1
|
Zou Z, Yu Q, Yang Y, Wang F, Zhu P, Zhang X, Zhang J. Cytoglobin attenuates melanoma malignancy but protects melanoma cells from ferroptosis. Mol Med Rep 2024; 30:219. [PMID: 39370785 PMCID: PMC11465429 DOI: 10.3892/mmr.2024.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 10/08/2024] Open
Abstract
Cutaneous malignant melanoma is the most aggressive and the deadliest form of skin cancer. There are two types of limitations which universally exist in current melanoma therapy: Adverse effects and reduced efficiency. Cytoglobin (CYGB), an iron hexacoordinated globin, is highly enriched in melanocytes and frequently epigenetically silenced during melanoma genesis. The present study aimed to explore its potential role as a biomarker for ferroptosis treatment. It was observed that B16F10 and A375 melanoma cells with loss of CYGB expression were highly sensitive to ferroptosis inducers RSL3 and erastin, whereas G361 melanoma cells with highly enriched CYGB were resistant to RSL3 or erastin. Ectopically overexpressed CYGB rendered B16F10 and A375 cells resistant to RSL3 or erastin, accompanied by decreased proliferation and epithelial‑mesenchymal transition (EMT). By contrast, knockdown of CYGB expression made G361 cells sensitive to ferroptosis induction but induced proliferation and EMT progression of G361 cells. Mechanistically, CYGB‑induced resistance of melanoma cells to ferroptosis may have been associated, in part, with i) Suppression of EMT; ii) upregulation of glutathione peroxidase 4 expression; iii) decrease of labile iron pool. In vivo study also demonstrated that CYGB overexpression rendered xenograft melanoma much more resist to RSL3 treatment. Based on these findings, CYGB is a potential therapeutic biomarker to screen the melanoma patients who are most likely benefit from ferroptosis treatment.
Collapse
Affiliation(s)
- Zuquan Zou
- Department of Health, Beilun District Center for Disease Control and Prevention, Ningbo, Zhejiang 315899, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Qingyao Yu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, P.R. China
| | - Yong Yang
- Department of Clinical Laboratory of The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Feng Wang
- Department of Laboratory Medicine, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Pan Zhu
- Department of Health, Beilun District Center for Disease Control and Prevention, Ningbo, Zhejiang 315899, P.R. China
| | - Xiaohong Zhang
- Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jinjie Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, P.R. China
| |
Collapse
|
2
|
De Backer J, Hoogewijs D. The cytoglobin-dependent transcriptome in melanoma indicates a protective function associated with oxidative stress, inflammation and cancer-associated pathways. Sci Rep 2024; 14:18175. [PMID: 39107431 PMCID: PMC11303788 DOI: 10.1038/s41598-024-69224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Cytoglobin (CYGB) is a member of the oxygen-binding globin superfamily. In this study we generated stable CYGB overexpressing A375 melanoma cells and performed RNA-sequencing to comprehensively explore the CYGB-dependent transcriptome. Our findings reveal that ectopic expression of CYGB dysregulated multiple cancer-associated genes, including the mTORC1 and AKT/mTOR signaling pathways, which are frequently overactivated in tumors. Moreover, several cancer-associated pathways, such as epithelial-mesenchymal transition (EMT) mediated by CSPG4, were downregulated upon CYGB overexpression. Intriguingly, ectopic expression suggested anti-inflammatory potential of CYGB, as exemplified by downregulation of key inflammasome-associated genes, including NLRP1, CASP1 and CD74, which play pivotal roles in cytokine regulation and inflammasome activation. Consistent with established globin functions, CYGB appears to be involved in redox homeostasis. Furthermore, our study indicates CYGB's association to DNA repair mechanisms and its regulation of NOX4, reinforcing its functional versatility. Additionally, multiple significantly enriched pathways in CYGB overexpressing cells were consistently dysregulated in opposite direction in CYGB depleted cells. Collectively, our RNA-sequencing based investigations illustrate the diverse functions of CYGB in melanoma cells, pointing to its putative roles in cellular protection against oxidative stress, inflammation, and cancer-associated pathways. These findings pave the way for further research into the physiological role of CYGB and its potential as a candidate therapeutic target in melanoma.
Collapse
Affiliation(s)
- Joey De Backer
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Fribourg, Switzerland
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - David Hoogewijs
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
3
|
Chen WA, Williams TG, So L, Drew N, Fang J, Ochoa P, Nguyen N, Jawhar Y, Otiji J, Duerksen-Hughes PJ, Reeves ME, Casiano CA, Jin H, Dovat S, Yang J, Boyle KE, Francis-Boyle OL. Duocarmycin SA Reduces Proliferation and Increases Apoptosis in Acute Myeloid Leukemia Cells In Vitro. Int J Mol Sci 2024; 25:4342. [PMID: 38673926 PMCID: PMC11050052 DOI: 10.3390/ijms25084342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy that is characterized by an expansion of immature myeloid precursors. Despite therapeutic advances, the prognosis of AML patients remains poor and there is a need for the evaluation of promising therapeutic candidates to treat the disease. The objective of this study was to evaluate the efficacy of duocarmycin Stable A (DSA) in AML cells in vitro. We hypothesized that DSA would induce DNA damage in the form of DNA double-strand breaks (DSBs) and exert cytotoxic effects on AML cells within the picomolar range. Human AML cell lines Molm-14 and HL-60 were used to perform 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT), DNA DSBs, cell cycle, 5-ethynyl-2-deoxyuridine (EdU), colony formation unit (CFU), Annexin V, RNA sequencing and other assays described in this study. Our results showed that DSA induced DNA DSBs, induced cell cycle arrest at the G2M phase, reduced proliferation and increased apoptosis in AML cells. Additionally, RNA sequencing results showed that DSA regulates genes that are associated with cellular processes such as DNA repair, G2M checkpoint and apoptosis. These results suggest that DSA is efficacious in AML cells and is therefore a promising potential therapeutic candidate that can be further evaluated for the treatment of AML.
Collapse
Affiliation(s)
- William A. Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Shryock Hall 24745 Stewart Street, Loma Linda, CA 92350, USA
| | - Terry G. Williams
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Shryock Hall 24745 Stewart Street, Loma Linda, CA 92350, USA
| | - Leena So
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Shryock Hall 24745 Stewart Street, Loma Linda, CA 92350, USA
| | - Natalie Drew
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Shryock Hall 24745 Stewart Street, Loma Linda, CA 92350, USA
| | - Jie Fang
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Pedro Ochoa
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, CA 92350, USA
| | - Nhi Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Shryock Hall 24745 Stewart Street, Loma Linda, CA 92350, USA
| | - Yasmeen Jawhar
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Shryock Hall 24745 Stewart Street, Loma Linda, CA 92350, USA
| | - Jide Otiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Shryock Hall 24745 Stewart Street, Loma Linda, CA 92350, USA
| | - Penelope J. Duerksen-Hughes
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA
| | - Mark E. Reeves
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA
- Department of Surgery, School of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA 92354, USA
| | - Carlos A. Casiano
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, CA 92350, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sinisa Dovat
- Departments of Pediatrics, Biochemistry and Molecular Biology, and Pharmacology, Penn State Cancer Institute, 400 University Drive, Hershey, PA 17033, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Kristopher E. Boyle
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Shryock Hall 24745 Stewart Street, Loma Linda, CA 92350, USA
| | - Olivia L. Francis-Boyle
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Shryock Hall 24745 Stewart Street, Loma Linda, CA 92350, USA
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA
- Department of Pathology and Human Anatomy, Division of Anatomy, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA
| |
Collapse
|
4
|
Porto E, Loula P, Strand S, Hankeln T. Molecular analysis of the human cytoglobin mRNA isoforms. J Inorg Biochem 2024; 251:112422. [PMID: 38016326 DOI: 10.1016/j.jinorgbio.2023.112422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/26/2023] [Accepted: 10/29/2023] [Indexed: 11/30/2023]
Abstract
Multiple functions have been proposed for the ubiquitously expressed vertebrate globin cytoglobin (Cygb), including nitric oxide (NO) metabolism, lipid peroxidation/signalling, superoxide dismutase activity, reactive oxygen/nitrogen species (RONS) scavenging, regulation of blood pressure, antifibrosis, and both tumour suppressor and oncogenic effects. Since alternative splicing can expand the biological roles of a gene, we investigated whether this mechanism contributes to the functional diversity of Cygb. By mining of cDNA data and molecular analysis, we identified five alternative mRNA isoforms for the human CYGB gene (V-1 to V-5). Comprehensive RNA-seq analyses of public datasets from human tissues and cells confirmed that the canonical CYGB V-1 isoform is the primary CYGB transcript in the majority of analysed datasets. Interestingly, we revealed that isoform V-3 represented the predominant CYGB variant in hepatoblastoma (HB) cell lines and in the majority of analysed normal and HB liver tissues. CYGB V-3 mRNA is transcribed from an alternate upstream promoter and hypothetically encodes a N-terminally truncated CYGB protein, which is not recognized by some antibodies used in published studies. Little to no transcriptional evidence was found for the other CYGB isoforms. Comparative transcriptomics and flow cytometry on CYGB+/+ and gene-edited CYGB-/- HepG2 HB cells did not unveil a knockout phenotype and, thus, a potential function for CYGB V-3. Our study reveals that the CYGB gene is transcriptionally more complex than previously described as it expresses alternative mRNA isoforms of unknown function. Additional experimental data are needed to clarify the biological meaning of those alternative CYGB transcripts.
Collapse
Affiliation(s)
- Elena Porto
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, D-55128 Mainz, Germany
| | - Paraskevi Loula
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, D-55128 Mainz, Germany
| | - Susanne Strand
- Department of Internal Medicine I, Molecular Hepatology, University Medical Center, Johannes Gutenberg University Mainz, Obere Zahlbacher Strasse 63, 55131 Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, D-55128 Mainz, Germany.
| |
Collapse
|
5
|
Chakkera M, Foote JB, Farran B, Nagaraju GP. Breaking the stromal barrier in pancreatic cancer: Advances and challenges. Biochim Biophys Acta Rev Cancer 2024; 1879:189065. [PMID: 38160899 DOI: 10.1016/j.bbcan.2023.189065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Pancreatic cancer (PC) remains a leading cause of mortality worldwide due to the absence of early detection methods and the low success rates of traditional therapeutic strategies. Drug resistance in PC is driven by its desmoplastic stroma, which creates a barrier that shields cancer niches and prevents the penetration of drugs. The PC stroma comprises heterogeneous cellular populations and non-cellular components involved in aberrant ECM deposition, immunosuppression, and drug resistance. These components can influence PC development through intricate and complex crosstalk with the PC cells. Understanding how stromal components and cells interact with and influence the invasiveness and refractoriness of PC cells is thus a prerequisite for developing successful stroma-modulating strategies capable of remodeling the PC stroma to alleviate drug resistance and enhance therapeutic outcomes. In this review, we explore how non-cellular and cellular stromal components, including cancer-associated fibroblasts and tumor-associated macrophages, contribute to the immunosuppressive and tumor-promoting effects of the stroma. We also examine the signaling pathways underlying their activation, tumorigenic effects, and interactions with PC cells. Finally, we discuss recent pre-clinical and clinical work aimed at developing and testing novel stroma-modulating agents to alleviate drug resistance and improve therapeutic outcomes in PC.
Collapse
Affiliation(s)
- Mohana Chakkera
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Jeremy B Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
6
|
Schlosser A, Helfenrath K, Wisniewsky M, Hinrichs K, Burmester T, Fabrizius A. The knockout of cytoglobin 1 in zebrafish (Danio rerio) alters lipid metabolism, iron homeostasis and oxidative stress response. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119558. [PMID: 37549740 DOI: 10.1016/j.bbamcr.2023.119558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Cytoglobin (Cygb) is an evolutionary ancient heme protein with yet unclear physiological function(s). Mammalian Cygb is ubiquitously expressed in all tissues and is proposed to be involved in reactive oxygen species (ROS) detoxification, nitric oxide (NO) metabolism and lipid-based signaling processes. Loss-of-function studies in mouse associate Cygb with apoptosis, inflammation, fibrosis, cardiovascular dysfunction or oncogenesis. In zebrafish (Danio rerio), two cygb genes exist, cytoglobin 1 (cygb1) and cytoglobin 2 (cygb2). Both have different coordination states and distinct expression sites within zebrafish tissues. The biological roles of the cygb paralogs are largely uncharacterized. We used a CRISPR/Cas9 genome editing approach and generated a knockout of the penta-coordinated cygb1 for in vivo analysis. Adult male cygb1 knockouts develop phenotypic abnormalities, including weight loss. To identify the molecular mechanisms underlying the occurrence of these phenotypes and differentiate between function and effect of the knockout we compared the transcriptomes of cygb1 knockout at different ages to age-matched wild-type zebrafish. We found that immune regulatory and cell cycle regulatory transcripts (e.g. tp53) were up-regulated in the cygb1 knockout liver. Additionally, the expression of transcripts involved in lipid metabolism and transport, the antioxidative defense and iron homeostasis was affected in the cygb1 knockout. Cygb1 may function as an anti-inflammatory and cytoprotective factor in zebrafish liver, and may be involved in lipid-, iron-, and ROS-dependent signaling.
Collapse
Affiliation(s)
- Annette Schlosser
- Institute of Cell and Systems Biology of Animals, University of Hamburg, D-20146 Hamburg, Germany
| | - Kathrin Helfenrath
- Institute of Cell and Systems Biology of Animals, University of Hamburg, D-20146 Hamburg, Germany
| | - Michelle Wisniewsky
- Institute of Cell and Systems Biology of Animals, University of Hamburg, D-20146 Hamburg, Germany
| | - Kira Hinrichs
- Institute of Cell and Systems Biology of Animals, University of Hamburg, D-20146 Hamburg, Germany
| | - Thorsten Burmester
- Institute of Cell and Systems Biology of Animals, University of Hamburg, D-20146 Hamburg, Germany
| | - Andrej Fabrizius
- Institute of Cell and Systems Biology of Animals, University of Hamburg, D-20146 Hamburg, Germany.
| |
Collapse
|
7
|
Zhou S, Tian O, Li W, Li J, Li W, Han F. Functional study of Cygb in the immune response to Vibrio harveyi disease in yellow drum (Nibea albiflora). FISH & SHELLFISH IMMUNOLOGY 2023; 143:109217. [PMID: 37951319 DOI: 10.1016/j.fsi.2023.109217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Cytoglobin (Cygb) is a 21-kDa heme-protein that belongs to the globin superfamily and is expressed in vertebrate tissues. It can participate in the oxidative stress response in organisms through the porphyrin ring. Previous studies have shown that this protein, also known as YdCygb, has potential immune abilities in the infection of Vibrio harveyi in yellow drum (Nibea albiflora). In this study, we report the role of Cygb in the immune response of teleost fish for the first time. Quantitative RT-PCR analysis indicated that YdCygb was highly expressed in the liver and intestine of yellow drum, and its expression can be upregulated by pathogenic attack. The cellular distribution of YdCygb-EGFP proteins was observed in cell membrane, cytoplasm, and nucleus in the kidney cells of N. albiflora. Furthermore, a comparative transcriptome analysis between the YdCygb overexpression group and control vector group identified 28 differentially expressed genes (DEGs). The analysis showed that ANPEP, CLDN5, ORM1/2, SERPINC1 and HPN and ITGAM might play important regulatory roles to Cygb in fish. Notably, using GST-pull down technology, we identified 3-phosphoglyceraldehyde dehydrogenase and intermediate filament protein as direct interactors with YdCygb, playing a role against V. harveyi. The molecular and functional characterization of YdCygb provides better understanding of the genetic basis of disease resistance traits in yellow drum and sheds new light on the functioning of Cygb and its potential regulatory signaling pathway as well.
Collapse
Affiliation(s)
- Shihao Zhou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Oianqian Tian
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Jiacheng Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Wenjing Li
- Jiangsu Haorun Biological Industry Group Co., Ltd, Taizhou, Jiangsu, China.
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China.
| |
Collapse
|
8
|
Mathai C, Jourd'heuil F, Pham LGC, Gilliard K, Balnis J, Jen A, Overmyer KA, Coon JJ, Jaitovich A, Boivin B, Jourd'heuil D. A role for cytoglobin in regulating intracellular hydrogen peroxide and redox signals in the vasculature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535146. [PMID: 37034694 PMCID: PMC10081330 DOI: 10.1101/2023.03.31.535146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The oxidant hydrogen peroxide serves as a signaling molecule that alters many aspects of cardiovascular functions. Recent studies suggest that cytoglobin - a hemoglobin expressed in the vasculature - may promote electron transfer reactions with proposed functions in hydrogen peroxide decomposition. Here, we determined the extent to which cytoglobin regulates intracellular hydrogen peroxide and established mechanisms. We found that cytoglobin decreased the hyperoxidation of peroxiredoxins and maintained the activity of peroxiredoxin 2 following challenge with exogenous hydrogen peroxide. Cytoglobin promoted a reduced intracellular environment and facilitated the reduction of the thiol-based hydrogen peroxide sensor Hyper7 after bolus addition of hydrogen peroxide. Cytoglobin also limited the inhibitory effect of hydrogen peroxide on glycolysis and reversed the oxidative inactivation of the glycolytic enzyme GAPDH. Our results indicate that cytoglobin in cells exists primarily as oxyferrous cytoglobin (CygbFe 2+ -O 2 ) with its cysteine residues in the reduced form. We found that the specific substitution of one of two cysteine residues on cytoglobin (C83A) inhibited the reductive activity of cytoglobin on Hyper7 and GAPDH. Carotid arteries from cytoglobin knockout mice were more sensitive to glycolytic inhibition by hydrogen peroxide than arteries from wildtype mice. Together, these results support a role for cytoglobin in regulating intracellular redox signals associated with hydrogen peroxide through oxidation of its cysteine residues, independent of hydrogen peroxide reaction at its heme center.
Collapse
|
9
|
Reeder BJ. Insights into the function of cytoglobin. Biochem Soc Trans 2023; 51:1907-1919. [PMID: 37721133 PMCID: PMC10657185 DOI: 10.1042/bst20230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Since its discovery in 2001, the function of cytoglobin has remained elusive. Through extensive in vitro and in vivo research, a range of potential physiological and pathological mechanisms has emerged for this multifunctional member of the hemoglobin family. Currently, over 200 research publications have examined different aspects of cytoglobin structure, redox chemistry and potential roles in cell signalling pathways. This research is wide ranging, but common themes have emerged throughout the research. This review examines the current structural, biochemical and in vivo knowledge of cytoglobin published over the past two decades. Radical scavenging, nitric oxide homeostasis, lipid binding and oxidation and the role of an intramolecular disulfide bond on the redox chemistry are examined, together with aspects and roles for Cygb in cancer progression and liver fibrosis.
Collapse
Affiliation(s)
- Brandon J Reeder
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, U.K
| |
Collapse
|
10
|
Wu F, He J, Deng Q, Chen J, Peng M, Xiao J, Zeng Y, Yi L, Li Z, Tian R, Jiang Z. Neuroglobin inhibits pancreatic cancer proliferation and metastasis by targeting the GNAI1/EGFR/AKT/ERK signaling axis. Biochem Biophys Res Commun 2023; 664:108-116. [PMID: 37141638 DOI: 10.1016/j.bbrc.2023.04.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
Pancreatic cancer is an extremely aggressive malignancy with a very disappointing prognosis. Neuroglobin (NGB), a member of the globin family, has been demonstrated to have a significant role in a variety of tumor forms. The possible role of NGB as a tumor suppressor gene in pancreatic cancer was investigated in this work. Information from the public dataset TCGA combined with GTEx was used to analyze the finding that NGB was commonly downregulated in pancreatic cancer cell lines and tissues, correlating with patient age and prognosis. The expression of NGB in pancreatic cancer was investigated via RT-PCR, qRT-PCR, and Western blot experiments. In-vitro and in-vivo assays, NGB elicited cell cycle arrest in the S phase and apoptosis, hindered migration and invasion, reversed the EMT process, and suppressed cell proliferation and development. The mechanism of action of NGB was predicted via bioinformatics analysis and validated using Western blot and co-IP experiments revealed that NGB inhibited the EGFR/AKT/ERK pathway by binding to and reducing expression of GNAI1 and p-EGFR. In addition, pancreatic cancer cells overexpressing NGB showed increased drug sensitivity to gefitinib (EGFR-TKI). In conclusion, NGB inhibits pancreatic cancer progression by specifically targeting the GNAI1/EGFR/AKT/ERK signaling axis.
Collapse
Affiliation(s)
- Fan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jin He
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qianxi Deng
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jun Chen
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mingyu Peng
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiayi Xiao
- West China School of Medicine and West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, PR China
| | - Yiwei Zeng
- CHINA MEDICAL UNIVERSITY, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Lin Yi
- CHONGQING MEDICAL UNIVERSITY, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Zhuoqing Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Rui Tian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|