1
|
Pieplow C, Furze A, Gregory P, Oulhen N, Wessel GM. Sex specific gene expression is present prior to metamorphosis in the sea urchin. Dev Biol 2024; 517:217-233. [PMID: 39427857 DOI: 10.1016/j.ydbio.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/26/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
A profound collaboration between the germline and somatic cells of an organism is the creation of a functional gonad. Here we establish a foundation for studying molecular gonadogenesis in the sea urchin by use of RNA-seq, quantitative mRNA measurements, and in-situ hybridizations throughout the life cycle of the variegated sea urchin, Lytechinus variegatus (Lv). We found through three distinct analyses that the ovary and testis of this echinoderm expresses unique transcripts involved in gametogenesis, and also discovered uncharacterized gene products unique to each gonad. We further developed a pipeline integrating timepoint RNA-seq data throughout development to identify hallmark gene expression in gonads. We found that meiotic and candidate genes involved in sex determination are first expressed surprisingly early during larval growth, and well before metamorphosis. We further discovered that individual larvae express varying amounts of male- or female-hallmarks before metamorphosis, including germline, oocyte, sperm, and meiotic related genes. These distinct male- or female-gonad gene profiles may indicate the onset of, and commitment to, development of a bipotential gonad primordium, and may include metabolic differences, supported by the observation that transcripts involved in glycolysis are highly enriched in the ovary compared to the testis. Together these data support a hypothesis that sex determination is initiated prior to metamorphosis in the sea urchin and that the many uncharacterized genes unique to each gonad type characterized herein may reveal unique pathways and mechanisms in echinoderm reproduction.
Collapse
Affiliation(s)
- Cosmo Pieplow
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Aidan Furze
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Pauline Gregory
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Nathalie Oulhen
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA.
| |
Collapse
|
2
|
Huang Z, Xu L, Wu Z, Xiong X, Luo L, Wen Z. CDC25B Is a Prognostic Biomarker Associated With Immune Infiltration and Drug Sensitivity in Hepatocellular Carcinoma. Int J Genomics 2024; 2024:8922878. [PMID: 39371450 PMCID: PMC11455594 DOI: 10.1155/2024/8922878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Cell division cycle 25B (CDC25B), a member of the CDC25 phosphatase family, plays a key role in cell cycle regulation. Studies have suggested its carcinogenic potential in various cancers, but the role of CDC25B in the development of hepatocellular carcinoma (HCC) remains poorly understood. The aim of this study was to clarify the role of CDC25B in HCC using bioinformatics and experiments. CDC25B expression data of HCC cancer tissues and paracancerous normal samples were obtained from The Cancer Gene Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and the relationship between CDC25B expression and the prognosis and degree of tumor differentiation of HCC patients was analyzed. CDC25B expression was verified in clinical HCC tissue samples using fluorescence quantitative polymerase chain reaction (q-PCR) and protein immunoblotting (Western blot). Gene set enrichment analysis (GSEA) was used to identify signaling pathways enriched in CDC25B expression, and differential genes (DEGs) were used to screen out coexpressed hub genes and construct protein-protein interaction (PPI) networks. 5-Ethynyl-2'-deoxyuridine (EDU) staining was used to compare the proliferation and differentiation ability of the HCC cell line (HCC-LM3) after knockdown of CDC25B. Finally, we investigated the mutation of CDC25B in HCC and the relationship between CDC25B expression and tumor cell infiltration of lymphocytes and some immune checkpoints as well as drug sensitivity. CDC25B was overexpressed in HCC tissues and correlated with poor prognosis and the degree of tumor differentiation in patients with HCC. The GSEA and PPI networks together revealed significantly upregulated signaling pathways, as well as functions, associated with the development of HCC when CDC25B was overexpressed. The EDU assay demonstrated that the ability of cells to differentiate value addedly was markedly reduced following the downregulation of CDC25B expression in HCC-LM3s. CDC25B was also involved in the formation of the tumor microenvironment (TME) and immune processes in HCC, and the high expression of CDC25B made patients less sensitive to some drugs. CDC25B can be used as a biomarker and immunotherapeutic target for poor prognosis and partial drug sensitivity in HCC, providing new ideas for HCC treatment.
Collapse
Affiliation(s)
- Zixiang Huang
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| | - Liangzhi Xu
- Department of Hepatobiliary SurgeryEzhou Central Hospital, Ezhou, Hubei, China
| | - Zhengqiang Wu
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| | - Xiaofeng Xiong
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| | - Linfei Luo
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| | - Zhili Wen
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| |
Collapse
|
3
|
Mills M, Emori C, Kumar P, Boucher Z, George J, Bolcun-Filas E. Single-cell and bulk transcriptional profiling of mouse ovaries reveals novel genes and pathways associated with DNA damage response in oocytes. Dev Biol 2024; 517:55-72. [PMID: 39306223 DOI: 10.1016/j.ydbio.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Immature oocytes enclosed in primordial follicles stored in female ovaries are under constant threat of DNA damage induced by endogenous and exogenous factors. Checkpoint kinase 2 (CHEK2) is a key mediator of the DNA damage response (DDR) in all cells. Genetic studies have shown that CHEK2 and its downstream targets, p53, and TAp63, regulate primordial follicle elimination in response to DNA damage. However, the mechanism leading to their demise is still poorly characterized. Single-cell and bulk RNA sequencing were used to determine the DDR in wild-type and Chek2-deficient ovaries. A low but oocyte-lethal dose of ionizing radiation induces ovarian DDR that is solely dependent on CHEK2. DNA damage activates multiple response pathways related to apoptosis, p53, interferon signaling, inflammation, cell adhesion, and intercellular communication. These pathways are differentially employed by different ovarian cell types, with oocytes disproportionately affected by radiation. Novel genes and pathways are induced by radiation specifically in oocytes, shedding light on their sensitivity to DNA damage, and implicating a coordinated response between oocytes and pregranulosa cells within the follicle. These findings provide a foundation for future studies on the specific mechanisms regulating oocyte survival in the context of aging, therapeutic and environmental genotoxic exposures.
Collapse
Affiliation(s)
- Monique Mills
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA; The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 5650871, Japan
| | - Parveen Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06110, USA
| | - Zachary Boucher
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06110, USA
| | | |
Collapse
|
4
|
Mills M, Emori C, Kumar P, Boucher Z, George J, Bolcun-Filas E. Single-cell and bulk transcriptional profiling of mouse ovaries reveals novel genes and pathways associated with DNA damage response in oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578648. [PMID: 38352597 PMCID: PMC10862846 DOI: 10.1101/2024.02.02.578648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Immature oocytes enclosed in primordial follicles stored in female ovaries are under constant threat of DNA damage induced by endogenous and exogenous factors. Checkpoint kinase 2 (CHEK2) is a key mediator of the DNA damage response in all cells. Genetic studies have shown that CHEK2 and its downstream targets, p53 and TAp63, regulate primordial follicle elimination in response to DNA damage, however the mechanism leading to their demise is still poorly characterized. Single-cell and bulk RNA sequencing were used to determine the DNA damage response in wildtype and Chek2-deficient ovaries. A low but oocyte-lethal dose of ionizing radiation induces a DNA damage response in ovarian cells that is solely dependent on CHEK2. DNA damage activates multiple ovarian response pathways related to apoptosis, p53, interferon signaling, inflammation, cell adhesion, and intercellular communication. These pathways are differentially employed by different ovarian cell types, with oocytes disproportionately affected by radiation. Novel genes and pathways are induced by radiation specifically in oocytes, shedding light on their sensitivity to DNA damage, and implicating a coordinated response between oocytes and pre-granulosa cells within the follicle. These findings provide a foundation for future studies on the specific mechanisms regulating oocyte survival in the context of aging, as well as therapeutic and environmental genotoxic exposures.
Collapse
Affiliation(s)
- Monique Mills
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan
| | - Parveen Kumar
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Zachary Boucher
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Joshy George
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
5
|
Sharma P, Chaturvedi S, Khan MA, Rai Y, Bhatt AN, Najmi AK, Akhtar M, Mishra AK. Nanoemulsion potentiates the anti-cancer activity of Myricetin by effective inhibition of PI3K/AKT/mTOR pathway in triple-negative breast cancer cells. Med Oncol 2024; 41:56. [PMID: 38218749 DOI: 10.1007/s12032-023-02274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/28/2023] [Indexed: 01/15/2024]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous tumor with a poor prognosis and high metastatic potential, resulting in poor clinical outcomes, necessitating investigation to devise effective therapeutic strategies. Multiple studies have substantiated the anti-cancer properties of the naturally occurring flavonoid "Myricetin" in various malignancies. However, the therapeutic application of Myricetin is impeded by its poor water solubility and low oral bioavailability. To overcome this limitation, we aimed to develop nanoemulsion of Myricetin (Myr-NE) and evaluate its advantage over Myricetin alone in TNBC cells. The nanoemulsion was formulated using Capryol 90 (oil), Tween 20 (surfactant), and Transcutol HP (co-surfactant). The optimized nano-formulation underwent an evaluation to determine its size, zeta potential, morphology, stability, drug encapsulation efficiency, and in vitro release properties. The anti-cancer activity of Myr-NE was further studied to examine its distinct impact on intracellular drug uptake, cell-viability, anti-tumor signaling, oxidative stress, clonogenicity, and cell death, compared with Myricetin alone in MDA-MB-231 (TNBC) cells. The in vitro drug release and intracellular drug uptake of Myricetin was significantly increased in Myr-NE formulation as compared to Myricetin alone. Moreover, Myr-NE exhibited significant inhibition of cell proliferation, clonogenicity, and increased apoptosis with ~ 2.5-fold lower IC50 as compared to Myricetin. Mechanistic investigation revealed that nanoemulsion augmented the anti-cancer efficacy of Myricetin, most likely by inhibiting the PI3K/AKT/mTOR pathway, eventually leading to enhanced cell death in TNBC cells. The study provides substantial experimental evidence to support the notion that the Myr-NE formulation has the potential to be an effective therapeutic drug for TNBC treatment.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Hamdard University), New Delhi, 110062, India
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Yogesh Rai
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India
| | - Anant Narayan Bhatt
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Hamdard University), New Delhi, 110062, India.
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India.
| |
Collapse
|
6
|
Long Q, Sebesta M, Sedova K, Haluza V, Alagia A, Liu Z, Stefl R, Gullerova M. The phosphorylated trimeric SOSS1 complex and RNA polymerase II trigger liquid-liquid phase separation at double-strand breaks. Cell Rep 2023; 42:113489. [PMID: 38039132 DOI: 10.1016/j.celrep.2023.113489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
Double-strand breaks (DSBs) are the most severe type of DNA damage. Previously, we demonstrated that RNA polymerase II (RNAPII) phosphorylated at the tyrosine 1 (Y1P) residue of its C-terminal domain (CTD) generates RNAs at DSBs. However, the regulation of transcription at DSBs remains enigmatic. Here, we show that the damage-activated tyrosine kinase c-Abl phosphorylates hSSB1, enabling its interaction with Y1P RNAPII at DSBs. Furthermore, the trimeric SOSS1 complex, consisting of hSSB1, INTS3, and c9orf80, binds to Y1P RNAPII in response to DNA damage in an R-loop-dependent manner. Specifically, hSSB1, as a part of the trimeric SOSS1 complex, exhibits a strong affinity for R-loops, even in the presence of replication protein A (RPA). Our in vitro and in vivo data reveal that the SOSS1 complex and RNAPII form dynamic liquid-like repair compartments at DSBs. Depletion of the SOSS1 complex impairs DNA repair, underscoring its biological role in the R-loop-dependent DNA damage response.
Collapse
Affiliation(s)
- Qilin Long
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Marek Sebesta
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic.
| | - Katerina Sedova
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Vojtech Haluza
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Adele Alagia
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Zhichao Liu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Richard Stefl
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic; National Center for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
7
|
Tatar C, Avci CB, Acikgoz E, Oktem G. Doxorubicin-induced senescence promotes resistance to cell death by modulating genes associated with apoptotic and necrotic pathways in prostate cancer DU145 CD133 +/CD44 + cells. Biochem Biophys Res Commun 2023; 680:194-210. [PMID: 37748252 DOI: 10.1016/j.bbrc.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Cancer stem cells (CSCs) are the most important cause of cancer treatment failure. Traditional cancer treatments, such as chemotherapy and radiotherapy, damage healthy cells alongside malignant cells, leading to severe adverse effects. Therefore, inducing cellular senescence without triggering apoptosis, which further damages healthy cells, may be an alternative strategy. However, there is insufficient knowledge regarding senescence induction in CSCs that show resistance to treatment and stemness properties. The present study aims to elucidate the effects of senescence induction on proliferation, cell cycle, and apoptosis in prostate CSCs and non-CSCs. Prostate CSCs were isolated from DU145 cancer cells using the FACS method. Subsequently, senescence induction was performed in RWPE-1, DU145, prostate CSCs, and non-CSCs by using different concentrations of Doxorubicin (DOX). Cellular senescence was detected using the senescence markers SA-β-gal, Ki67, and senescence-associated heterochromatin foci (SAHF). The effects of senescence on cell cycle and apoptosis were evaluated using the Muse Cell Analyzer, and genes in signaling pathways associated with the apoptotic/necrotic pathway were analyzed by real-time PCR. Prostate CSCs were isolated with 95.6 ± 1.4% purity according to CD133+/CD44+ characteristics, and spheroid formation belonging to stem cells was observed. After DOX-induced senescence, we observed morphological changes, SA-β-gal positivity, SAHF, and the lack of Ki67 in senescent cells. Furthermore; we detected G2/M cell cycle arrest and downregulation of various apoptosis-related genes in senescent prostate CSCs. Our results showed that DOX is a potent inducer of senescence for prostate CSCs, inhibits proliferation by arresting the cell cycle, and senescent prostate CSCs develop resistance to apoptosis.
Collapse
Affiliation(s)
- Cansu Tatar
- Department of Stem Cell, Institute of Health Science, Ege University, 35100, Izmir, Turkey.
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey.
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, 65080, Turkey.
| | - Gulperi Oktem
- Department of Stem Cell, Institute of Health Science, Ege University, 35100, Izmir, Turkey; Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey.
| |
Collapse
|
8
|
Kumar V, Bauer C, Stewart JH. Targeting cGAS/STING signaling-mediated myeloid immune cell dysfunction in TIME. J Biomed Sci 2023; 30:48. [PMID: 37380989 PMCID: PMC10304357 DOI: 10.1186/s12929-023-00942-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Myeloid immune cells (MICs) are potent innate immune cells serving as first responders to invading pathogens and internal changes to cellular homeostasis. Cancer is a stage of altered cellular homeostasis that can originate in response to different pathogens, chemical carcinogens, and internal genetic/epigenetic changes. MICs express several pattern recognition receptors (PRRs) on their membranes, cytosol, and organelles, recognizing systemic, tissue, and organ-specific altered homeostasis. cGAS/STING signaling is a cytosolic PRR system for identifying cytosolic double-stranded DNA (dsDNA) in a sequence-independent but size-dependent manner. The longer the cytosolic dsDNA size, the stronger the cGAS/STING signaling activation with increased type 1 interferon (IFN) and NF-κB-dependent cytokines and chemokines' generation. The present article discusses tumor-supportive changes occurring in the tumor microenvironment (TME) or tumor immune microenvironment (TIME) MICs, specifically emphasizing cGAS/STING signaling-dependent alteration. The article further discusses utilizing MIC-specific cGAS/STING signaling modulation as critical tumor immunotherapy to alter TIME.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
| | - Caitlin Bauer
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA
| | - John H Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
- Louisiana Children's Medical Center Cancer Center, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
- Surgery, Section of Surgical Oncology, Louisiana State University New Orleans-Louisiana Children's Medical Center Cancer Center, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
| |
Collapse
|
9
|
Byun WS, Lim H, Hong J, Bae ES, Lee SB, Kim Y, Lee J, Lee SK, Hong S. Design, Synthesis, and Biological Activity of Marinacarboline Analogues as STAT3 Pathway Inhibitors for Docetaxel-Resistant Triple-Negative Breast Cancer. J Med Chem 2023; 66:3106-3133. [PMID: 36786551 DOI: 10.1021/acs.jmedchem.2c01115] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Metastatic triple-negative breast cancer (mTNBC) is a fatal type of breast cancer (BC), and signal transducer and activator of transcription 3 (STAT3) has emerged as an effective target for mTNBC. In the present study, compound MC0704 was found to be a novel synthetic STAT3 pathway inhibitor, and its potential antitumor activity was demonstrated using in vitro and in vivo models in docetaxel-resistant TNBC cells. Based on marinacarboline (MC), a series β-carboline derivatives were synthesized and investigated for their antitumor activities against docetaxel-resistant MDA-MB-231 (MDA-MB-231-DTR) cells. Combining antiproliferation and STAT3 inhibitory activities, MC0704 was selected as the most promising β-carboline compound. MC0704 effectively impeded the metastatic potential of MDA-MB-231-DTR cells in vitro, and the combination of MC0704 and docetaxel exhibited potent antitumor activities in a xenograft mouse model. These findings suggested that MC0704 can be a lead candidate as a target therapeutic agent for TNBC patients with docetaxel resistance.
Collapse
Affiliation(s)
- Woong Sub Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyewon Lim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Junhwa Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Seo Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seok Beom Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Younggwan Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeeyeon Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Zhang YY, Feng PP, Wang HF, Zhang H, Liang T, Hao XS, Wang FZ, Fei HR. Licochalcone B induces DNA damage, cell cycle arrest, apoptosis, and enhances TRAIL sensitivity in hepatocellular carcinoma cells. Chem Biol Interact 2022; 365:110076. [DOI: 10.1016/j.cbi.2022.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
|
11
|
Ji H, Zhang K, Pan G, Li C, Li C, Hu X, Yang L, Cui H. Deoxyelephantopin Induces Apoptosis and Enhances Chemosensitivity of Colon Cancer via miR-205/Bcl2 Axis. Int J Mol Sci 2022; 23:5051. [PMID: 35563442 PMCID: PMC9099879 DOI: 10.3390/ijms23095051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022] Open
Abstract
Colon cancer (CC) is one of the major causes of cancer death in humans. Despite recent advances in the management of CC, the prognosis is still poor and a new strategy for effective therapy is imperative. Deoxyelephantopin (DET), extracted from an important medicinal plant, Elephantopus scaber L., has been reported to exhibit excellent anti-inflammatory and -cancer activities, while the detailed anti-cancer mechanism remains unclear. Herein, we found that DET showed a significant CC inhibiting effect in vitro and in vivo without obvious organ toxicity. Mechanistically, DET inhibited CC cells and tumor growth by inducing G2/M phase arrest and subsequent apoptosis. DET-mediated cell cycle arrest was caused by severe DNA damage, and DET decreased the Bcl2 expression level in a dose-dependent manner to promote CC cell apoptosis, whereas restoring Bcl2 expression reduced apoptosis to a certain extent. Moreover, we identified a microRNA complementary to the 3'-UTR of Bcl2, miR-205, that responded to the DET treatment. An inhibitor of miR-205 could recover Bcl2 expression and promoted the survival of CC cells upon DET treatment. To further examine the potential value of the drug, we evaluated the combinative effects of DET and 5-Fluorouracil (5FU) through Jin's formula and revealed that DET acted synergistically with 5FU, resulting in enhancing the chemotherapeutic sensitivity of CC to 5FU. Our results consolidate DET as a potent drug for the treatment of CC when it is used alone or combined with 5FU, and elucidate the importance of the miR-205-Bcl2 axis in DET treatment.
Collapse
Affiliation(s)
- Haoyan Ji
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Changhong Li
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Xin Hu
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| |
Collapse
|
12
|
Sex disparities in DNA damage response pathways: Novel determinants in cancer formation and therapy. iScience 2022; 25:103875. [PMID: 35243237 PMCID: PMC8858993 DOI: 10.1016/j.isci.2022.103875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
13
|
Liu H, Zhang Z, Song L, Gao J, Liu Y. Lipid metabolism of cancer stem cells (Review). Oncol Lett 2022; 23:119. [PMID: 35261633 PMCID: PMC8855159 DOI: 10.3892/ol.2022.13239] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022] Open
Abstract
Cancer stem cells (CSCs), also termed cancer-initiating cells, are a special subset of cells with high self-replicating and self-renewing abilities that can differentiate into various cell types under certain conditions. A number of studies have demonstrated that CSCs have distinct metabolic properties. The reprogramming of energy metabolism enables CSCs to meet the needs of self-renewal and stemness maintenance. Increasing evidence supports the view that alterations in lipid metabolism, including an increase in fatty acid (FA) uptake, de novo lipogenesis, formation of lipid droplets and mitochondrial FA oxidation, are involved in CSC regulation. In the present review, the metabolic characteristics of CSCs, particularly in lipid metabolism, were summarized. In addition, the potential mechanisms of CSC lipid metabolism in treatment resistance were discussed. Given their significance in cancer biology, targeting CSC metabolism may serve an important role in future cancer treatment.
Collapse
Affiliation(s)
- Huihui Liu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Zhengyang Zhang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Lian Song
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jie Gao
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yanfang Liu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
14
|
A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments. Nat Commun 2022; 13:625. [PMID: 35110534 PMCID: PMC8810922 DOI: 10.1038/s41467-022-28045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 12/23/2021] [Indexed: 11/10/2022] Open
Abstract
A genetic knockout can be lethal to one human cell type while increasing growth rate in another. This context specificity confounds genetic analysis and prevents reproducible genome engineering. Genome-wide CRISPR compendia across most common human cell lines offer the largest opportunity to understand the biology of cell specificity. The prevailing viewpoint, synthetic lethality, occurs when a genetic alteration creates a unique CRISPR dependency. Here, we use machine learning for an unbiased investigation of cell type specificity. Quantifying model accuracy, we find that most cell type specific phenotypes are predicted by the function of related genes of wild-type sequence, not synthetic lethal relationships. These models then identify unexpected sets of 100-300 genes where reduced CRISPR measurements can produce genome-scale loss-of-function predictions across >18,000 genes. Thus, it is possible to reduce in vitro CRISPR libraries by orders of magnitude—with some information loss—when we remove redundant genes and not redundant sgRNAs. Context specificity confounds genetic analysis and prevents reproducible genome engineering. Here, the authors report a pan-CRISPR analysis of specificity in mammalian cells and identify ultra-compact sgRNA subsets for genome-scale screens.
Collapse
|
15
|
Fa P, Qiu Z, Wang QE, Yan C, Zhang J. A Novel Role for RNF126 in the Promotion of G2 Arrest via Interaction With 14-3-3σ. Int J Radiat Oncol Biol Phys 2022; 112:542-553. [PMID: 34563636 PMCID: PMC8748417 DOI: 10.1016/j.ijrobp.2021.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Cell cycle checkpoints and DNA repair are important for cell survival after exogenous DNA damage. Both rapid blockage of G2 to M phase transition in the cell cycle and the maintenance of relatively slow G2 arrest are critical to protect cells from lethal ionizing radiation (IR). Checkpoint kinase 1 is pivotal in blocking the transition from G2 to M phases in response to IR. The 14-3-3σ protein is important for IR-induced G2 arrest maintenance in which p53-dependent 14-3-3σ transcription is involved. It has been demonstrated that Ring finger protein 126 (RNF126), an E3 ligase, is required to upregulate checkpoint kinase 1 expression. Thus, our goal was to study the role of RNF126 in the G2/M phase checkpoint. METHODS AND MATERIALS The transition from G2 to M phases and G2 accumulation in response to IR were determined by flow cytometry through staining with phospho-histone H3 (pS10) antibody and propidium iodide, respectively. The interaction of RNF126 and 14-3-3σ was determined by GST-pulldown and coimmunoprecipitation assays. The stability of RNF126 and 14-3-3σ was determined by cycloheximide-based stability assay and ubiquitination detection by coimmunoprecipitation. The sequestering of cyclin-dependent kinase 1 and cyclin B1 from the nucleus was determined by immunofluorescence staining. RESULTS RNF126 knockdown had no impact on the IR-induced transient blockage of G2 to M but impaired IR-induced G2 arrest maintenance in cells with or without wild-type p53. Mechanistically, RNF126 binds 14-3-3σ and prevents both proteins from ubiquitination-mediated degradation. Last, RNF126 is required for enforcing the cytoplasmic sequestration of cyclin B1 and cyclin-dependent kinase 1 proteins in response to IR. CONCLUSIONS RNF126 promotes G2 arrest via interaction with 14-3-3σ in response to IR. Our study revealed a novel role for RNF126 in promoting G2 arrest, providing a new target for cancer treatment.
Collapse
Affiliation(s)
- Pengyan Fa
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, USA
| | - Zhaojun Qiu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, USA
| | - Qi-En Wang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, USA
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Junran Zhang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, USA,Corresponding author: Junran Zhang,
| |
Collapse
|
16
|
Khayat MT, Omar AM, Ahmed F, Khan MI, Ibrahim SM, Muhammad YA, Malebari AM, Neamatallah T, El-Araby ME. Insights on Cancer Cell Inhibition, Subcellular Activities, and Kinase Profile of Phenylacetamides Pending 1 H-Imidazol-5-One Variants. Front Pharmacol 2022; 12:794325. [PMID: 35069208 PMCID: PMC8766756 DOI: 10.3389/fphar.2021.794325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Structural changes of small-molecule drugs may bring interesting biological properties, especially in the field of kinase inhibitors. We sought to study tirbanibulin, a first-in-class dual Src kinase (non-ATP competitive)/tubulin inhibitor because there was not enough reporting about its structure–activity relationships (SARs). In particular, the present research is based on the replacement of the outer ring of the biphenyl system of 2-[(1,1′-biphenyl)-4-yl]-N-benzylacetamide, the identified pharmacophore of KX chemotype, with a heterocyclic ring. The newly synthesized compounds showed a range of activities in cell-based anticancer assays, agreeing with a clear SAR profile. The most potent compound, (Z)-N-benzyl-4-[4-(4-methoxybenzylidene)-2-methyl-5-oxo-4,5-dihydro-1H-imidazol-1-yl]phenylacetamide (KIM-161), demonstrated cytotoxic IC50 values at 294 and 362 nM against HCT116 colon cancer and HL60 leukemia cell lines, respectively. Profiling of this compound (aqueous solubility, liver microsomal stability, cytochrome P450 inhibition, reactivity with reduced glutathione, and plasma protein binding) confirmed its adequate drug-like properties. Mechanistic studies revealed that this compound does not depend on tubulin or Src kinase inhibition as a factor in forcing HL60 to exit its cell cycle and undergo apoptosis. Instead, KIM-161 downregulated several other kinases such as members of BRK, FLT, and JAK families. It also strongly suppresses signals of ERK1/2, GSK-3α/β, HSP27, and STAT2, while it downregulated AMPKα1 phosphorylation within the HL60 cells. Collectively, these results suggest that phenylacetamide-1H-imidazol-5-one (KIM-161) could be a promising lead compound for further clinical anticancer drug development.
Collapse
Affiliation(s)
- Maan T Khayat
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdelsattar M Omar
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Al-Azhar University, Nasr City, Egypt.,Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad I Khan
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sara M Ibrahim
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yosra A Muhammad
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Azizah M Malebari
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thikryat Neamatallah
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Moustafa E El-Araby
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Mousa AM, Soliman KEA, Alhumaydhi F, Almatroudi A, Al Rugaie O, Allemailem KS, Alrumaihi F, Khan A, Rezk MY, Aljasir M, Alwashmi ASS, Aba Alkhayl FF, Albutti AS, Seleem HS. Garlic Extract Alleviates Trastuzumab-Induced Hepatotoxicity in Rats Through Its Antioxidant, Anti-Inflammatory, and Antihyperlipidemic Effects. J Inflamm Res 2021; 14:6305-6316. [PMID: 34866928 PMCID: PMC8636847 DOI: 10.2147/jir.s339092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022] Open
Abstract
Background Trastuzumab is a new biological drug that has been used to treat breast and gastric cancer; however, its cardiotoxicity and hepatotoxicity limit its use. Garlic has antioxidant, anti-inflammatory, antihyperlipidemic, and anticancer effects. The present study aimed to evaluate the effects of garlic on trastuzumab-induced hepatotoxicity in a rat model. Methods Twenty rats were divided into four equal groups as vehicle control (G1), garlic (G2), trastuzumab (G3), and trastuzumab+garlic (G4). All rats were sacrificed after eight weeks of treatment, followed by blood collection and excision of liver tissues for further analyses. The liver specimens were processed for histopathological (HP), immunohistochemical (expression of TNF-α and PCNA), immunofluorescent expression of Chk2 and p53, biochemical, and flow cytometry investigations to evaluate the extent of hepatocyte injury. The biochemical analysis was conducted for the activity of tissue antioxidants (GPX1, CAT, and SOD2), serum lipid profile, and liver enzymes, whereas ROS was performed by flow cytometry. Results The results revealed remarkable structural changes in hepatocytes of G3 with significant increases in the numbers of inflammatory cells and positive PCNA cells, area % of collagen fibers, and immuno-expression of TNF-α, as well as a significant reduction in the nuclear expression of Chk2. In addition, significant reductions were noticed in the antioxidant enzymes (SOD2, CAT, and GPX1) activity of G3. In contrast, the levels of lipid profile tests (triglycerides, total cholesterol, LDLC, and HDLC), liver enzymes (ALT, AST, and ALP), and ROS revealed significant increases in rats of G3. Likewise, garlic administration in G4 restored all mentioned changes to their average levels deviated by trastuzumab. Conclusion Based on the current results, garlic demonstrates hepatoprotective effects against trastuzumab-induced toxicity in rats. The study suggested for the first time that the coadministration of garlic with trastuzumab for treating breast or gastric cancer can augment their efficacy with minimal toxicity.
Collapse
Affiliation(s)
- Ayman M Mousa
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia.,Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Khaled E A Soliman
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, 51452, Saudi Arabia.,Department of Forensic Medicine and Clinical Toxicology, Sohag Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Fahad Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, 51452, Saudi Arabia
| | - Khaled S Allemailem
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia.,Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mohamad Y Rezk
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, 51452, Saudi Arabia.,Department of Medical Physiology, College of Medicine, Zagazig University, Al-Sharquia, 44519, Egypt
| | - Mohammad Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Aqel S Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Hanan S Seleem
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, 51452, Saudi Arabia.,Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shebin Elkoum, Egypt
| |
Collapse
|
18
|
Lei Y, He L, Yan C, Wang Y, Lv G. PERK activation by CCT020312 chemosensitizes colorectal cancer through inducing apoptosis regulated by ER stress. Biochem Biophys Res Commun 2021; 557:316-322. [PMID: 33894420 DOI: 10.1016/j.bbrc.2021.03.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022]
Abstract
Endoplasmic reticulum (ER) stress is a significant mechanism for chemoresistance to colorectal cancer (CRC) treatment. The RNA-like endoplasmic reticulum kinase (PERK) is critical for ER stress induction. In the present study, we attempted to explore whether PERK activator CCT020312 (CCT) could be effective for CRC treatment, and reveal the underlying mechanisms. We first found that CCT dose- and time-dependently reduced CRC cell proliferation. Importantly, it markedly improved the chemosensitivity of CRC cells that were drug-sensitive or -resistant to taxol treatment, as evidenced by the significantly decreased cell viability. Moreover, CCT at the non-toxic concentration exhibited obviously synergistic effects with taxol to induce apoptosis and cell cycle arrest in G2/M phase in vitro. In addition, we showed that CCT alone considerably induced ER stress in CRC cells through a dose- and time-dependent fashion. Meanwhile, CCT combined with taxol caused significant ER stress through improving phosphorylated PERK, eukaryotic translation initiation factor 2α (eIF2ɑ), C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78). More studies showed that the interaction between PERK and GRP78 was a potential target for CCT to perform its regulatory events. Intriguingly, PERK knockdown markedly abolished the regulatory role of CCT and taxol cotreatments in cell proliferation suppression and apoptosis induction, indicating the importance of PERK for CCT to perform its anti-cancer bioactivity. Our in vivo experiments confirmed that CCT plus taxol dramatically reduced tumor growth in CRC xenografts. Together, all these results suggested that promoting PERK activation by CCT may be an effective therapeutic strategy to improve CRC to taxol treatment.
Collapse
Affiliation(s)
- Yunpeng Lei
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen, Guang Dong Province, 518000, China
| | - Lirui He
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen, Guang Dong Province, 518000, China
| | - Chang Yan
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen, Guang Dong Province, 518000, China
| | - Yuchen Wang
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen, Guang Dong Province, 518000, China
| | - Guoqing Lv
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen, Guang Dong Province, 518000, China.
| |
Collapse
|
19
|
Haupt S, Haupt Y. Cancer and Tumour Suppressor p53 Encounters at the Juncture of Sex Disparity. Front Genet 2021; 12:632719. [PMID: 33664771 PMCID: PMC7920968 DOI: 10.3389/fgene.2021.632719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
There are many differences in cancer manifestation between men and women. New understanding of the origin of these point to fundamental distinctions in the genetic code and its demise. Tumour suppressor protein p53 is the chief operating officer of cancer defence and critically acts to safeguard against sustained DNA damaged. P53 cannot be ignored in cancer sex disparity. In this review we discuss the greater prevalence and associated death rates for non-reproductive cancers in males. The major tumour suppressor protein p53, encoded in the TP53 gene is our chosen context. It is fitting to ask why somatic TP53 mutation incidence is estimated to be disproportionately higher among males in the population for these types of cancers compared with females? We scrutinised the literature for evidence of predisposing genetic and epigenetic alterations that may explain this sex bias. Our second approach was to explore whether redox activity, either externally imposed or inherent to males and females, may define distinct risks that could contribute to the clear cancer sex disparities.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Stolarova L, Kleiblova P, Janatova M, Soukupova J, Zemankova P, Macurek L, Kleibl Z. CHEK2 Germline Variants in Cancer Predisposition: Stalemate Rather than Checkmate. Cells 2020; 9:cells9122675. [PMID: 33322746 PMCID: PMC7763663 DOI: 10.3390/cells9122675] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Germline alterations in many genes coding for proteins regulating DNA repair and DNA damage response (DDR) to DNA double-strand breaks (DDSB) have been recognized as pathogenic factors in hereditary cancer predisposition. The ATM-CHEK2-p53 axis has been documented as a backbone for DDR and hypothesized as a barrier against cancer initiation. However, although CHK2 kinase coded by the CHEK2 gene expedites the DDR signal, its function in activation of p53-dependent cell cycle arrest is dispensable. CHEK2 mutations rank among the most frequent germline alterations revealed by germline genetic testing for various hereditary cancer predispositions, but their interpretation is not trivial. From the perspective of interpretation of germline CHEK2 variants, we review the current knowledge related to the structure of the CHEK2 gene, the function of CHK2 kinase, and the clinical significance of CHEK2 germline mutations in patients with hereditary breast, prostate, kidney, thyroid, and colon cancers.
Collapse
Affiliation(s)
- Lenka Stolarova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Petra Kleiblova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic;
| | - Marketa Janatova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
| | - Jana Soukupova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
| | - Petra Zemankova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
| | - Libor Macurek
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Zdenek Kleibl
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
- Correspondence: ; Tel.: +420-22496-745
| |
Collapse
|
21
|
Vazhappilly CG, Hodeify R, Siddiqui SS, Laham AJ, Menon V, El-Awady R, Matar R, Merheb M, Marton J, Al Zouabi HAK, Radhakrishnan R. Natural compound catechol induces DNA damage, apoptosis, and G1 cell cycle arrest in breast cancer cells. Phytother Res 2020; 35:2185-2199. [PMID: 33289235 DOI: 10.1002/ptr.6970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/26/2023]
Abstract
Targeting cell cycle and inducing DNA damage by activating cell death pathways are considered as effective therapeutic strategy for combating breast cancer progression. Many of the naturally known small molecules target these signaling pathways and are effective against resistant and/or aggressive types of breast cancers. Here, we investigated the effect of catechol, a naturally occurring plant compound, for its specificity and chemotherapeutic efficacies in breast cancer (MCF-7 and MDA-MB-231) cells. Catechol treatment showed concentration-dependent cytotoxicity and antiproliferative growth in both MCF-7 and MDA-MB-231 cells while sparing minimal effects on noncancerous (F-180 and HK2) cells. Catechol modulated differential DNA damage effects by activating ATM/ATR pathways and showed enhanced γ-H2AX expression, as an indicator for DNA double-stranded breaks. MCF-7 cells showed G1 cell cycle arrest by regulating p21-mediated cyclin E/Cdk2 inhibition. Furthermore, activation of p53 triggered a caspase-mediated cell death mechanism by inhibiting regulatory proteins such as DNMT1, p-BRCA1, MCL-1, and PDCD6 with an increased Bax/Bcl-2 ratio. Overall, our results showed that catechol possesses favorable safety profile for noncancerous cells while specifically targeting multiple signaling cascades to inhibit proliferation in breast cancer cells.
Collapse
Affiliation(s)
- Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Rawad Hodeify
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Shoib Sarwar Siddiqui
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Amina Jamal Laham
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Varsha Menon
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Raafat El-Awady
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Rachel Matar
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Maxime Merheb
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - John Marton
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | | | - Rajan Radhakrishnan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|