1
|
Deng H, Ding D, Ma Y, Zhang H, Wang N, Zhang C, Yang G. Nicotinamide Mononucleotide: Research Process in Cardiovascular Diseases. Int J Mol Sci 2024; 25:9526. [PMID: 39273473 PMCID: PMC11394709 DOI: 10.3390/ijms25179526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite that plays a crucial role in diverse biological processes, including energy metabolism, gene expression, DNA repair, and mitochondrial function. An aberrant NAD+ level mediates the development of cardiovascular dysfunction and diseases. Both in vivo and in vitro studies have demonstrated that nicotinamide mononucleotide (NMN), as a NAD+ precursor, alleviates the development of cardiovascular diseases such as heart failure, atherosclerosis, and myocardial ischemia/reperfusion injury. Importantly, NMN has suggested pharmacological activities mostly through its involvement in NAD+ biosynthesis. Several clinical studies have been conducted to investigate the efficacy and safety of NMN supplementation, indicating its potential role in cardiovascular protection without significant adverse effects. In this review, we systematically summarize the impact of NMN as a nutraceutical and potential therapeutic drug on cardiovascular diseases and emphasize the correlation between NMN supplementation and cardiovascular protection.
Collapse
Affiliation(s)
- Haoyuan Deng
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Ding Ding
- School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Yu Ma
- Department of Health Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Hao Zhang
- School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Ningning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Cong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Guang Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
2
|
Zhang W, Lee A, Lee L, Dehm SM, Huang RS. Computational drug discovery pipelines identify NAMPT as a therapeutic target in neuroendocrine prostate cancer. Clin Transl Sci 2024; 17:e70030. [PMID: 39295559 PMCID: PMC11411198 DOI: 10.1111/cts.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is an aggressive advanced subtype of prostate cancer that exhibits poor prognosis and broad resistance to therapies. Currently, few treatment options are available, highlighting a need for new therapeutics to help curb the high mortality rates of this disease. We designed a comprehensive drug discovery pipeline that quickly generates drug candidates ready to be tested. Our method estimated patient response to various therapeutics in three independent prostate cancer patient cohorts and selected robust candidate drugs showing high predicted potency in NEPC tumors. Using this pipeline, we nominated NAMPT as a molecular target to effectively treat NEPC tumors. Our in vitro experiments validated the efficacy of NAMPT inhibitors in NEPC cells. Compared with adenocarcinoma LNCaP cells, NAMPT inhibitors induced significantly higher growth inhibition in the NEPC cell line model NCI-H660. Moreover, to further assist clinical development, we implemented a causal feature selection method to detect biomarkers indicative of sensitivity to NAMPT inhibitors. Gene expression modifications of selected biomarkers resulted in changes in sensitivity to NAMPT inhibitors consistent with expectations in NEPC cells. Validation of these markers in an independent prostate cancer patient dataset supported their use to inform clinical efficacy. Our findings pave the way for new treatments to combat pervasive drug resistance and reduce mortality. Furthermore, this research highlights the use of drug sensitivity-related biomarkers to understand mechanisms and potentially indicate clinical efficacy.
Collapse
Affiliation(s)
- Weijie Zhang
- Bioinformatics and Computational BiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Experimental and Clinical PharmacologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Adam Lee
- Department of Experimental and Clinical PharmacologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lauren Lee
- Department of Experimental and Clinical PharmacologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Scott M. Dehm
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of UrologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - R. Stephanie Huang
- Bioinformatics and Computational BiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Experimental and Clinical PharmacologyUniversity of MinnesotaMinneapolisMinnesotaUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
3
|
Pant K, Gradilone SA. NAMPT Overexpression Drives Cell Growth in Polycystic Liver Disease through Mitochondrial Metabolism Regulation. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1528-1537. [PMID: 38849029 PMCID: PMC11284764 DOI: 10.1016/j.ajpath.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 06/09/2024]
Abstract
A group of genetic diseases known as polycystic liver disease (PLD) are distinguished by the gradual development of fluid-filled hepatic cysts formed from cholangiocytes and commonly related to primary cilia defects. The NAD salvage pathway, which sustains cellular bioenergetics and supplies a required substrate for tasks important to rapidly multiplying cells, has a rate-limiting phase that is mediated by nicotinamide phosphoribosyltransferase (NAMPT). In this study, the efficacy and mechanisms of action of FK866, a novel, high-potency NAMPT inhibitor with a good toxicity profile, were assessed. NAMPT-siRNA and FK866 reduced NAD levels and inhibited the proliferation of PLD cells in a dose-dependent manner. Notably, this pharmacologic and siRNA-mediated suppression of NAMPT was less effective in normal cells at the same concentrations. The addition of nicotinamide mononucleotide (NMN), a byproduct of NAMPT that restores NAD concentration, rescued the cellular viability of PLD cells and verified the on-target action of FK866. In FK866-treated PLD cells, mitochondrial respiration and ATP production were impaired and reactive oxygen species production was induced. Importantly, FK866 treatment was associated with improved effects of octreotide, a drug used for PLD treatment. As a result, the use of NAMPT inhibitors, including FK866 therapy, offers the possibility of a further targeted strategy for the therapeutic treatment of PLD.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, Minnesota.
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
4
|
Mogol AN, Kaminsky AZ, Dutton DJ, Madak Erdogan Z. Targeting NAD+ Metabolism: Preclinical Insights into Potential Cancer Therapy Strategies. Endocrinology 2024; 165:bqae043. [PMID: 38565429 DOI: 10.1210/endocr/bqae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
NAD+ is one of the most important metabolites for cellular activities, and its biosynthesis mainly occurs through the salvage pathway using the nicotinamide phosphoribosyl transferase (NAMPT) enzyme. The main nicotinamide adenine dinucleotide (NAD) consumers, poly-ADP-ribose-polymerases and sirtuins enzymes, are heavily involved in DNA repair and chromatin remodeling. Since cancer cells shift their energy production pathway, NAD levels are significantly affected. NAD's roles in cell survival led to the use of NAD depletion in cancer therapies. NAMPT inhibition (alone or in combination with other cancer therapies, including endocrine therapy and chemotherapy) results in decreased cell viability and tumor burden for many cancer types. Many NAMPT inhibitors (NAMPTi) tested before were discontinued due to toxicity; however, a novel NAMPTi, KPT-9274, is a promising, low-toxicity option currently in clinical trials.
Collapse
Affiliation(s)
- Ayça N Mogol
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Alanna Z Kaminsky
- Food Science and Human Nutrition Department, University of Illinois Urbana-Champaign, Champaign, IL 6180161801, USA
| | - David J Dutton
- Molecular Cell Biology Department, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Zeynep Madak Erdogan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
- Food Science and Human Nutrition Department, University of Illinois Urbana-Champaign, Champaign, IL 6180161801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| |
Collapse
|
5
|
Yong J, Cai S, Zeng Z. Targeting NAD + metabolism: dual roles in cancer treatment. Front Immunol 2023; 14:1269896. [PMID: 38116009 PMCID: PMC10728650 DOI: 10.3389/fimmu.2023.1269896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is indispensable for various oxidation-reduction reactions in mammalian cells, particularly during energy production. Malignant cells increase the expression levels of NAD+ biosynthesis enzymes for rapid proliferation and biomass production. Furthermore, mounting proof has indicated that NAD-degrading enzymes (NADases) play a role in creating the immunosuppressive tumor microenvironment (TME). Interestingly, both inhibiting NAD+ synthesis and targeting NADase have positive implications for cancer treatment. Here we summarize the detrimental outcomes of increased NAD+ production, the functions of NAD+ metabolic enzymes in creating an immunosuppressive TME, and discuss the progress and clinical translational potential of inhibitors for NAD+ synthesis and therapies targeting NADase.
Collapse
Affiliation(s)
- Jiaxin Yong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Songqing Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Zhaolei Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
6
|
Zhang Q, Basappa J, Wang HY, Nunez-Cruz S, Lobello C, Wang S, Liu X, Chekol S, Guo L, Ziober A, Nejati R, Shestov A, Feldman M, Glickson JD, Turner SD, Blair IA, Van Dang C, Wasik MA. Chimeric kinase ALK induces expression of NAMPT and selectively depends on this metabolic enzyme to sustain its own oncogenic function. Leukemia 2023; 37:2436-2447. [PMID: 37773266 PMCID: PMC11152057 DOI: 10.1038/s41375-023-02038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
As we show in this study, NAMPT, the key rate-limiting enzyme in the salvage pathway, one of the three known pathways involved in NAD synthesis, is selectively over-expressed in anaplastic T-cell lymphoma carrying oncogenic kinase NPM1::ALK (ALK + ALCL). NPM1::ALK induces expression of the NAMPT-encoding gene with STAT3 acting as transcriptional activator of the gene. Inhibition of NAMPT affects ALK + ALCL cells expression of numerous genes, many from the cell-signaling, metabolic, and apoptotic pathways. NAMPT inhibition also functionally impairs the key metabolic and signaling pathways, strikingly including enzymatic activity and, hence, oncogenic function of NPM1::ALK itself. Consequently, NAMPT inhibition induces cell death in vitro and suppresses ALK + ALCL tumor growth in vivo. These results indicate that NAMPT is a novel therapeutic target in ALK + ALCL and, possibly, other similar malignancies. Targeting metabolic pathways selectively activated by oncogenic kinases to which malignant cells become "addicted" may become a novel therapeutic approach to cancer, alternative or, more likely, complementary to direct inhibition of the kinase enzymatic domain. This potential therapy to simultaneously inhibit and metabolically "starve" oncogenic kinases may not only lead to higher response rates but also delay, or even prevent, development of drug resistance, frequently seen when kinase inhibitors are used as single agents.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Johnvesly Basappa
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Hong Y Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selene Nunez-Cruz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cosimo Lobello
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Shengchun Wang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Xiaobin Liu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Seble Chekol
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lili Guo
- Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Ziober
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Reza Nejati
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex Shestov
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerry D Glickson
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ian A Blair
- Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Chi Van Dang
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Wistar Institute, Philadelphia, PA, USA
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
McKay-Corkum GB, Collins VJ, Yeung C, Ito T, Issaq SH, Holland D, Vulikh K, Zhang Y, Lee U, Lei H, Mendoza A, Shern JF, Yohe ME, Yamamoto K, Wilson K, Ji J, Karim BO, Thomas CJ, Krishna MC, Neckers LM, Heske CM. Inhibition of NAD+-Dependent Metabolic Processes Induces Cellular Necrosis and Tumor Regression in Rhabdomyosarcoma Models. Clin Cancer Res 2023; 29:4479-4491. [PMID: 37616468 PMCID: PMC10841338 DOI: 10.1158/1078-0432.ccr-23-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/23/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
PURPOSE Deregulated metabolism in cancer cells represents a vulnerability that may be therapeutically exploited to benefit patients. One such target is nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage pathway. NAMPT is necessary for efficient NAD+ production and may be exploited in cells with increased metabolic demands. We have identified NAMPT as a dependency in rhabdomyosarcoma (RMS), a malignancy for which novel therapies are critically needed. Here we describe the effect of NAMPT inhibition on RMS proliferation and metabolism in vitro and in vivo. EXPERIMENTAL DESIGN Assays of proliferation and cell death were used to determine the effects of pharmacologic NAMPT inhibition in a panel of ten molecularly diverse RMS cell lines. Mechanism of the clinical NAMPTi OT-82 was determined using measures of NAD+ and downstream NAD+-dependent functions, including energy metabolism. We used orthotopic xenograft models to examine tolerability, efficacy, and drug mechanism in vivo. RESULTS Across all ten RMS cell lines, OT-82 depleted NAD+ and inhibited cell growth at concentrations ≤1 nmol/L. Significant impairment of glycolysis was a universal finding, with some cell lines also exhibiting diminished oxidative phosphorylation. Most cell lines experienced profound depletion of ATP with subsequent irreversible necrotic cell death. Importantly, loss of NAD and glycolytic activity were confirmed in orthotopic in vivo models, which exhibited complete tumor regressions with OT-82 treatment delivered on the clinical schedule. CONCLUSIONS RMS is highly vulnerable to NAMPT inhibition. These findings underscore the need for further clinical study of this class of agents for this malignancy.
Collapse
Affiliation(s)
- Grace B. McKay-Corkum
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Victor J. Collins
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Choh Yeung
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Takeshi Ito
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Sameer H. Issaq
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - David Holland
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health (NIH)
| | - Ksenia Vulikh
- Molecular Histopathology Lab, Frederick National Laboratory for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Yiping Zhang
- National Clinical Target Validation Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Unsun Lee
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Arnulfo Mendoza
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Marielle E. Yohe
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Kelli Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health (NIH)
| | - Jiuping Ji
- National Clinical Target Validation Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Baktiar O. Karim
- Molecular Histopathology Lab, Frederick National Laboratory for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health (NIH)
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Leonard M. Neckers
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Christine M. Heske
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| |
Collapse
|
8
|
Carreira ASA, Ravera S, Zucal C, Thongon N, Irene C, Astigiano C, Bertola N, Buongiorno A, Roccuzzo M, Bisio A, Pardini B, Nencioni A, Bruzzone S, Provenzani A. Mitochondrial rewiring drives metabolic adaptation to NAD(H) shortage in triple negative breast cancer cells. Neoplasia 2023; 41:100903. [PMID: 37148658 DOI: 10.1016/j.neo.2023.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a key metabolic enzyme in NAD+ synthesis pathways and is found upregulated in several tumors, depicting NAD(H) lowering agents, like the NAMPT inhibitor FK866, as an appealing approach for anticancer therapy. Like other small molecules, FK866 triggers chemoresistance, observed in several cancer cellular models, which can prevent its clinical application. The molecular mechanisms sustaining the acquired of resistance to FK866 were studied in a model of triple negative breast cancer (MDA-MB-231 parental - PAR), exposed to increasing concentrations of the small molecule (MDA-MB-231 resistant - RES). RES cells are not sensitive to verapamil or cyclosporin A, excluding a potential role of increased efflux pumps activity as a mechanism of resistance. Similarly, the silencing of the enzyme Nicotinamide Riboside Kinase 1 (NMRK1) in RES cells does not increase FK866 toxicity, excluding this pathway as a compensatory mechanism of NAD+ production. Instead, Seahorse metabolic analysis revealed an increased mitochondrial spare respiratory capacity in RES cells. These cells presented a higher mitochondrial mass compared to the FK866-sensitive counterparts, as well as an increased consumption of pyruvate and succinate for energy production. Interestingly, co-treatment of PAR cells with FK866 and the mitochondrial pyruvate carrier (MPC) inhibitors UK5099 or rosiglitazone, as well as with the transient silencing of MPC2 but not of MPC1, induces a FK866-resistant phenotype. Taken together, these results unravel novel mechanisms of cell plasticity to counteract FK866 toxicity, that, besides the previously described LDHA dependency, rely on mitochondrial rewiring at functional and energetic levels.
Collapse
Affiliation(s)
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy; Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy.
| | - Chiara Zucal
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Natthakan Thongon
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy; Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy.
| | - Caffa Irene
- Department of Internal Medicine, University of Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Cecilia Astigiano
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.
| | - Nadia Bertola
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.
| | - Arianna Buongiorno
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Michela Roccuzzo
- Advanced Imaging Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Barbara Pardini
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy; Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy.
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Santina Bruzzone
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.
| | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| |
Collapse
|
9
|
Panwar S, Kumari A, Kumar H, Tiwari AK, Tripathi P, Asthana S. Structure-based virtual screening, molecular dynamics simulation and in vitro evaluation to identify inhibitors against NAMPT. J Biomol Struct Dyn 2022; 40:10332-10344. [PMID: 34229568 DOI: 10.1080/07391102.2021.1943526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a bottleneck enzyme that plays a key role in recycling nicotinamide to maintain the adequate NAD + level inside the cell. It involves maintaining the cellular bioenergetics and providing a necessary substrate for functions essential to rapidly proliferating the cancer cells. Therefore, inhibition of NAMPT appears as a therapeutic potential for cancer treatment. Here, the vast virtual screening followed by focused docking and in-vitro analysis was carried out to identify the promising hits of NAMPT. We have identified two potential hits from the filtered molecules, which are chemically diverse and have shown comparable quantitative values with reported co-crystal '1QS' as their binding pattern matched nicely. These two compounds are further explored through molecular dynamics simulations (MD) combined with pharmacokinetics profiling and thermodynamic analysis demonstrating their suitability as novel NAMPT inhibitors that can be used as starting points for a hit-to-lead campaign.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Panwar
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Anita Kumari
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Hitesh Kumar
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.,Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Anoop Kumar Tiwari
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.,Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Prabhanshu Tripathi
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.,CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| |
Collapse
|
10
|
Bai JF, Majjigapu SR, Sordat B, Poty S, Vogel P, Elías-Rodríguez P, Moreno-Vargas AJ, Carmona AT, Caffa I, Ghanem M, Khalifa A, Monacelli F, Cea M, Robina I, Gajate C, Mollinedo F, Bellotti A, Nahimana A, Duchosal M, Nencioni A. Identification of new FK866 analogues with potent anticancer activity against pancreatic cancer. Eur J Med Chem 2022; 239:114504. [PMID: 35724566 DOI: 10.1016/j.ejmech.2022.114504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases for which chemotherapy has not been very successful yet. FK866 ((E)-N-(4-(1-benzoylpiperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide) is a well-known NAMPT (nicotinamide phosphoribosyltransferase) inhibitor with anti-cancer activities, but it failed in phase II clinical trials. We found that FK866 shows anti-proliferative activity in three PDAC cell lines, as well as in Jurkat T-cell leukemia cells. More than 50 FK866 analogues were synthesized that introduce substituents on the phenyl ring of the piperidine benzamide group of FK866 and exchange its buta-1,4-diyl tether for 1-oxyprop-3-yl, (E)-but-2-en-1,4-diyl and 2- and 3-carbon tethers. The pyridin-3-yl moiety of FK866 was exchanged for chlorinated and fluorinated analogues and for pyrazin-2-yl and pyridazin-4-yl groups. Several compounds showed low nanomolar or sub-nanomolar cell growth inhibitory activity. Our best cell anti-proliferative compounds were the 2,4,6-trimethoxybenzamide analogue of FK866 ((E)-N-(4-(1-(2,4,6-trimethoxybenzoyl)piperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide) (9), the 2,6-dimethoxybenzamide (8) and 2-methoxybenzamide (4), which exhibited an IC50 of 0.16 nM, 0.004 nM and 0.08 nM toward PDAC cells, respectively.
Collapse
Affiliation(s)
- Jian-Fei Bai
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Somi Reddy Majjigapu
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Bernard Sordat
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Sophie Poty
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Pilar Elías-Rodríguez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Antonio J Moreno-Vargas
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Ana T Carmona
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy
| | - Moustafa Ghanem
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy
| | - Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Inmaculada Robina
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Consuelo Gajate
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Faustino Mollinedo
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Axel Bellotti
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Aimable Nahimana
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Michel Duchosal
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland; Service of Hematology, Oncology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy.
| |
Collapse
|
11
|
Quantitative Analysis of Daporinad (FK866) and Its In Vitro and In Vivo Metabolite Identification Using Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry. Molecules 2022; 27:molecules27062011. [PMID: 35335372 PMCID: PMC8954816 DOI: 10.3390/molecules27062011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Daporinad (FK866) is one of the highly specific inhibitors of nicotinamide phosphoribosyl transferase (NAMPT) and known to have its unique mechanism of action that induces the tumor cell apoptosis. In this study, a simple and sensitive liquid chromatography–quadrupole-time-of-flight–mass spectrometric (LC-qTOF-MS) assay has been developed for the evaluation of drug metabolism and pharmacokinetics (DMPK) properties of Daporinad in mice. A simple protein precipitation method using acetonitrile (ACN) was used for the sample preparation and the pre-treated samples were separated by a C18 column. The calibration curve was evaluated in the range of 1.02~2220 ng/mL and the quadratic regression (weighted 1/concentration2) was used for the best fit of the curve with a correlation coefficient ≥ 0.99. The qualification run met the acceptance criteria of ±25% accuracy and precision values for QC samples. The dilution integrity was verified for 5, 10 and 30-fold dilution and the accuracy and precision of the dilution QC samples were also satisfactory within ±25% of the nominal values. The stability results indicated that Daporinad was stable for the following conditions: short-term (4 h), long-term (2 weeks), freeze/thaw (three cycles). This qualified method was successfully applied to intravenous (IV) pharmacokinetic (PK) studies of Daporinad in mice at doses of 5, 10 and 30 mg/kg. As a result, it showed a linear PK tendency in the dose range from 5 to 10 mg/kg, but a non-linear PK tendency in the dose of 30 mg/kg. In addition, in vitro and in vivo metabolite identification (Met ID) studies were conducted to understand the PK properties of Daporinad and the results showed that a total of 25 metabolites were identified as ten different types of metabolism in our experimental conditions. In conclusion, the LC-qTOF-MS assay was successfully developed for the quantification of Daporinad in mouse plasma as well as for its in vitro and in vivo metabolite identification.
Collapse
|
12
|
Flores G, Grohar PJ. One oncogene, several vulnerabilities: EWS/FLI targeted therapies for Ewing sarcoma. J Bone Oncol 2021; 31:100404. [PMID: 34976713 PMCID: PMC8686064 DOI: 10.1016/j.jbo.2021.100404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
EWS/FLI is the defining mutation of Ewing sarcoma. This oncogene drives malignant transformation and progression and occurs in a genetic background characterized by few other recurrent cooperating mutations. In addition, the tumor is absolutely dependent on the continued expression of EWS/FLI to maintain the malignant phenotype. However, EWS/FLI is a transcription factor and therefore a challenging drug target. The difficulty of directly targeting EWS/FLI stems from unique features of this fusion protein as well as the network of interacting proteins required to execute the transcriptional program. This network includes interacting proteins as well as upstream and downstream effectors that together reprogram the epigenome and transcriptome. While the vast number of proteins involved in this process challenge the development of a highly specific inhibitors, they also yield numerous therapeutic opportunities. In this report, we will review how this vast EWS-FLI transcriptional network has been exploited over the last two decades to identify compounds that directly target EWS/FLI and/or associated vulnerabilities.
Collapse
Affiliation(s)
- Guillermo Flores
- Van Andel Research Institute, Grand Rapids, MI, USA
- Michigan State University, College of Human Medicine, USA
| | - Patrick J Grohar
- Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3501 Civic Center Blvd., Philadelphia, PA, USA
| |
Collapse
|
13
|
Tsao CH, Hsieh WC, Yang RY, Lo YH, Tu TJ, Ke LY, Zouboulis CC, Liu FT. Galectin-12 modulates sebocyte proliferation and cell cycle progression by regulating cyclin A1 and CDK2. Glycobiology 2021; 32:73-82. [PMID: 34791227 DOI: 10.1093/glycob/cwab100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/05/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Enhanced sebocyte proliferation is associated with the pathogenesis of human skin diseases related to sebaceous gland hyperfunction and androgens, which are known to induce sebocyte proliferation, are key mediators of this process. Galectin-12, a member of the β-galactoside-binding lectin family that is preferentially expressed by adipocytes and functions as an intrinsic negative regulator of lipolysis, has been shown to be expressed by human sebocytes. In this study, we identified galectin-12 as an important intracellular regulator of sebocyte proliferation. Galectin-12 knockdown in the human SZ95 sebocyte line suppressed cell proliferation, and its overexpression promoted cell cycle progression. Inhibition of galectin-12 expression reduced the androgen-induced SZ95 sebocyte proliferation and growth of sebaceous glands in mice, respectively. The mRNA expression of the key cell cycle regulators cyclin A1 (CCNA1) and cyclin-dependent kinase 2CDK2 was reduced in galectin-12 knockdown SZ95 sebocytes, suggesting a pathway of galectin-12 regulation of sebocyte proliferation. Further, galectin-12 enhanced peroxisome proliferator-activated receptor gamma (PPARγ) expression and transcriptional activity in SZ95 sebocytes, consistent with our previous studies in adipocytes. Rosiglitazone, a PPARγ ligand, induced CCNA1 levels, suggesting that galectin-12 may upregulate CCNA1 expression via PPARγ. Our findings suggest the possibility of targeting galectin-12 to treat human sebaceous gland hyperfunction and androgen-associated skin diseases.
Collapse
Affiliation(s)
- Ching-Han Tsao
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Taipei 11529, Taiwan.,Ph.D. Program in Translational Medicine, Kaohsiung Medical University and Academia Sinica
| | - Wei-Chen Hsieh
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Taipei 11529, Taiwan
| | - Ri-Yao Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Yuan-Hsin Lo
- Department of Dermatology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, No. 69, Guizi Road, New Taipei City 24352, Taiwan
| | - Ting-Jui Tu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Taipei 11529, Taiwan
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Auenweg 38, Dessau 06847, Germany
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Taipei 11529, Taiwan.,Department of Dermatology, School of Medicine, University of California-Davis, 3301 C Street Suite 1300 - 1400, Sacramento, CA 95816, USA
| |
Collapse
|
14
|
Wei Z, Chai H, Chen Y, Cheng Y, Liu X. Nicotinamide mononucleotide: An emerging nutraceutical against cardiac aging? Curr Opin Pharmacol 2021; 60:291-297. [PMID: 34507029 DOI: 10.1016/j.coph.2021.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is essential for cellular physiological processes, directly or indirectly affecting metabolism and gene expression. The decline of NAD+ levels in the heart is accompanied by aging, causing cardiac pathological remodeling and dysfunction. Niacinamide mononucleotide (NMN) has emerged as a precursor to alleviate age-related cardiac pathophysiological changes by improving cardiac NAD+ homeostasis. Preclinical trials on the efficacy and safety of intaking NMN have shown encouraging results, revealing a cardioprotective effect without significant side effects. Strategies for improving the effectiveness of NMN are also evolving. The present review aimed to summarize the potentials of NMN as a nutraceutical against cardiac aging and highlight the relationship between NMN supplementation and cardiac protection.
Collapse
Affiliation(s)
- Zisong Wei
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hua Chai
- Department of Academic Affairs, West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Yan Chen
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Cheng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Ghanem MS, Monacelli F, Nencioni A. Advances in NAD-Lowering Agents for Cancer Treatment. Nutrients 2021; 13:1665. [PMID: 34068917 PMCID: PMC8156468 DOI: 10.3390/nu13051665] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor, but it also acts as a substrate for NAD-consuming enzymes, regulating cellular events such as DNA repair and gene expression. Since such processes are fundamental to support cancer cell survival and proliferation, sustained NAD production is a hallmark of many types of neoplasms. Depleting intratumor NAD levels, mainly through interference with the NAD-biosynthetic machinery, has emerged as a promising anti-cancer strategy. NAD can be generated from tryptophan or nicotinic acid. In addition, the "salvage pathway" of NAD production, which uses nicotinamide, a byproduct of NAD degradation, as a substrate, is also widely active in mammalian cells and appears to be highly exploited by a subset of human cancers. In fact, research has mainly focused on inhibiting the key enzyme of the latter NAD production route, nicotinamide phosphoribosyltransferase (NAMPT), leading to the identification of numerous inhibitors, including FK866 and CHS-828. Unfortunately, the clinical activity of these agents proved limited, suggesting that the approaches for targeting NAD production in tumors need to be refined. In this contribution, we highlight the recent advancements in this field, including an overview of the NAD-lowering compounds that have been reported so far and the related in vitro and in vivo studies. We also describe the key NAD-producing pathways and their regulation in cancer cells. Finally, we summarize the approaches that have been explored to optimize the therapeutic response to NAMPT inhibitors in cancer.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|