(rs739718); 4 SNPs with MSP1-19_Pf (rs6874639, rs2706379, rs2706381 and rs2075820) and1 with AMA1_Pv (rs2075820). Eleven and 7 genotypes (out of 15) were significantly associated with either presence or absence of antibodies. Three SNPs were found to be significantly associated with the antibody levels viz. rs17411697 with MSP1-19_Pv, rs2227491 with AMA1_Pv and rs229587 with AMA1_Pf. Linkage of the markers in the two groups was similar, but lower LOD scores were observed in seropositives compared to seronegatives. DISCUSSION AND CONCLUSIONS The study suggests that several SNPs in the human genome that exist in Sri Lankan populations are significantly associated with anti-malarial antibodies, either with generation and/or maintenance of antibodies for longer periods, which can be due to either individual polymorphisms or most probably a combined effect of the markers.
Collapse
Affiliation(s)
- Rajika L Dewasurendra
- Department of Parasitology, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo 8, Sri Lanka
| | - Anna Jeffreys
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sharmini A Gunawardena
- Department of Parasitology, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo 8, Sri Lanka
| | | | - Kirk Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Nadira D Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo 8, Sri Lanka.
| |
Collapse
|