1
|
Fasano M, Pirozzi M, Miceli CC, Cocule M, Caraglia M, Boccellino M, Vitale P, De Falco V, Farese S, Zotta A, Ciardiello F, Addeo R. TGF-β Modulated Pathways in Colorectal Cancer: New Potential Therapeutic Opportunities. Int J Mol Sci 2024; 25:7400. [PMID: 39000507 PMCID: PMC11242595 DOI: 10.3390/ijms25137400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide, with 20% of patients presenting with metastatic disease at diagnosis. TGF-β signaling plays a crucial role in various cellular processes, including growth, differentiation, apoptosis, epithelial-mesenchymal transition (EMT), regulation of the extracellular matrix, angiogenesis, and immune responses. TGF-β signals through SMAD proteins, which are intracellular molecules that transmit TGF-β signals from the cell membrane to the nucleus. Alterations in the TGF-β pathway and mutations in SMAD proteins are common in metastatic CRC (mCRC), making them critical factors in CRC tumorigenesis. This review first analyzes normal TGF-β signaling and then investigates its role in CRC pathogenesis, highlighting the mechanisms through which TGF-β influences metastasis development. TGF-β promotes neoangiogenesis via VEGF overexpression, pericyte differentiation, and other mechanisms. Additionally, TGF-β affects various elements of the tumor microenvironment, including T cells, fibroblasts, and macrophages, promoting immunosuppression and metastasis. Given its strategic role in multiple processes, we explored different strategies to target TGF-β in mCRC patients, aiming to identify new therapeutic options.
Collapse
Affiliation(s)
- Morena Fasano
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mario Pirozzi
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Chiara Carmen Miceli
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mariateresa Cocule
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Pasquale Vitale
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Vincenzo De Falco
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Stefano Farese
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Alessia Zotta
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Fortunato Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Raffaele Addeo
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| |
Collapse
|
2
|
Gambaro K, Marques M, McNamara S, Couetoux du Tertre M, Hoffert C, Srivastava A, Schab A, Alcindor T, Langleben A, Sideris L, Abdelsalam M, Tehfe M, Couture F, Batist G, Kavan P. A Phase II Exploratory Study to Identify Biomarkers Predictive of Clinical Response to Regorafenib in Patients with Metastatic Colorectal Cancer Who Have Failed First-Line Therapy. Int J Mol Sci 2023; 25:43. [PMID: 38203214 PMCID: PMC10778949 DOI: 10.3390/ijms25010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Single-agent regorafenib is approved in Canada for metastatic colorectal cancer (mCRC) patients who have failed previous lines of therapy. Identifying prognostic biomarkers is key to optimizing therapeutic strategies for these patients. In this clinical study (NCT01949194), we evaluated the safety and efficacy of single-agent regorafenib as a second-line therapy for mCRC patients who received it after failing first-line therapy with an oxaliplatin or irinotecan regimen with or without bevacizumab. Using various omics approaches, we also investigated putative biomarkers of response and resistance to regorafenib in metastatic lesions and blood samples in the same cohort. Overall, the safety profile of regorafenib seemed similar to the CORRECT trial, where regorafenib was administered as ≥ 2 lines of therapy. While the mutational landscape showed typical mutation rates for the top five driver genes (APC, KRAS, BRAF, PIK3CA, and TP53), KRAS mutations were enriched in intrinsically resistant lesions. Additional exploration of genomic-phenotype associations revealed several biomarker candidates linked to unfavorable prognoses in patients with mCRC using various approaches, including pathway analysis, cfDNA profiling, and copy number analysis. However, further research endeavors are necessary to validate the potential utility of these promising genes in understanding patients' responses to regorafenib treatment.
Collapse
Affiliation(s)
- Karen Gambaro
- Canadian National Centres of Excellence-Exactis Innovations, Montreal, QC H3T 1Y6, Canada; (K.G.); (M.M.); (S.M.)
- Consortium de Recherche en Oncologie Clinique du Québec (Q-CROC), Quebec, QC G1V 3X8, Canada
- Segal Cancer Centre-Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Maud Marques
- Canadian National Centres of Excellence-Exactis Innovations, Montreal, QC H3T 1Y6, Canada; (K.G.); (M.M.); (S.M.)
- Segal Cancer Centre-Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Suzan McNamara
- Canadian National Centres of Excellence-Exactis Innovations, Montreal, QC H3T 1Y6, Canada; (K.G.); (M.M.); (S.M.)
- Consortium de Recherche en Oncologie Clinique du Québec (Q-CROC), Quebec, QC G1V 3X8, Canada
| | - Mathilde Couetoux du Tertre
- Canadian National Centres of Excellence-Exactis Innovations, Montreal, QC H3T 1Y6, Canada; (K.G.); (M.M.); (S.M.)
- Consortium de Recherche en Oncologie Clinique du Québec (Q-CROC), Quebec, QC G1V 3X8, Canada
| | - Cyrla Hoffert
- Canadian National Centres of Excellence-Exactis Innovations, Montreal, QC H3T 1Y6, Canada; (K.G.); (M.M.); (S.M.)
- Consortium de Recherche en Oncologie Clinique du Québec (Q-CROC), Quebec, QC G1V 3X8, Canada
- Segal Cancer Centre-Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Archana Srivastava
- Canadian National Centres of Excellence-Exactis Innovations, Montreal, QC H3T 1Y6, Canada; (K.G.); (M.M.); (S.M.)
- Consortium de Recherche en Oncologie Clinique du Québec (Q-CROC), Quebec, QC G1V 3X8, Canada
- Segal Cancer Centre-Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Anna Schab
- Canadian National Centres of Excellence-Exactis Innovations, Montreal, QC H3T 1Y6, Canada; (K.G.); (M.M.); (S.M.)
- Consortium de Recherche en Oncologie Clinique du Québec (Q-CROC), Quebec, QC G1V 3X8, Canada
| | | | | | - Lucas Sideris
- Hôpital Maisonneuve Rosemont, Montreal, QC H1T 2M4, Canada
| | | | - Mustapha Tehfe
- Hematology-Oncology, Oncology Center-Centre Hospitalier de l’Université de Montreal, Montreal, QC H2X 0C1, Canada
| | | | - Gerald Batist
- Segal Cancer Centre-Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Petr Kavan
- Segal Cancer Centre-Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
3
|
Lee SM, Han Y, Cho KH. Deep learning untangles the resistance mechanism of p53 reactivator in lung cancer cells. iScience 2023; 26:108377. [PMID: 38034356 PMCID: PMC10682260 DOI: 10.1016/j.isci.2023.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Tumor suppressor p53 plays a pivotal role in suppressing cancer, so various drugs has been suggested to upregulate its function. However, drug resistance is still the biggest hurdle to be overcome. To address this, we developed a deep learning model called AnoDAN (anomalous gene detection using generative adversarial networks and graph neural networks for overcoming drug resistance) that unravels the hidden resistance mechanisms and identifies a combinatorial target to overcome the resistance. Our findings reveal that the TGF-β signaling pathway, alongside the p53 signaling pathway, mediates the resistance, with THBS1 serving as a core regulatory target in both pathways. Experimental validation in lung cancer cells confirms the effects of THBS1 on responsiveness to a p53 reactivator. We further discovered the positive feedback loop between THBS1 and the TGF-β pathway as the main source of resistance. This study enhances our understanding of p53 regulation and offers insights into overcoming drug resistance.
Collapse
Affiliation(s)
- Soo Min Lee
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Younghyun Han
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Ortega MA, De Leon-Oliva D, Garcia-Montero C, Fraile-Martinez O, Boaru DL, Del Val Toledo Lobo M, García-Tuñón I, Royuela M, García-Honduvilla N, Bujan J, Guijarro LG, Alvarez-Mon M, Alvarez-Mon MÁ. Understanding HAT1: A Comprehensive Review of Noncanonical Roles and Connection with Disease. Genes (Basel) 2023; 14:genes14040915. [PMID: 37107673 PMCID: PMC10137880 DOI: 10.3390/genes14040915] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Histone acetylation plays a vital role in organizing chromatin, regulating gene expression and controlling the cell cycle. The first histone acetyltransferase to be identified was histone acetyltransferase 1 (HAT1), but it remains one of the least understood acetyltransferases. HAT1 catalyzes the acetylation of newly synthesized H4 and, to a lesser extent, H2A in the cytoplasm. However, 20 min after assembly, histones lose acetylation marks. Moreover, new noncanonical functions have been described for HAT1, revealing its complexity and complicating the understanding of its functions. Recently discovered roles include facilitating the translocation of the H3H4 dimer into the nucleus, increasing the stability of the DNA replication fork, replication-coupled chromatin assembly, coordination of histone production, DNA damage repair, telomeric silencing, epigenetic regulation of nuclear lamina-associated heterochromatin, regulation of the NF-κB response, succinyl transferase activity and mitochondrial protein acetylation. In addition, the functions and expression levels of HAT1 have been linked to many diseases, such as many types of cancer, viral infections (hepatitis B virus, human immunodeficiency virus and viperin synthesis) and inflammatory diseases (chronic obstructive pulmonary disease, atherosclerosis and ischemic stroke). The collective data reveal that HAT1 is a promising therapeutic target, and novel therapeutic approaches, such as RNA interference and the use of aptamers, bisubstrate inhibitors and small-molecule inhibitors, are being evaluated at the preclinical level.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - María Del Val Toledo Lobo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Biomedicine and Biotechnology, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Ignacio García-Tuñón
- Department of Biomedicine and Biotechnology, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Mar Royuela
- Department of Biomedicine and Biotechnology, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Miguel Ángel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
5
|
Capone V, Della Torre L, Carannante D, Babaei M, Altucci L, Benedetti R, Carafa V. HAT1: Landscape of Biological Function and Role in Cancer. Cells 2023; 12:cells12071075. [PMID: 37048148 PMCID: PMC10092946 DOI: 10.3390/cells12071075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Histone modifications, as key chromatin regulators, play a pivotal role in the pathogenesis of several diseases, such as cancer. Acetylation, and more specifically lysine acetylation, is a reversible epigenetic process with a fundamental role in cell life, able to target histone and non-histone proteins. This epigenetic modification regulates transcriptional processes and protein activity, stability, and localization. Several studies highlight a specific role for HAT1 in regulating molecular pathways, which are altered in several pathologies, among which is cancer. HAT1 is the first histone acetyltransferase discovered; however, to date, its biological characterization is still unclear. In this review, we summarize and update the current knowledge about the biological function of this acetyltransferase, highlighting recent advances of HAT1 in the pathogenesis of cancer.
Collapse
Affiliation(s)
- Vincenza Capone
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Laura Della Torre
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Daniela Carannante
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Mehrad Babaei
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
- IEOS CNR, 80138 Napoli, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| |
Collapse
|
6
|
Chen J, Hai Y, Hu Q, Chen C, Jiang X, Gao Y. TGF-β Signaling Activation Confers Anlotinib Resistance in Gastric Cancer. Pharm Res 2023; 40:689-699. [PMID: 36539669 DOI: 10.1007/s11095-022-03461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Gastric cancer (GC) has always been a great threat to human health due to its aggressiveness and lethality. Anlotinib, a novel multi-target tyrosine kinase inhibitor (TKI), has been certified its anti-tumor effects on various tumors. Nonetheless, there are few studies on applying anlotinib as a treatment for GC. The underlying mechanism of acquired resistance during anlotinib administration remains unclear. METHODS We investigated the toxicologic effects of anlotinib on GC cells through CCK8, colony-forming, and flow cytometry assays in vitro and xenograft models in vivo. Anlotinib-resistant GC cells, AGS-R and MGC803-R, were generated and characterized by cell proliferation and apoptosis assays. The signaling pathways involved in anlotinib resistance were probed using Cignal™ Finder 10-Pathway Reporter Array. Western blot and dual-luciferase reporter assays were performed to confirm the relationships. The TGF-β inhibitor LY364947 was introduced to demonstrate the importance of TGF-β signaling in anlotinib resistance via a series of functional assays. RESULTS Anlotinib suppressed cell growth and induced apoptosis in vitro and inhibited tumorigenesis and metastasis in vivo, while its anti-tumor effects were impaired in anlotinib-resistant cells. The results of dual-luciferase reporter assays and western blot indicated TGF-β signaling was activated in anlotinib-resistant GC cells. LY364947 combined with Anlotinib exerted a better antineoplastic effect than monotherapy and considerably reversed the anlotinib resistance in GC. CONCLUSIONS Our findings suggested that TGF-β signaling may take a significant part in anlotinib resistance in GC. The suppression of TGF-β signaling may be a possible and promising approach for the GC oncotherapy when combined with anlotinib.
Collapse
Affiliation(s)
- Jingde Chen
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Rd., Shanghai, 200120, China
- Department of Oncology, Ji'an Hospital, Shanghai East Hospital, Ji'an, 343000, China
| | - Yanan Hai
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Rd., Shanghai, 200120, China
| | - Qingqing Hu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Rd., Shanghai, 200120, China
| | - Chen Chen
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Rd., Shanghai, 200120, China
| | - Xiaohua Jiang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Rd., Shanghai, 200120, China.
| |
Collapse
|
7
|
Histone acetyltransferase 1 (HAT1) acetylates hypoxia-inducible factor 2 alpha (HIF2A) to execute hypoxia response. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194900. [PMID: 36410688 DOI: 10.1016/j.bbagrm.2022.194900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/20/2022]
Abstract
Hypoxic response to low oxygen levels is characteristic of most solid cancers. Hypoxia-inducible factors (HIFs) regulate cellular metabolism, survival, proliferation, and cancer stem cell growth during hypoxia. The genome-wide analysis identified HAT1, a type B histone acetyltransferase, as an upregulated and essential gene in glioblastoma (GBM). GSEA analysis of differentially regulated genes in HAT1 silenced cells identified significant depletion of "hypoxia" gene sets. Hypoxia conditions induced HIF2A, not HIF1A protein levels in glioma cells in a HAT1-dependent manner. HAT1 and HIF2A interacted with each other and occupied the promoter of VEGFA, a bonafide HIF1A/HIF2A target. Acetylation of K512 and K596 residues by HAT1 is essential for HIF2A stabilization under normoxia and hypoxia as HIF2A carrying acetylation mimic mutations at either of these residues (H512Q or K596Q) showed stable expression in HAT1 silenced cells under normoxia and hypoxia conditions. Finally, we demonstrate that the HAT1-HIF2A axis is essential for hypoxia-promoted cancer stem cell maintenance and reprogramming. Thus, our study identifies that the HAT1-dependent acetylation of HIF2A is vital to executing the hypoxia-induced cell survival and cancer stem cell growth, therefore proposing the HAT1-HIF2A axis as a potential therapeutic target.
Collapse
|
8
|
Anestopoulos I, Kyriakou S, Tragkola V, Paraskevaidis I, Tzika E, Mitsiogianni M, Deligiorgi MV, Petrakis G, Trafalis DT, Botaitis S, Giatromanolaki A, Koukourakis MI, Franco R, Pappa A, Panayiotidis MI. Targeting the epigenome in malignant melanoma: Facts, challenges and therapeutic promises. Pharmacol Ther 2022; 240:108301. [PMID: 36283453 DOI: 10.1016/j.pharmthera.2022.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Malignant melanoma is the most lethal type of skin cancer with high rates of mortality. Although current treatment options provide a short-clinical benefit, acquired-drug resistance highlights the low 5-year survival rate among patients with advanced stage of the disease. In parallel, the involvement of an aberrant epigenetic landscape, (e.g., alterations in DNA methylation patterns, histone modifications marks and expression of non-coding RNAs), in addition to the genetic background, has been also associated with the onset and progression of melanoma. In this review article, we report on current therapeutic options in melanoma treatment with a focus on distinct epigenetic alterations and how their reversal, by specific drug compounds, can restore a normal phenotype. In particular, we concentrate on how single and/or combinatorial therapeutic approaches have utilized epigenetic drug compounds in being effective against malignant melanoma. Finally, the role of deregulated epigenetic mechanisms in promoting drug resistance to targeted therapies and immune checkpoint inhibitors is presented leading to the development of newly synthesized and/or improved drug compounds capable of targeting the epigenome of malignant melanoma.
Collapse
Affiliation(s)
- I Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - S Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - V Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - I Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - E Tzika
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - M V Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - G Petrakis
- Saint George Hospital, Chania, Crete, Greece
| | - D T Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - S Botaitis
- Department of Surgery, Alexandroupolis University Hospital, Democritus University of Thrace School of Medicine, Alexandroupolis, Greece
| | - A Giatromanolaki
- Department of Pathology, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - M I Koukourakis
- Radiotherapy / Oncology, Radiobiology & Radiopathology Unit, Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - R Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - A Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - M I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.
| |
Collapse
|
9
|
Reddi KK, Guruvaiah P, Edwards YJK, Gupta R. Changes in the Transcriptome and Chromatin Landscape in BRAFi-Resistant Melanoma Cells. Front Oncol 2022; 12:937831. [PMID: 35785205 PMCID: PMC9247198 DOI: 10.3389/fonc.2022.937831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 12/18/2022] Open
Abstract
Metastatic and drug-resistant melanoma are leading causes of skin cancer-associated death. Mitogen-associated protein kinase (MAPK) pathway inhibitors and immunotherapies have provided substantial benefits to patients with melanoma. However, long-term therapeutic efficacy has been limited due to emergence of treatment resistance. Despite the identification of several molecular mechanisms underlying the development of resistant phenotypes, significant progress has still not been made toward the effective treatment of drug-resistant melanoma. Therefore, the identification of new targets and mechanisms driving drug resistance in melanoma represents an unmet medical need. In this study, we performed unbiased RNA-sequencing (RNA-seq) and assay for transposase-accessible chromatin with sequencing (ATAC-seq) to identify new targets and mechanisms that drive resistance to MAPK pathway inhibitors targeting BRAF and MAPK kinase (MEK) in BRAF-mutant melanoma cells. An integrative analysis of ATAC-seq combined with RNA-seq showed that global changes in chromatin accessibility affected the mRNA expression levels of several known and novel genes, which consequently modulated multiple oncogenic signaling pathways to promote resistance to MAPK pathway inhibitors in melanoma cells. Many of these genes were also associated with prognosis predictions in melanoma patients. This study resulted in the identification of new genes and signaling pathways that might be targeted to treat MEK or BRAF inhibitors resistant melanoma patients. The present study applied new and advanced approaches to identify unique changes in chromatin accessibility regions that modulate gene expression associated with pathways to promote the development of resistance to MAPK pathway inhibitors.
Collapse
Affiliation(s)
- Kiran Kumar Reddi
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Praveen Guruvaiah
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yvonne J. K. Edwards
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
10
|
Olbryt M. Potential Biomarkers of Skin Melanoma Resistance to Targeted Therapy—Present State and Perspectives. Cancers (Basel) 2022; 14:cancers14092315. [PMID: 35565444 PMCID: PMC9102921 DOI: 10.3390/cancers14092315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Around 5–10% of advanced melanoma patients progress early on anti-BRAF targeted therapy and 20–30% respond only with the stabilization of the disease. Presumably, these patients could benefit more from first-line immunotherapy. Resistance to BRAF/MEK inhibitors is generated by genetic and non-genetic factors inherent to a tumor or acquired during therapy. Some of them are well documented as a cause of treatment failure. They are potential predictive markers that could improve patients’ selection for both standard and also alternative therapy as some of them have therapeutic potential. Here, a summary of the most promising predictive and therapeutic targets is presented. This up-to-date knowledge may be useful for further study on implementing more accurate genetic/molecular tests in melanoma treatment. Abstract Melanoma is the most aggressive skin cancer, the number of which is increasing worldwide every year. It is completely curable in its early stage and fatal when spread to distant organs. In addition to new therapeutic strategies, biomarkers are an important element in the successful fight against this cancer. At present, biomarkers are mainly used in diagnostics. Some biological indicators also allow the estimation of the patient’s prognosis. Still, predictive markers are underrepresented in clinics. Currently, the only such indicator is the presence of the V600E mutation in the BRAF gene in cancer cells, which qualifies the patient for therapy with inhibitors of the MAPK pathway. The identification of response markers is particularly important given primary and acquired resistance to targeted therapies. Reliable predictive tests would enable the selection of patients who would have the best chance of benefiting from treatment. Here, up-to-date knowledge about the most promising genetic and non-genetic resistance-related factors is described. These are alterations in MAPK, PI3K/AKT, and RB signaling pathways, e.g., due to mutations in NRAS, RAC1, MAP2K1, MAP2K2, and NF1, but also other changes activating these pathways, such as the overexpression of HGF or EGFR. Most of them are also potential therapeutic targets and this issue is also addressed here.
Collapse
Affiliation(s)
- Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| |
Collapse
|
11
|
Hou P, Wang YA. Conquering oncogenic KRAS and its bypass mechanisms. Theranostics 2022; 12:5691-5709. [PMID: 35966590 PMCID: PMC9373815 DOI: 10.7150/thno.71260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Aberrant activation of KRAS signaling is common in cancer, which has catalyzed heroic drug development efforts to target KRAS directly or its downstream signaling effectors. Recent works have yielded novel small molecule drugs with promising preclinical and clinical activities. Yet, no matter how a cancer is addicted to a specific target - cancer's genetic and biological plasticity fashions a variety of resistance mechanisms as a fait accompli, limiting clinical benefit of targeted interventions. Knowledge of these mechanisms may inform combination strategies to attack both oncogenic KRAS and subsequent bypass mechanisms.
Collapse
Affiliation(s)
- Pingping Hou
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA.,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.,Lead contact
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
12
|
Zhang M, Zhang YY, Chen Y, Wang J, Wang Q, Lu H. TGF-β Signaling and Resistance to Cancer Therapy. Front Cell Dev Biol 2021; 9:786728. [PMID: 34917620 PMCID: PMC8669610 DOI: 10.3389/fcell.2021.786728] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
The transforming growth factor β (TGF-β) pathway, which is well studied for its ability to inhibit cell proliferation in early stages of tumorigenesis while promoting epithelial-mesenchymal transition and invasion in advanced cancer, is considered to act as a double-edged sword in cancer. Multiple inhibitors have been developed to target TGF-β signaling, but results from clinical trials were inconsistent, suggesting that the functions of TGF-β in human cancers are not yet fully explored. Multiple drug resistance is a major challenge in cancer therapy; emerging evidence indicates that TGF-β signaling may be a key factor in cancer resistance to chemotherapy, targeted therapy and immunotherapy. Finally, combining anti-TGF-β therapy with other cancer therapy is an attractive venue to be explored for the treatment of therapy-resistant cancer.
Collapse
Affiliation(s)
- Maoduo Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Yi Zhang
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Yongze Chen
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jia Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hezhe Lu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Wajapeyee N, Gupta R. Epigenetic Alterations and Mechanisms That Drive Resistance to Targeted Cancer Therapies. Cancer Res 2021; 81:5589-5595. [PMID: 34531319 DOI: 10.1158/0008-5472.can-21-1606] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Cancer is a complex disease and cancer cells typically harbor multiple genetic and epigenetic alterations. Large-scale sequencing of patient-derived cancer samples has identified several druggable driver oncogenes. Many of these oncogenes can be pharmacologically targeted to provide effective therapies for breast cancer, leukemia, lung cancer, melanoma, lymphoma, and other cancer types. Initial responses to these agents can be robust in many cancer types and some patients with cancer experience sustained tumor inhibition. However, resistance to these targeted therapeutics frequently emerges, either from intrinsic or acquired mechanisms, posing a major clinical hurdle for effective treatment. Several resistance mechanisms, both cell autonomous and cell nonautonomous, have been identified in different cancer types. Here we describe how alterations of the transcriptome, transcription factors, DNA, and chromatin regulatory proteins confer resistance to targeted therapeutic agents. We also elaborate on how these studies have identified underlying epigenetic factors that drive drug resistance and oncogenic pathways, with direct implications for the prevention and treatment of drug-resistant cancer.
Collapse
Affiliation(s)
- Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama. .,O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, Alabama
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama. .,O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Sun Y, Ren D, Zhou Y, Shen J, Wu H, Jin X. Histone acetyltransferase 1 promotes gemcitabine resistance by regulating the PVT1/EZH2 complex in pancreatic cancer. Cell Death Dis 2021; 12:878. [PMID: 34564701 PMCID: PMC8464605 DOI: 10.1038/s41419-021-04118-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
The poor prognosis of pancreatic cancer is primarily due to the development of resistance to therapies, including gemcitabine. The long noncoding RNA PVT1 (lncRNA PVT1) has been shown to interact with enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), promoting gemcitabine resistance in pancreatic cancer. In this study, we found histone acetyltransferase 1 (HAT1) enhanced the tolerance of pancreatic cancer cells to gemcitabine and HAT1-mediated resistance mechanisms were regulated by PVT1 and EZH2. Our results showed that the aberrant HAT1 expression promoted gemcitabine resistance, while silencing HAT1 restored gemcitabine sensitivity. Moreover, HAT1 depletion caused a notable increase of gemcitabine sensitivity in gemcitabine-resistant pancreatic cancer cell lines. Further research found that HAT1 increased PVT1 expression to induce gemcitabine resistance, which enhanced the binding of bromodomain containing 4 (BRD4) to the PVT1 promoter, thereby promoting PVT1 transcription. Besides, HAT1 prevented EZH2 degradation by interfering with ubiquitin protein ligase E3 component n-recognin 4 (UBR4) binding to the N-terminal domain of EZH2, thus maintaining EZH2 protein stability to elevate the level of EZH2 protein, which also promoted HAT1-mediated gemcitabine resistance. These results suggested that HAT1 induced gemcitabine resistance of pancreatic cancer cells through regulating PVT1/EZH2 complex. Given this, Chitosan (CS)-tripolyphosphate (TPP)-siHAT1 nanoparticles were developed to block HAT1 expression and improve the antitumor effect of gemcitabine. The results showed that CS-TPP-siHAT1 nanoparticles augmented the antitumor effects of gemcitabine in vitro and in vivo. In conclusion, HAT1-targeted therapy can improve observably gemcitabine sensitivity of pancreatic cancer cells. HAT1 is a promising therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yingke Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Jian Shen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China.
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
15
|
The association of immunosurveillance and distant metastases in colorectal cancer. J Cancer Res Clin Oncol 2021; 147:3333-3341. [PMID: 34476575 PMCID: PMC8484134 DOI: 10.1007/s00432-021-03753-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/31/2021] [Indexed: 11/24/2022]
Abstract
Background Colorectal cancer (CRC) is the third most common malignancy worldwide, but the key driver to distant metastases is still unknown. This study aimed to elucidate the link between immunosurveillance and organotropism of metastases in CRC by evaluating different gene signatures and pathways. Material and methods CRC patients undergoing surgery at the Department of General, Visceral and Transplantation Surgery at the Ludwig-Maximilian University Hospital Munich (Munich, Germany) were screened and categorized into M0 (no distant metastases), HEP (liver metastases) and PER (peritoneal carcinomatosis) after a 5-year follow-up. Six patients of each group were randomly selected to conduct a NanoString analysis, which includes 770 genes. Subsequently, all genes were further analyzed by gene set enrichment analysis (GSEA) based on seven main cancer-associated databases. Results Comparing HEP vs. M0, the gene set associated with the Toll-like receptor (TLR) cascade defined by the Reactome database was significantly overrepresented in HEP. HSP90B1, MAPKAPK3, PPP2CB, PPP2R1A were identified as the core enrichment genes. The immunologic signature pathway GSE6875_TCONV_VS_FOXP3_KO_TREG_DN with FOXP3 as downstream target was significantly overexpressed in M0. RB1, TMEM 100, CFP, ZKSCAN5, DDX50 were the core enrichment genes. Comparing PER vs. M0 no significantly differentially expressed gene signatures were identified. Conclusion Chronic inflammation might enhance local tumor growth. This is the first study identifying immune related gene sets differentially expressed between patients with either liver or peritoneal metastases. The present findings suggest that the formation of liver metastases might be associated with TLR-associated pathways. In M0, a high expression of FOXP3 + tumor infiltrating lymphocytes (TILs) seemed to prevent at least in part metastases. Thus, these correlative findings lay the cornerstone to further studies elucidating the underlying mechanisms of organotropism of metastases.
Collapse
|
16
|
Disruptor of telomeric silencing 1-like promotes ovarian cancer tumor growth by stimulating pro-tumorigenic metabolic pathways and blocking apoptosis. Oncogenesis 2021; 10:48. [PMID: 34253709 PMCID: PMC8275629 DOI: 10.1038/s41389-021-00339-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is the leading cause of gynecological malignancy-related deaths. Current therapies for ovarian cancer do not provide meaningful and sustainable clinical benefits, highlighting the need for new therapies. We show that the histone H3K79 methyltransferase disruptor of telomeric silencing 1-like (DOT1L) is overexpressed in ovarian cancer and that a higher level of DOT1L expression correlates with shorter progression-free and overall survival (OS). Pharmacological inhibition of DOT1L (EPZ-5676, EPZ004777, and SGC0946) or genetic inhibition of DOT1L attenuates the growth of ovarian cancer cells in cell culture and in a mouse xenograft model of ovarian cancer. Transcriptome-wide mRNA expression profiling shows that DOT1L inhibition results in the downregulation of genes involved in cellular biosynthesis pathways and the upregulation of proapoptotic genes. Consistent with the results of transcriptome analysis, the unbiased large-scale metabolomic analysis showed reduced levels of several metabolites of the amino acid and nucleotide biosynthesis pathways after DOT1L inhibition. DOT1L inhibition also resulted in the upregulation of the NKG2D ligand ULBP1 and subsequent increase in natural killer (NK) cell-mediated ovarian cancer eradication. Collectively, our results demonstrate that DOT1L promotes ovarian cancer tumor growth by regulating apoptotic and metabolic pathways as well as NK cell-mediated eradication of ovarian cancer and identifies DOT1L as a new pharmacological target for ovarian cancer therapy.
Collapse
|
17
|
Hong Z, Xiang Z, Zhang P, Wu Q, Xu C, Wang X, Shi G, Hong Z, Wu D. Histone acetyltransferase 1 upregulates androgen receptor expression to modulate CRPC cell resistance to enzalutamide. Clin Transl Med 2021; 11:e495. [PMID: 34323404 PMCID: PMC8299045 DOI: 10.1002/ctm2.495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is the latest stage of PCa, and there is almost no effective treatment available for the patients with CRPC when next-generation androgen deprivation therapy drugs, such as enzalutamide (ENZ), fail. The androgen receptor (AR) plays key roles in PCa and CRPC progression and drug resistance. Histone acetyltransferase 1 (HAT1) has recently been reported to be highly expressed in some tumors, such as lung carcinoma. However, what relationship between the AR and HAT1, and whether or how HAT1 plays roles in CRPC progression and drug resistance remain elusive. In the present study, we found that HAT1 is highly expressed in PCa cells, and the overexpression of HAT1 is linked with CRPC cell proliferation. Moreover, the HAT1 expression is positively correlated with the expression of AR, including both AR-FL (full-length) and AR-V7 (variant 7), which is mainly mediated by a bromodomain containing protein 4 (BRD4) -mediated pathway. Furthermore, knockdown of HAT1 can re-sensitize the response of CRPC cells to ENZ treatment in cells and mouse models. In addition, ascorbate was observed to decrease AR expression through downregulation of HAT1 expression. Collectively, our findings reveal a novel AR signaling regulation pathway in PCa and CRPC and suggest that HAT1 serves as a critical oncoprotein and an ideal target for the treatment of ENZ resistance in CRPC patients.
Collapse
Affiliation(s)
- Zhe Hong
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zhendong Xiang
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Pan Zhang
- Illinois Informatics InstituteUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
| | - Qiang Wu
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinan Wang
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Guowei Shi
- Department of Urology, the Fifth People's Hospital of ShanghaiUrology Research Center of Fudan UniversityShanghaiChina
| | - Zongyuan Hong
- Laboratory of Quantitative PharmacologyWannan Medical CollegeWuhuChina
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
18
|
Coni S, Serrao SM, Yurtsever ZN, Di Magno L, Bordone R, Bertani C, Licursi V, Ianniello Z, Infante P, Moretti M, Petroni M, Guerrieri F, Fatica A, Macone A, De Smaele E, Di Marcotullio L, Giannini G, Maroder M, Agostinelli E, Canettieri G. Blockade of EIF5A hypusination limits colorectal cancer growth by inhibiting MYC elongation. Cell Death Dis 2020; 11:1045. [PMID: 33303756 PMCID: PMC7729396 DOI: 10.1038/s41419-020-03174-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
Eukaryotic Translation Initiation Factor 5A (EIF5A) is a translation factor regulated by hypusination, a unique posttranslational modification catalyzed by deoxyhypusine synthetase (DHPS) and deoxyhypusine hydroxylase (DOHH) starting from the polyamine spermidine. Emerging data are showing that hypusinated EIF5A regulates key cellular processes such as autophagy, senescence, polyamine homeostasis, energy metabolism, and plays a role in cancer. However, the effects of EIF5A inhibition in preclinical cancer models, the mechanism of action, and specific translational targets are still poorly understood. We show here that hypusinated EIF5A promotes growth of colorectal cancer (CRC) cells by directly regulating MYC biosynthesis at specific pausing motifs. Inhibition of EIF5A hypusination with the DHPS inhibitor GC7 or through lentiviral-mediated knockdown of DHPS or EIF5A reduces the growth of various CRC cells. Multiplex gene expression analysis reveals that inhibition of hypusination impairs the expression of transcripts regulated by MYC, suggesting the involvement of this oncogene in the observed effect. Indeed, we demonstrate that EIF5A regulates MYC elongation without affecting its mRNA content or protein stability, by alleviating ribosome stalling at five distinct pausing motifs in MYC CDS. Of note, we show that blockade of the hypusination axis elicits a remarkable growth inhibitory effect in preclinical models of CRC and significantly reduces the size of polyps in APCMin/+ mice, a model of human familial adenomatous polyposis (FAP). Together, these data illustrate an unprecedented mechanism, whereby the tumor-promoting properties of hypusinated EIF5A are linked to its ability to regulate MYC elongation and provide a rationale for the use of DHPS/EIF5A inhibitors in CRC therapy.
Collapse
Affiliation(s)
- Sonia Coni
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Silvia Maria Serrao
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Zuleyha Nihan Yurtsever
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Laura Di Magno
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Rosa Bordone
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Camilla Bertani
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Zaira Ianniello
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Paola Infante
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Marialaura Petroni
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Francesca Guerrieri
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052/CNRS 5286, Lyon, France
| | - Alessandro Fatica
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
- Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Marella Maroder
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Enzo Agostinelli
- International Polyamines Foundation-ONLUS, Via del Forte Tiburtino 98, 00159, Rome, Italy
- Department of Sense Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico 155, 00161, Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
- Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
- International Polyamines Foundation-ONLUS, Via del Forte Tiburtino 98, 00159, Rome, Italy.
| |
Collapse
|
19
|
Proietti I, Skroza N, Bernardini N, Tolino E, Balduzzi V, Marchesiello A, Michelini S, Volpe S, Mambrin A, Mangino G, Romeo G, Maddalena P, Rees C, Potenza C. Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Cancers (Basel) 2020; 12:E2801. [PMID: 33003483 PMCID: PMC7600801 DOI: 10.3390/cancers12102801] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
This systematic review investigated the literature on acquired v-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor resistance in patients with melanoma. We searched MEDLINE for articles on BRAF inhibitor resistance in patients with melanoma published since January 2010 in the following areas: (1) genetic basis of resistance; (2) epigenetic and transcriptomic mechanisms; (3) influence of the immune system on resistance development; and (4) combination therapy to overcome resistance. Common resistance mutations in melanoma are BRAF splice variants, BRAF amplification, neuroblastoma RAS viral oncogene homolog (NRAS) mutations and mitogen-activated protein kinase kinase 1/2 (MEK1/2) mutations. Genetic and epigenetic changes reactivate previously blocked mitogen-activated protein kinase (MAPK) pathways, activate alternative signaling pathways, and cause epithelial-to-mesenchymal transition. Once BRAF inhibitor resistance develops, the tumor microenvironment reverts to a low immunogenic state secondary to the induction of programmed cell death ligand-1. Combining a BRAF inhibitor with a MEK inhibitor delays resistance development and increases duration of response. Multiple other combinations based on known mechanisms of resistance are being investigated. BRAF inhibitor-resistant cells develop a range of 'escape routes', so multiple different treatment targets will probably be required to overcome resistance. In the future, it may be possible to personalize combination therapy towards the specific resistance pathway in individual patients.
Collapse
Affiliation(s)
- Ilaria Proietti
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nevena Skroza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nicoletta Bernardini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Ersilia Tolino
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Veronica Balduzzi
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Anna Marchesiello
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Simone Michelini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Salvatore Volpe
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Alessandra Mambrin
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Patrizia Maddalena
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | | | - Concetta Potenza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| |
Collapse
|