1
|
Smit ER, Romijn M, Langerhorst P, van der Zwaan C, van der Staaij H, Rotteveel J, van Kaam AH, Fustolo-Gunnink SF, Hoogendijk AJ, Onland W, Finken MJJ, van den Biggelaar M. Distinct protein patterns related to postnatal development in small for gestational age preterm infants. Pediatr Res 2024:10.1038/s41390-024-03481-0. [PMID: 39152333 DOI: 10.1038/s41390-024-03481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Preterm infants, especially those born small for gestational age (SGA), are at risk of short-term and long-term health complications. Characterization of changes in circulating proteins postnatally in preterm infants may provide valuable fundamental insights into this population. Here, we investigated postnatal developmental patterns in preterm infants and explored protein signatures that deviate between SGA infants and appropriate for gestational age (AGA) infants using a mass spectrometry (MS)-based proteomics workflow. METHODS Longitudinal serum samples obtained at postnatal days 0, 3, 7, 14, and 28 from 67 preterm infants were analyzed using unbiased MS-based proteomics. RESULTS 314 out of 833 quantified serum proteins change postnatally, including previously described age-related changes in immunoglobulins, hemoglobin subunits, and new developmental patterns, e.g. apolipoproteins (APOA4) and terminal complement cascade (C9) proteins. Limited differences between SGA and AGA infants were found at birth while longitudinal monitoring revealed 69 deviating proteins, including insulin-sensitizing hormone adiponectin, platelet proteins, and 24 proteins with an annotated function in the immune response. CONCLUSIONS This study shows the potential of MS-based serum profiling in defining circulating protein trajectories in the preterm infant population and its ability to identify longitudinal alterations in protein levels associated with SGA. IMPACT Postnatal changes of circulating proteins in preterm infants have not fully been elucidated but may contribute to development of health complications. Mass spectrometry-based analysis is an attractive approach to study circulating proteins in preterm infants with limited material. Longitudinal plasma profiling reveals postnatal developmental-related patterns in preterm infants (314/833 proteins) including previously described changes, but also previously unreported proteins. Longitudinal monitoring revealed an immune response signature between SGA and AGA infants. This study highlights the importance of taking postnatal changes into account for translational studies in preterm infants.
Collapse
Affiliation(s)
- Eva R Smit
- Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
| | - Michelle Romijn
- Department of Neonatology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
- Department of Pediatric Endocrinology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Pieter Langerhorst
- Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
| | - Carmen van der Zwaan
- Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
| | - Hilde van der Staaij
- Sanquin Research & Lab Services, Sanquin Blood Supply Foundation, Amsterdam, the Netherlands
- Department of Pediatrics, Division of Neonatology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pediatric Hematology, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Joost Rotteveel
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
- Department of Pediatric Endocrinology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Anton H van Kaam
- Department of Neonatology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Suzanne F Fustolo-Gunnink
- Sanquin Research & Lab Services, Sanquin Blood Supply Foundation, Amsterdam, the Netherlands
- Department of Pediatrics, Division of Neonatology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pediatric Hematology, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arie J Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
| | - Wes Onland
- Department of Neonatology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Martijn J J Finken
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
- Department of Pediatric Endocrinology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
2
|
Van Pee T, Martens DS, Alfano R, Engelen L, Sleurs H, Rasking L, Plusquin M, Nawrot TS. Cord Blood Proteomic Profiles, Birth Weight, and Early Life Growth Trajectories. JAMA Netw Open 2024; 7:e2411246. [PMID: 38743419 PMCID: PMC11094560 DOI: 10.1001/jamanetworkopen.2024.11246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/13/2024] [Indexed: 05/16/2024] Open
Abstract
Importance The cord blood proteome, a repository of proteins derived from both mother and fetus, might offer valuable insights into the physiological and pathological state of the fetus. However, its association with birth weight and growth trajectories early in life remains unexplored. Objective To identify cord blood proteins associated with birth weight and the birth weight ratio (BWR) and to evaluate the associations of these cord blood proteins with early growth trajectories. Design, Setting, and Participants This cohort study included 288 mother-child pairs from the ongoing prospective Environmental Influence on Early Aging birth cohort study. Newborns were recruited from East-Limburg Hospital in Genk, Belgium, between February 2010 and November 2017 and followed up until ages 4 to 6 years. Data were analyzed from February 2022 to September 2023. Main Outcomes and Measures The outcome of interest was the associations of 368 inflammatory-related cord blood proteins with birth weight or BWR and with early life growth trajectories (ie, rapid growth at age 12 months and weight, body mass index [BMI] z score, waist circumference, and overweight at age 4-6 years) using multiple linear regression models. The BWR was calculated by dividing the birth weight by the median birth weight of the population-specific reference growth curve, considering parity, sex, and gestational age. Results are presented as estimates or odds ratios (ORs) for each doubling in proteins. Results The sample included 288 infants (125 [43.4%] male; mean [SD] gestation age, 277.2 [11.6] days). The mean (SD) age of the child at the follow-up examination was 4.6 (0.4) years old. After multiple testing correction, there were significant associations of birth weight and BWR with 7 proteins: 2 positive associations: afamin (birth weight: coefficient, 341.16 [95% CI, 192.76 to 489.50]) and secreted frizzled-related protein 4 (SFRP4; birth weight: coefficient, 242.60 [95% CI, 142.77 to 342.43]; BWR: coefficient, 0.07 [95% CI, 0.04 to 0.10]) and 5 negative associations: cadherin EGF LAG 7-pass G-type receptor 2 (CELSR2; birth weight: coefficient, -237.52 [95% CI, -343.15 to -131.89]), ephrin type-A receptor 4 (EPHA4; birth weight: coefficient, -342.78 [95% CI, -463.10 to -222.47]; BWR: coefficient, -0.11 [95% CI, -0.14 to -0.07]), SLIT and NTRK-like protein 1 (SLITRK1; birth weight: coefficient, -366.32 [95% CI, -476.66 to -255.97]; BWR: coefficient, -0.11 [95% CI, -0.15 to -0.08]), transcobalamin-1 (TCN1; birth weight: coefficient, -208.75 [95% CI, -305.23 to -112.26]), and unc-5 netrin receptor D (UNC5D; birth weight: coefficient, -209.27 [95% CI, -295.14 to -123.40]; BWR: coefficient, -0.07 [95% CI, -0.09 to -0.04]). Further evaluation showed that 2 proteins were still associated with rapid growth at age 12 months (afamin: OR, 0.32 [95% CI, 0.11-0.88]; TCN1: OR, 2.44 [95% CI, 1.26-4.80]). At age 4 to 6 years, CELSR2, EPHA4, SLITRK1, and UNC5D were negatively associated with weight (coefficients, -1.33 to -0.68 kg) and body mass index z score (coefficients, -0.41 to -0.23), and EPHA4, SLITRK1, and UNC5D were negatively associated with waist circumference (coefficients, -1.98 to -0.87 cm). At ages 4 to 6 years, afamin (OR, 0.19 [95% CI, 0.05-0.70]) and SLITRK1 (OR, 0.32 [95% CI, 0.10-0.99]) were associated with lower odds for overweight. Conclusions and Relevance This cohort study found 7 cord blood proteins associated with birth weight and growth trajectories early in life. Overall, these findings suggest that stressors that could affect the cord blood proteome during pregnancy might have long-lasting associations with weight and body anthropometrics.
Collapse
Affiliation(s)
- Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Dries S. Martens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Liesa Engelen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Hanne Sleurs
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Leen Rasking
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Public Health and Primary Care, Leuven University, Leuven, Belgium
| |
Collapse
|
3
|
ten Barge JA, Baudat M, Meesters NJ, Kindt A, Joosten EA, Reiss IK, Simons SH, van den Bosch GE. Biomarkers for assessing pain and pain relief in the neonatal intensive care unit. FRONTIERS IN PAIN RESEARCH 2024; 5:1343551. [PMID: 38426011 PMCID: PMC10902154 DOI: 10.3389/fpain.2024.1343551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Newborns admitted to the neonatal intensive care unit (NICU) regularly undergo painful procedures and may face various painful conditions such as postoperative pain. Optimal management of pain in these vulnerable preterm and term born neonates is crucial to ensure their comfort and prevent negative consequences of neonatal pain. This entails accurate and timely identification of pain, non-pharmacological pain treatment and if needed administration of analgesic therapy, evaluation of treatment effectiveness, and monitoring of adverse effects. Despite the widely recognized importance of pain management, pain assessment in neonates has thus far proven to be a challenge. As self-report, the gold standard for pain assessment, is not possible in neonates, other methods are needed. Several observational pain scales have been developed, but these often rely on snapshot and largely subjective observations and may fail to capture pain in certain conditions. Incorporation of biomarkers alongside observational pain scores holds promise in enhancing pain assessment and, by extension, optimizing pain treatment and neonatal outcomes. This review explores the possibilities of integrating biomarkers in pain assessment in the NICU.
Collapse
Affiliation(s)
- Judith A. ten Barge
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC—Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Mathilde Baudat
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Naomi J. Meesters
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC—Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Alida Kindt
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Elbert A. Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Irwin K.M. Reiss
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC—Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Sinno H.P. Simons
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC—Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Gerbrich E. van den Bosch
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC—Sophia Children’s Hospital, Rotterdam, Netherlands
| |
Collapse
|
4
|
Red Blood Cell Donor Sex Associated Effects on Morbidity and Mortality in the Extremely Preterm Newborn. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9121980. [PMID: 36553422 PMCID: PMC9777093 DOI: 10.3390/children9121980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Transfusion exposure increases the risk of death in critically ill patients of all ages. This was thought to relate to co-morbidities in the transfusion recipient. However, donor characteristics are increasingly recognised as critical to transfusion recipient outcome with systematic reviews suggesting blood donor sex influences transfusion recipient health. Originally focusing on plasma and platelet transfusions, retrospective studies report greater risks of adverse outcomes such as transfusion related acute lung injury in those receiving products from female donors. There is increasing awareness that exposure to red blood cells (RBCs) poses a similar risk. Recent studies focusing on transfusion related outcomes in extremely preterm newborns report conflicting data on the association between blood donor sex and outcomes. Despite a renewed focus on lower versus higher transfusion thresholds in neonatal clinical practice, this group remain a heavily transfused population, receiving on average 3-5 RBC transfusions during their primary hospital admission. Therefore, evidence supporting a role for better donor selection could have a significant impact on clinical outcomes in this high-risk population. Here, we review the emerging evidence for an association between blood donor sex and clinical outcomes in extremely preterm newborns receiving one or more transfusions.
Collapse
|
5
|
Recent Developments in Clinical Plasma Proteomics—Applied to Cardiovascular Research. Biomedicines 2022; 10:biomedicines10010162. [PMID: 35052841 PMCID: PMC8773619 DOI: 10.3390/biomedicines10010162] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
The human plasma proteome mirrors the physiological state of the cardiovascular system, a fact that has been used to analyze plasma biomarkers in routine analysis for the diagnosis and monitoring of cardiovascular diseases for decades. These biomarkers address, however, only a very limited subset of cardiovascular diseases, such as acute myocardial infarct or acute deep vein thrombosis, and clinical plasma biomarkers for the diagnosis and stratification cardiovascular diseases that are growing in incidence, such as heart failure and abdominal aortic aneurysm, do not exist and are urgently needed. The discovery of novel biomarkers in plasma has been hindered by the complexity of the human plasma proteome that again transforms into an extreme analytical complexity when it comes to the discovery of novel plasma biomarkers. This complexity is, however, addressed by recent achievements in technologies for analyzing the human plasma proteome, thereby facilitating the possibility for novel biomarker discoveries. The aims of this article is to provide an overview of the recent achievements in technologies for proteomic analysis of the human plasma proteome and their applications in cardiovascular medicine.
Collapse
|
6
|
Danielsson H, Tebani A, Zhong W, Fagerberg L, Brusselaers N, Hård AL, Uhlén M, Hellström A. Blood protein profiles related to preterm birth and retinopathy of prematurity. Pediatr Res 2022; 91:937-946. [PMID: 33895781 PMCID: PMC9064798 DOI: 10.1038/s41390-021-01528-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/25/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Nearly one in ten children is born preterm. The degree of immaturity is a determinant of the infant's health. Extremely preterm infants have higher morbidity and mortality than term infants. One disease affecting extremely preterm infants is retinopathy of prematurity (ROP), a multifactorial neurovascular disease that can lead to retinal detachment and blindness. The advances in omics technology have opened up possibilities to study protein expressions thoroughly with clinical accuracy, here used to increase the understanding of protein expression in relation to immaturity and ROP. METHODS Longitudinal serum protein profiles the first months after birth in 14 extremely preterm infants were integrated with perinatal and ROP data. In total, 448 unique protein targets were analyzed using Proximity Extension Assays. RESULTS We found 20 serum proteins associated with gestational age and/or ROP functioning within mainly angiogenesis, hematopoiesis, bone regulation, immune function, and lipid metabolism. Infants with severe ROP had persistent lower levels of several identified proteins during the first postnatal months. CONCLUSIONS The study contributes to the understanding of the relationship between longitudinal serum protein levels and immaturity and abnormal retinal neurovascular development. This is essential for understanding pathophysiological mechanisms and to optimize diagnosis, treatment and prevention for ROP. IMPACT Longitudinal protein profiles of 14 extremely preterm infants were analyzed using a novel multiplex protein analysis platform combined with perinatal data. Proteins associated with gestational age at birth and the neurovascular disease ROP were identified. Among infants with ROP, longitudinal levels of the identified proteins remained largely unchanged during the first postnatal months. The main functions of the proteins identified were angiogenesis, hematopoiesis, immune function, bone regulation, lipid metabolism, and central nervous system development. The study contributes to the understanding of longitudinal serum protein patterns related to gestational age and their association with abnormal retinal neuro-vascular development.
Collapse
Affiliation(s)
- Hanna Danielsson
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden ,grid.416648.90000 0000 8986 2221Sach’s Children’s and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Abdellah Tebani
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden ,grid.41724.340000 0001 2296 5231Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France ,grid.41724.340000 0001 2296 5231Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Rouen, France
| | - Wen Zhong
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Linn Fagerberg
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Nele Brusselaers
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden ,grid.5284.b0000 0001 0790 3681Global Health Institute, Antwerp University, Antwerp, Belgium ,grid.5342.00000 0001 2069 7798Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Anna-Lena Hård
- grid.1649.a000000009445082XThe Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mathias Uhlén
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Ann Hellström
- The Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
7
|
Deutsch EW, Omenn GS, Sun Z, Maes M, Pernemalm M, Palaniappan KK, Letunica N, Vandenbrouck Y, Brun V, Tao SC, Yu X, Geyer PE, Ignjatovic V, Moritz RL, Schwenk JM. Advances and Utility of the Human Plasma Proteome. J Proteome Res 2021; 20:5241-5263. [PMID: 34672606 PMCID: PMC9469506 DOI: 10.1021/acs.jproteome.1c00657] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The study of proteins circulating in blood offers tremendous opportunities to diagnose, stratify, or possibly prevent diseases. With recent technological advances and the urgent need to understand the effects of COVID-19, the proteomic analysis of blood-derived serum and plasma has become even more important for studying human biology and pathophysiology. Here we provide views and perspectives about technological developments and possible clinical applications that use mass-spectrometry(MS)- or affinity-based methods. We discuss examples where plasma proteomics contributed valuable insights into SARS-CoV-2 infections, aging, and hemostasis and the opportunities offered by combining proteomics with genetic data. As a contribution to the Human Proteome Organization (HUPO) Human Plasma Proteome Project (HPPP), we present the Human Plasma PeptideAtlas build 2021-07 that comprises 4395 canonical and 1482 additional nonredundant human proteins detected in 240 MS-based experiments. In addition, we report the new Human Extracellular Vesicle PeptideAtlas 2021-06, which comprises five studies and 2757 canonical proteins detected in extracellular vesicles circulating in blood, of which 74% (2047) are in common with the plasma PeptideAtlas. Our overview summarizes the recent advances, impactful applications, and ongoing challenges for translating plasma proteomics into utility for precision medicine.
Collapse
Affiliation(s)
- Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Gilbert S Omenn
- Institute for Systems Biology, Seattle, Washington 98109, United States.,Departments of Computational Medicine & Bioinformatics, Internal Medicine, and Human Genetics and School of Public Health, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Michal Maes
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Maria Pernemalm
- Department of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
| | | | - Natasha Letunica
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville 3052, Victoria, Australia
| | - Yves Vandenbrouck
- Université Grenoble Alpes, CEA, Inserm U1292, Grenoble 38000, France
| | - Virginie Brun
- Université Grenoble Alpes, CEA, Inserm U1292, Grenoble 38000, France
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, B207 SCSB Building, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Philipp E Geyer
- OmicEra Diagnostics GmbH, Behringstr. 6, 82152 Planegg, Germany
| | - Vera Ignjatovic
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville 3052, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, 50 Flemington Road, Parkville 3052, Victoria, Australia
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Jochen M Schwenk
- Affinity Proteomics, Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23, SE-171 65 Solna, Sweden
| |
Collapse
|
8
|
Letunica N, Cai T, Cheong JLY, Doyle LW, Monagle P, Ignjatovic V. The use of proteomics for blood biomarker research in premature infants: a scoping review. Clin Proteomics 2021; 18:13. [PMID: 33853516 PMCID: PMC8048323 DOI: 10.1186/s12014-021-09316-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Over the last decade, the use of proteomics in the setting of prematurity has increased and has enabled researchers to successfully identify biomarkers for an array of associated morbidities. The objective of this scoping review was to identify the existing literature, as well as any knowledge gaps related to proteomic biomarker discoveries in the setting of prematurity. A scoping review was conducted using PubMed, Embase and Medline databases following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. The study selection process yielded a total of 700 records, of which 13 studies were included in this review. Most studies used a tandem Mass Spectrometry (MS/MS) proteomics approach to identify key biomarkers. The corresponding studies identified proteins associated with retinopathy of prematurity (ROP), bronchopulmonary dysplasia (BPD), necrotising enterocolitis (NEC), late onset sepsis (LOS) and gestational age. This scoping review demonstrates the limited use of proteomics to identify biomarkers associated with severe complications of prematurity. Further research is warranted to identify biomarkers of other important morbidities associated with prematurity, such as intraventricular haemorrhage (IVH) and cerebral palsy, and to investigate the mechanisms associated with these outcomes.
Collapse
Affiliation(s)
- Natasha Letunica
- Haematology Research Laboratory, Murdoch Children's Research Institute, Parkville, Australia
| | - Tengyi Cai
- Haematology Research Laboratory, Murdoch Children's Research Institute, Parkville, Australia
| | - Jeanie L Y Cheong
- Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Parkville, Australia.,Department of Obstetrics and Gynecology, The Royal Women's Hospital, Parkville, Australia.,Newborn Research, The Royal Women's Hospital, Parkville, Australia
| | - Lex W Doyle
- Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, 50 Flemington Road, Parkville, Australia.,Department of Obstetrics and Gynecology, The Royal Women's Hospital, Parkville, Australia.,Newborn Research, The Royal Women's Hospital, Parkville, Australia
| | - Paul Monagle
- Haematology Research Laboratory, Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, 50 Flemington Road, Parkville, Australia.,Department of Clinical Haematology, Royal Children's Hospital, Parkville, Australia
| | - Vera Ignjatovic
- Haematology Research Laboratory, Murdoch Children's Research Institute, Parkville, Australia. .,Department of Paediatrics, The University of Melbourne, 50 Flemington Road, Parkville, Australia.
| |
Collapse
|
9
|
Zhong W, Danielsson H, Tebani A, Karlsson MJ, Elfvin A, Hellgren G, Brusselaers N, Brodin P, Hellström A, Fagerberg L, Uhlén M. Dramatic changes in blood protein levels during the first week of life in extremely preterm infants. Pediatr Res 2021; 89:604-612. [PMID: 32330929 DOI: 10.1038/s41390-020-0912-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Preterm birth and its complications are the primary cause of death among children under the age of 5. Among the survivors, morbidity both perinatally and later in life is common. The dawn of novel technical platforms for comprehensive and sensitive analysis of protein profiles in blood has opened up new possibilities to study both health and disease with significant clinical accuracy, here used to study the preterm infant and the physiological changes of the transition from intrauterine to extrauterine life. METHODS We have performed in-depth analysis of the protein profiles of 14 extremely preterm infants using longitudinal sampling. Medical variables were integrated with extensive profiling of 448 unique protein targets. RESULTS The preterm infants have a distinct unified protein profile in blood directly at birth regardless of clinical background; however, the pattern changed profoundly postnatally, expressing more diverse profiles only 1 week later and further on up to term-equivalent age. Clusters of proteins depending on temporal trend were identified. CONCLUSION The protein profiles and the temporal trends here described will contribute to the understanding of the physiological changes in the intrauterine-extrauterine transition, which is essential to adjust early-in-life interventions to prone a normal development in the vulnerable preterm infants. IMPACT We have performed longitudinal and in-depth analysis of the protein profiles of 14 extremely preterm infants using a novel multiplex protein analysis platform. The preterm infants had a distinct unified protein profile in blood directly at birth regardless of clinical background. The pattern changed dramatically postnatally, expressing more diverse profiles only 1 week later and further on up to term-equivalent age. Certain clusters of proteins were identified depending on their temporal trend, including several liver and immune proteins. The study contributes to the understanding of the physiological changes in the intrauterine-extrauterine transition.
Collapse
Affiliation(s)
- Wen Zhong
- Science for Life Laboratory, Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Hanna Danielsson
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Abdellah Tebani
- Science for Life Laboratory, Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Max J Karlsson
- Science for Life Laboratory, Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Anders Elfvin
- Department of Paediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, and The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gunnel Hellgren
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.,The Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nele Brusselaers
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Petter Brodin
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Newborn Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Hellström
- The Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Linn Fagerberg
- Science for Life Laboratory, Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
10
|
Suski M, Wiśniewska A, Kuś K, Kiepura A, Stachowicz A, Stachyra K, Czepiel K, Madej J, Olszanecki R. Decrease of the pro-inflammatory M1-like response by inhibition of dipeptidyl peptidases 8/9 in THP-1 macrophages - quantitative proteomics of the proteome and secretome. Mol Immunol 2020; 127:193-202. [PMID: 32998073 DOI: 10.1016/j.molimm.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/29/2020] [Accepted: 09/07/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cellular peptidases are an emerging target of novel pharmacological strategies in inflammatory diseases and cancer. In this context, the dipeptidyl peptidases 8 and 9 (DPP8/9) have gained special attention due to their activities in the immune cells. However, in spite of more than hundred protein substrates identified to date by mass spectrometry-based analysis, the cellular DPP8/9 functions are still elusive. METHODS We applied the proteomic approach (iTRAQ-2DLC-MS/MS) to comprehensively analyze the role of DPP8/9 in the regulation of macrophage activation by in-depth protein quantitation of THP-1 proteome and secretome. RESULTS Cells pre-incubated with DPP8/9 inhibitor (1G244) prior activation (LPS or IL-4/IL-13) diminished the expression levels of M1-like response markers, but not M2-like phenotype features. This was accompanied by multiple intra- and extra-cellular protein abundance changes in THP-1 cells, related to cellular metabolism, mitochondria and endoplasmic reticulum function, as well as those engaged with inflammatory and apoptotic processes, including previously reported and novel DPP8/9 targets. CONCLUSIONS Inhibition of DPP 8/9 had a profound effect on the THP-1 macrophage proteome and secretome, evidencing the decrease of the pro-inflammatory M1-like response. Presented results are to our best knowledge the first which, among others, highlight the metabolic effects of DPP8/9 inhibition in macrophages.
Collapse
Affiliation(s)
- Maciej Suski
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland.
| | - Anna Wiśniewska
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Katarzyna Kuś
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Anna Kiepura
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Aneta Stachowicz
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Kamila Stachyra
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Klaudia Czepiel
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Józef Madej
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| |
Collapse
|
11
|
Zasada M, Suski M, Bokiniec R, Szwarc-Duma M, Borszewska-Kornacka MK, Madej J, Bujak-Giżycka B, Madetko-Talowska A, Revhaug C, Baumbusch LO, Saugstad OD, Pietrzyk JJ, Kwinta P. Comparative two time-point proteome analysis of the plasma from preterm infants with and without bronchopulmonary dysplasia. Ital J Pediatr 2019; 45:112. [PMID: 31445514 PMCID: PMC6708124 DOI: 10.1186/s13052-019-0676-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In this study, we aimed to analyze differences in plasma protein abundances between infants with and without bronchopulmonary dysplasia (BPD), to add new insights into a better understanding of the pathogenesis of this disease. METHODS Cord and peripheral blood of neonates (≤ 30 weeks gestational age) was drawn at birth and at the 36th postmenstrual week (36 PMA), respectively. Blood samples were retrospectively subdivided into BPD(+) and BPD(-) groups, according to the development of BPD. RESULTS Children with BPD were characterized by decreased afamin, gelsolin and carboxypeptidase N subunit 2 levels in cord blood, and decreased galectin-3 binding protein and hemoglobin subunit gamma-1 levels, as well as an increased serotransferrin abundance in plasma at the 36 PMA. CONCLUSIONS BPD development is associated with the plasma proteome changes in preterm infants, adding further evidence for the possible involvement of disturbances in vitamin E availability and impaired immunological processes in the progression of prematurity pulmonary complications. Moreover, it also points to the differences in proteins related to infection resistance and maintaining an adequate level of hematocrit in infants diagnosed with BPD.
Collapse
Affiliation(s)
- Magdalena Zasada
- Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
| | - Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Renata Bokiniec
- Neonatal and Intensive Care Department, Medical University of Warsaw, Warsaw, Poland
| | - Monika Szwarc-Duma
- Neonatal and Intensive Care Department, Medical University of Warsaw, Warsaw, Poland
| | | | - Józef Madej
- Chair of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Beata Bujak-Giżycka
- Chair of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Jagiellonian University Medical College, Cracow, Poland
| | - Cecilie Revhaug
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Lars O. Baumbusch
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Ola D. Saugstad
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Jacek Józef Pietrzyk
- Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
| | - Przemko Kwinta
- Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
12
|
Zasada M, Suski M, Bokiniec R, Szwarc-Duma M, Borszewska-Kornacka MK, Madej J, Bujak-Gizycka B, Madetko-Talowska A, Revhaug C, Baumbusch LO, Saugstad OD, Pietrzyk JJ, Kwinta P. An iTRAQ-Based Quantitative Proteomic Analysis of Plasma Proteins in Preterm Newborns With Retinopathy of Prematurity. Invest Ophthalmol Vis Sci 2019; 59:5312-5319. [PMID: 30398622 DOI: 10.1167/iovs.18-24914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinopathy of prematurity (ROP) is a vision-threatening complication of a premature birth, in which the etiology still remains unclear. Importantly, the molecular processes that govern these effects can be investigated in a perturbed plasma proteome composition. Thus, plasma proteomics may add new insights into a better understanding of the pathogenesis of this disease. Methods The cord and peripheral blood of neonates (≤30 weeks gestational age) was drawn at birth and at the 36th postmenstrual week (PMA), respectively. Blood samples were retrospectively subdivided into ROP(+) and ROP(-) groups, according to the development of ROP. Results The quantitative analysis of plasma proteome at both time points revealed 30 protein abundance changes between ROP(+) and ROP(-) groups. After standardization to gestational age, children who developed ROP were characterized by an increased C3 complement component and fibrinogen level at both analyzed time points. Conclusions Higher levels of the complement C3 component and fibrinogen, present in the cord blood and persistent to 36 PMA, may indicate a chronic low-grade systemic inflammation and hypercoagulable state that may play a role in the development of ROP.
Collapse
Affiliation(s)
- Magdalena Zasada
- Department of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Renata Bokiniec
- Neonatal and Intensive Care Department, Medical University of Warsaw, Warsaw, Poland
| | - Monika Szwarc-Duma
- Neonatal and Intensive Care Department, Medical University of Warsaw, Warsaw, Poland
| | | | - Józef Madej
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Beata Bujak-Gizycka
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Jagiellonian University Medical College, Krakow, Poland
| | - Cecilie Revhaug
- Department of Pediatric Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Lars O Baumbusch
- Department of Pediatric Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ola D Saugstad
- Department of Pediatric Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Jacek Józef Pietrzyk
- Department of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Przemko Kwinta
- Department of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|