1
|
Smolich JJ, Kenna KR, Mynard JP. Returning to evidence-based mechanisms and concepts in preterm birth transition physiology. J Physiol 2024; 602:4329-4331. [PMID: 39151045 DOI: 10.1113/jp287169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/18/2024] Open
Affiliation(s)
- Joseph J Smolich
- Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Kelly R Kenna
- Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jonathan P Mynard
- Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Smolich JJ. Understanding the physiology of immediate and delayed umbilical cord clamping at birth: Need for evidence-based pathway to reduce confusion. J Physiol 2022; 600:3627-3631. [PMID: 35819860 DOI: 10.1113/jp283393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Joseph J Smolich
- Heart Research, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Smolich JJ, Kenna KR. Divergent effects of initial ventilation with delayed cord clamping on systemic and pulmonary arterial flows in the birth transition of preterm lambs. J Physiol 2022; 600:3585-3601. [PMID: 35482416 DOI: 10.1113/jp282934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
A current view that delayed cord clamping (DCC) results in greater haemodynamic stability at birth than immediate cord clamping (ICC) is based on comparison of DCC vs. ICC followed by an asphyxial (∼2 min) cord clamp-to-ventilation (CC-V) interval. More recent data suggest that relatively minor perinatal differences in heart rate and blood pressure fluctuations exist between DCC and ICC with a non-asphyxial (<45 s) CC-V interval, but it is unknown how ventricular output and central arterial blood flow effects of DCC compare with those of non-asphyxial ICC. Anaesthetized preterm fetal lambs instrumented with flow probes on major central arteries were ventilated for 97 (7) s (mean (SD)) before DCC at birth (n = 10), or underwent ICC 40 (6) s before ventilation (n = 10). Compared to ICC, initial ventilation and DCC was accompanied by (1) redistribution of a similar level of ascending aortic flow away from cephalic arteries and towards the aortic isthmus after ventilation; (2) a lower right ventricular output after cord clamping that was redistributed towards the lungs, thereby maintaining the absolute contribution of this output to a similar increase in pulmonary arterial flow after birth; and (3) a lower descending thoracic aortic flow after birth, related to a more rapid decline in phasic right-to-left ductal flow only partially offset by increased aortic isthmus flow. However, systemic arterial flows were similar between DCC and non-asphyxial ICC within 5 min after birth. These findings suggest that compared to non-asphyxial ICC, initial ventilation with DCC transiently redistributed central arterial flows, resulting in lower perinatal systemic arterial, but not pulmonary arterial, flows. KEY POINTS: A current view that delayed cord clamping (DCC) results in greater haemodynamic stability at birth than immediate cord clamping (ICC) is based on comparison of DCC vs. ICC with an asphyxial (∼2 min) cord clamp-to-ventilation (CC-V) interval. Recent data suggest that relatively minor perinatal differences in heart rate and blood pressure fluctuations exist between DCC and ICC with a non-asphyxial (<45 s) CC-V interval, but how central arterial blood flow effects of DCC compare with those of non-asphyxial ICC is unknown. Anaesthetized preterm fetal lambs instrumented with central arterial flow probes underwent initial ventilation for ∼90 s before DCC at birth, or ICC for ∼40 s before ventilation. Compared to non-asphyxial ICC, initial ventilation with DCC redistributed central blood flows, resulting in lower systemic, but not pulmonary, arterial flows during this period of transition. This flow redistribution was transitory, however, with systemic arterial flows similar between DCC and non-asphyxial ICC within minutes after birth.
Collapse
Affiliation(s)
- Joseph J Smolich
- Heart Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Kelly R Kenna
- Heart Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Smolich JJ, Kenna KR, Phillips SE, Mynard JP, Cheung MMM, Lambert GW. Characteristics and physiological basis of falls in ventricular outputs after immediate cord clamping at delivery in preterm fetal lambs. J Physiol 2021; 599:3755-3770. [PMID: 34101823 DOI: 10.1113/jp281693] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Controversy exists about the physiological mechanism(s) underlying decreases in cardiac output after immediate clamping of the umbilical cord at birth. To define these mechanisms, the four major determinants of ventricular output (afterload, preload, heart rate and contractility) were measured concurrently in fetal lambs at 15 s intervals over a 2 min period after cord clamping and before ventilation following delivery. After cord clamping, right (but not left) ventricular output fell by 20% in the initial 30 s, due to increased afterload associated with higher arterial blood pressures, but both outputs then halved over 45 s, due to a falling heart rate and deteriorating ventricular contractility accompanying rapid declines in arterial oxygenation to asphyxial levels. Ventricular outputs subsequently plateaued from 75 to 120 s, associated with rebound rises in ventricular contractility accompanying asphyxia-induced surges in circulating catecholamines. These findings provide a physiological basis for the clinical recommendation that effective ventilation should occur within 60 s after immediate cord clamping. ABSTRACT Controversy exists about the physiological mechanism(s) underlying large decreases in cardiac output after immediate clamping of the umbilical cord at birth. To define these mechanisms, anaesthetized preterm fetal lambs (127(1)d, n = 12) were instrumented with flow probes and catheters in major central arteries, and a left ventricular (LV) micromanometer-conductance catheter. Following immediate cord clamping at delivery, haemodynamics, LV and right ventricular (RV) outputs, and LV contractility were measured at 15 s intervals during a 2 min non-ventilatory period, with aortic blood gases and circulating catecholamine (noradrenaline and adrenaline) concentrations measured at 30 s intervals. After cord clamping, (1) RV (but not LV) output fell by 20% in the initial 30 s, due to a reduced stroke volume associated with increased arterial blood pressures, (2) both outputs then halved over the next 45 s, associated with falls in heart rate, arterial blood pressures and ventricular contractility accompanying a rapid decline in arterial oxygenation to asphyxial levels, (3) reduced outputs subsequently plateaued from 75 to 120 s, associated with rebound rises in blood pressures and ventricular contractility accompanying exponential surges in circulating catecholamines. These findings are consistent with a time-dependent decline of ventricular outputs after immediate cord clamping, which comprised (1) an initial, minor fall in RV output related to altered loading conditions, (2) ensuing large decreases in both LV and RV outputs related to the combination of bradycardia and ventricular dysfunction during emergence of an asphyxial state, and (3) subsequent stabilization of reduced LV and RV outputs during ongoing asphyxia, supported by cardiovascular stimulatory effects of marked sympathoadrenal activation.
Collapse
Affiliation(s)
- Joseph J Smolich
- Heart Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Kelly R Kenna
- Heart Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Sarah E Phillips
- Iverson Health Innovations Research Institute, Swinburne University of Technology, Hawthorn, Victoria, Australia.,Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Prahran, Victoria, Australia
| | - Jonathan P Mynard
- Heart Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,Department of Cardiology, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Michael M M Cheung
- Heart Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,Department of Cardiology, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Gavin W Lambert
- Iverson Health Innovations Research Institute, Swinburne University of Technology, Hawthorn, Victoria, Australia.,Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Prahran, Victoria, Australia
| |
Collapse
|
5
|
Smolich JJ, Kenna KR, Cheung MMH, Mynard JP. Brief asphyxial state following immediate cord clamping accelerates onset of left-to-right shunting across the ductus arteriosus after birth in preterm lambs. J Appl Physiol (1985) 2020; 128:429-439. [PMID: 31971471 DOI: 10.1152/japplphysiol.00559.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reversal of shunting across the ductus arteriosus from right-to-left to left-to-right is a characteristic feature of the birth transition. Given that immediate cord clamping (ICC) followed by an asphyxial cord clamp-to-ventilation (CC-V) interval may augment left ventricular (LV) output and central blood flows after birth, we tested the hypothesis that an asphyxial CC-V interval accelerates the onset of postnatal left-to-right ductal shunting. High-fidelity central blood flow signals were obtained in anesthetized preterm lambs (gestation 128 ± 2 days) after ICC followed by a nonasphyxial (∼40 s, n = 9) or asphyxial (∼90 s, n = 9) CC-V interval before mechanical ventilation for 30 min after birth. Left-to-right ductal flow segments were related to aortic isthmus and descending aortic flow profiles to quantify sources of ductal shunting. In the nonasphyxial group, phasic left-to-right ductal shunting was initially minor after birth, but then rose progressively to 437 ± 164 ml/min by 15 min (P < 0.001). However, in the asphyxial group, this shunting increased from 24 ± 21 to 199 ± 93 ml/min by 15 s after birth (P < 0.001) and rose further to 471 ± 190 ml/min by 2 min (P < 0.001). This earlier onset of left-to-right ductal shunting was supported by larger contributions (P < 0.001) from direct systolic LV flow and retrograde diastolic discharge from an arterial reservoir/windkessel located in the descending aorta and its major branches, and associated with increased pulmonary arterial blood flow having a larger ductal component. These findings suggest that the duration of the CC-V interval after ICC is an important modulator of left-to-right ductal shunting, LV output and pulmonary perfusion at birth.NEW & NOTEWORTHY This birth transition study in preterm lambs demonstrated that a brief (∼90 s) asphyxial interval between umbilical cord clamping and ventilation onset resulted in earlier and greater left-to-right shunting across the ductus arteriosus after birth. This greater shunting 1) resulted from an increased left ventricular output associated with a higher systolic left-to-right ductal flow and increased retrograde diastolic discharge from a lower body arterial reservoir/windkessel, and 2) was accompanied by greater lung perfusion after birth.
Collapse
Affiliation(s)
- Joseph J Smolich
- Heart Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Kelly R Kenna
- Heart Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Michael M H Cheung
- Heart Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Department of Cardiology, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Jonathan P Mynard
- Heart Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia.,Department of Cardiology, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|