1
|
Calado CMSDS, Manhães-de-Castro R, da Conceição Pereira S, da Silva Souza V, Barbosa LNF, Dos Santos Junior OH, Lagranha CJ, Juárez PAR, Torner L, Guzmán-Quevedo O, Toscano AE. Resveratrol Reduces Neuroinflammation and Hippocampal Microglia Activation and Protects Against Impairment of Memory and Anxiety-Like Behavior in Experimental Cerebral Palsy. Mol Neurobiol 2024; 61:3619-3640. [PMID: 38001357 DOI: 10.1007/s12035-023-03772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023]
Abstract
Cerebral palsy (CP) is a neurodevelopmental disorder characterized by motor and postural impairments. However, early brain injury can promote deleterious effects on the hippocampus, impairing memory. This study aims to investigate the effects of resveratrol treatment on memory, anxiety-like behavior, and neuroinflammation markers in rats with CP. Male Wistar rats were subjected to perinatal anoxia (P0-P1) and sensory-motor restriction (P2-P28). They were treated with resveratrol (10 mg/kg, 0.1 ml/100 g) or saline from P3-P21, being divided into four experimental groups: CS (n = 15), CR (n = 15), CPS (n = 15), and CPR (n = 15). They were evaluated in the tests of novel object recognition (NORT), T-Maze, Light-Dark Box (LDB), and Elevated Plus Maze (EPM). Compared to the CS group, the CPS group has demonstrated a reduced discrimination index on the NORT (p < 0.0001) and alternation on the T-Maze (p < 0.01). In addition, the CPS group showed an increase in permanence time on the dark side in LDB (p < 0.0001) and on the close arms of the EPM (p < 0.001). The CPR group demonstrated an increase in the object discrimination index (p < 0.001), on the alternation (p < 0.001), on the permanence time on the light side (p < 0.0001), and on the open arms (p < 0.001). The CPR group showed a reduction in gene expression of IL-6 (p = 0.0175) and TNF-α (p = 0.0007) and an increase in Creb-1 levels (p = 0.0020). The CPS group showed an increase in the activated microglia and a reduction in cell proliferation in the hippocampus, while CPR animals showed a reduction of activated microglia and an increase in cell proliferation. These results demonstrate promising effects of resveratrol in cerebral palsy behavior impairment through reduced neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Caio Matheus Santos da Silva Calado
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Raul Manhães-de-Castro
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Sabrina da Conceição Pereira
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Vanessa da Silva Souza
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Leticia Nicoly Ferreira Barbosa
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Osmar Henrique Dos Santos Junior
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Claudia Jacques Lagranha
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Graduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Pedro Alberto Romero Juárez
- Laboratory of Experimental Neuronutrition and Food Engineering, Tecnológico Nacional de México (TECNM), Instituto Tecnológico Superior de Tacámbaro, 61651, Tacámbaro, Michoacán, Mexico
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Omar Guzmán-Quevedo
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Laboratory of Experimental Neuronutrition and Food Engineering, Tecnológico Nacional de México (TECNM), Instituto Tecnológico Superior de Tacámbaro, 61651, Tacámbaro, Michoacán, Mexico
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Ana Elisa Toscano
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil.
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil.
- Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Rua Do Alto Do Reservatório S/N, Bela Vista, Vitória de Santo Antão, Pernambuco, 55608-680, Brazil.
| |
Collapse
|
3
|
Aiba I, Noebels JL. Kcnq2/Kv7.2 controls the threshold and bi-hemispheric symmetry of cortical spreading depolarization. Brain 2021; 144:2863-2878. [PMID: 33768249 PMCID: PMC8536937 DOI: 10.1093/brain/awab141] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/22/2021] [Accepted: 03/20/2021] [Indexed: 12/03/2022] Open
Abstract
Spreading depolarization is a slowly propagating wave of massive cellular depolarization associated with acute brain injury and migraine aura. Genetic studies link depolarizing molecular defects in Ca2+ flux, Na+ current in interneurons, and glial Na+-K+ ATPase with spreading depolarization susceptibility, emphasizing the important roles of synaptic activity and extracellular ionic homeostasis in determining spreading depolarization threshold. In contrast, although gene mutations in voltage-gated potassium ion channels that shape intrinsic membrane excitability are frequently associated with epilepsy susceptibility, it is not known whether epileptogenic mutations that regulate membrane repolarization also modify spreading depolarization threshold and propagation. Here we report that the Kcnq2/Kv7.2 potassium channel subunit, frequently mutated in developmental epilepsy, is a spreading depolarization modulatory gene with significant control over the seizure-spreading depolarization transition threshold, bi-hemispheric cortical expression, and diurnal temporal susceptibility. Chronic DC-band cortical EEG recording from behaving conditional Kcnq2 deletion mice (Emx1cre/+::Kcnq2flox/flox) revealed spontaneous cortical seizures and spreading depolarization. In contrast to the related potassium channel deficient model, Kv1.1-KO mice, spontaneous cortical spreading depolarizations in Kcnq2 cKO mice are tightly coupled to the terminal phase of seizures, arise bilaterally, and are observed predominantly during the dark phase. Administration of the non-selective Kv7.2 inhibitor XE991 to Kv1.1-KO mice partly reproduced the Kcnq2 cKO-like spreading depolarization phenotype (tight seizure coupling and bilateral symmetry) in these mice, indicating that Kv7.2 currents can directly and actively modulate spreading depolarization properties. In vitro brain slice studies confirmed that Kcnq2/Kv7.2 depletion or pharmacological inhibition intrinsically lowers the cortical spreading depolarization threshold, whereas pharmacological Kv7.2 activators elevate the threshold to multiple depolarizing and hypometabolic spreading depolarization triggers. Together these results identify Kcnq2/Kv7.2 as a distinctive spreading depolarization regulatory gene, and point to spreading depolarization as a potentially significant pathophysiological component of KCNQ2-linked epileptic encephalopathy syndromes. Our results also implicate KCNQ2/Kv7.2 channel activation as a potential adjunctive therapeutic target to inhibit spreading depolarization incidence.
Collapse
Affiliation(s)
- Isamu Aiba
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey L Noebels
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Ziobro JM, Eschbach K, Shellhaas RA. Novel Therapeutics for Neonatal Seizures. Neurotherapeutics 2021; 18:1564-1581. [PMID: 34386906 PMCID: PMC8608938 DOI: 10.1007/s13311-021-01085-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/04/2023] Open
Abstract
Neonatal seizures are a common neurologic emergency for which therapies have not significantly changed in decades. Improvements in diagnosis and pathophysiologic understanding of the distinct features of acute symptomatic seizures and neonatal-onset epilepsies present exceptional opportunities for development of precision therapies with potential to improve outcomes. Herein, we discuss the pathophysiology of neonatal seizures and review the evidence for currently available treatment. We present emerging therapies in clinical and preclinical development for the treatment of acute symptomatic neonatal seizures. Lastly, we discuss the role of precision therapies for genetic neonatal-onset epilepsies and address barriers and goals for developing new therapies for clinical care.
Collapse
Affiliation(s)
- Julie M Ziobro
- Department of Pediatrics, Michigan Medicine, C.S. Mott Children's Hospital, University of Michigan, 1540 E. Hospital Dr, Ann Arbor, MI, USA.
| | - Krista Eschbach
- Department of Pediatrics, Section of Neurology, Denver Anschutz School of Medicine, Children's Hospital Colorado, University of Colorado, Aurora, CO, 80045, USA
| | - Renée A Shellhaas
- Department of Pediatrics, Michigan Medicine, C.S. Mott Children's Hospital, University of Michigan, 1540 E. Hospital Dr, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Naffaa MM, Al-Ewaidat OA. Ligand modulation of KCNQ-encoded (K V7) potassium channels in the heart and nervous system. Eur J Pharmacol 2021; 906:174278. [PMID: 34174270 DOI: 10.1016/j.ejphar.2021.174278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
KCNQ-encoded (KV7) potassium channels are diversely distributed in the human tissues, associated with many physiological processes and pathophysiological conditions. These channels are increasingly used as drug targets for treating diseases. More selective and potent molecules on various types of the KV7 channels are desirable for appropriate therapies. The recent knowledge of the structure and function of human KCNQ-encoded channels makes it more feasible to achieve these goals. This review discusses the role and mechanism of action of many molecules in modulating the function of the KCNQ-encoded potassium channels in the heart and nervous system. The effects of these compounds on KV7 channels help to understand their involvement in many diseases, and to search for more selective and potent ligands to be used in the treatment of many disorders such as various types of cardiac arrhythmias, epilepsy, and pain.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
| | - Ola A Al-Ewaidat
- Faculty of Medicine, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
6
|
Borgini M, Mondal P, Liu R, Wipf P. Chemical modulation of Kv7 potassium channels. RSC Med Chem 2021; 12:483-537. [PMID: 34046626 PMCID: PMC8128042 DOI: 10.1039/d0md00328j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 01/10/2023] Open
Abstract
The rising interest in Kv7 modulators originates from their ability to evoke fundamental electrophysiological perturbations in a tissue-specific manner. A large number of therapeutic applications are, in part, based on the clinical experience with two broad-spectrum Kv7 agonists, flupirtine and retigabine. Since precise molecular structures of human Kv7 channel subtypes in closed and open states have only very recently started to emerge, computational studies have traditionally been used to analyze binding modes and direct the development of more potent and selective Kv7 modulators with improved safety profiles. Herein, the synthetic and medicinal chemistry of small molecule modulators and the representative biological properties are summarized. Furthermore, new therapeutic applications supported by in vitro and in vivo assay data are suggested.
Collapse
Affiliation(s)
- Matteo Borgini
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Pravat Mondal
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Ruiting Liu
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
7
|
Löscher W, Sills GJ, White HS. The ups and downs of alkyl-carbamates in epilepsy therapy: How does cenobamate differ? Epilepsia 2021; 62:596-614. [PMID: 33580520 DOI: 10.1111/epi.16832] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Since 1955, several alkyl-carbamates have been developed for the treatment of anxiety and epilepsy, including meprobamate, flupirtine, felbamate, retigabine, carisbamate, and cenobamate. They have each enjoyed varying levels of success as antiseizure drugs; however, they have all been plagued by the emergence of serious and sometimes life-threatening adverse events. In this review, we compare and contrast their predominant molecular mechanisms of action, their antiseizure profile, and where possible, their clinical efficacy. The preclinical, clinical, and mechanistic profile of the prototypical γ-aminobutyric acidergic (GABAergic) modulator phenobarbital is included for comparison. Like phenobarbital, all of the clinically approved alkyl-carbamates share an ability to enhance inhibitory neurotransmission through modulation of the GABAA receptor, although the specific mechanism of interaction differs among the different drugs discussed. In addition, several alkyl-carbamates have been shown to interact with voltage-gated ion channels. Flupirtine and retigabine share an ability to activate K+ currents mediated by KCNQ (Kv7) K+ channels, and felbamate, carisbamate, and cenobamate have been shown to block Na+ channels. In contrast to other alkyl-carbamates, cenobamate seems to be unique in its ability to preferentially attenuate the persistent rather than transient Na+ current. Results from recent randomized controlled clinical trials with cenobamate suggest that this newest antiseizure alkyl-carbamate possesses a degree of efficacy not witnessed since felbamate was approved in 1993. Given that ceno-bamate's mechanistic profile is unique among the alkyl-carbamates, it is not clear whether this impressive efficacy reflects an as yet undescribed mechanism of action or whether it possesses a unique synergy between its actions at the GABAA receptor and on persistent Na+ currents. The high efficacy of cenobamate is, however, tempered by the risk of serious rash and low tolerability at higher doses, meaning that further safety studies and clinical experience are needed to determine the true clinical value of cenobamate.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Graeme J Sills
- School of Life Sciences, University of Glasgow, Glasgow, UK
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|