1
|
Liang C, Loster I, Ursprung S, Ghoul A, Küstner T, Gückel B, Kühn B, Schick F, Martirosian P, Seith F. Multiparametric functional MRI of the kidneys - evaluation of test-retest repeatability and effects of different manual and automatic image analysis strategies. ROFO-FORTSCHR RONTG 2025. [PMID: 39793612 DOI: 10.1055/a-2480-4885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Multiparametric MRI is a promising technique for noninvasive structural and functional imaging of the kidneys that is gaining increasing importance in clinical research. Still, there are no standardized recommendations for analyzing the acquired images and there is a need to further evaluate the accuracy and repeatability of currently recommended MRI parameters. The aim of the study was to evaluate the test-retest repeatability of functional renal MRI parameters using different image analysis strategies.Ten healthy volunteers were examined twice with a multiparametric renal MRI protocol including arterial spin labeling (ASL), diffusion-weighted imaging (DWI) with intravoxel incoherent motion (IVIM), blood-oxygen-dependent (BOLD) imaging, T1 and T2 mapping, and volumetry with an interval of one week. The quantitative results of both kidneys were determined by manual organ segmentation, ROI analysis, and automatic segmentation based on the nnUNet framework. Test-retest repeatability of each parameter was computed using the within-subject coefficient of variance (wCV) and the intraclass coefficient (ICC). Segmentation accuracy and inter-reader agreement were evaluated using the dice score.Structural tissue parameters (T1, T2) showed wCV (%) between 4 and 11 and an ICC between 0.2 and 0.8. Functional parameters (ASL, BOLD and DWI) showed wCV (%) between 3 and 38 and an ICC between 0.0 and 0.7. The highest variances between test-retest scans were observed in perfusion measurements with ASL and IVIM (wCV: 17-37%). Quantitative analysis of the cortex and medulla showed a better repeatability when acquired using manual segmentation compared to ROI-based image analysis. Comparable repeatability was achieved with manual and automatic segmentation of the total kidney.Reasonable repeatability was achieved for all MR parameters. Structural MR parameters showed better repeatability compared to functional parameters. ROI-based image analysis showed overall lower repeatability compared to manual segmentation. Comparable repeatability to manual segmentation as well as acceptable segmentation accuracy could be achieved with automatic segmentation. · Reasonable test-retest repeatability can be achieved with multiparametric MRI of the kidneys.. · Image analysis based on manual segmentation of the cortex and medulla showed overall better repeatability compared to ROI-based analysis.. · Automatic segmentation of kidney volume showed similar repeatability of quantitative image analysis compared to manual segmentation.. · Liang C, Loster I, Ursprung S et al. Multiparametric functional MRI of the kidneys - evaluation of test-retest repeatability and effects of different manual and automatic image analysis strategies. Fortschr Röntgenstr 2024; DOI 10.1055/a-2480-4885.
Collapse
Affiliation(s)
- Cecilia Liang
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Isabelle Loster
- Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stephan Ursprung
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Aya Ghoul
- Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Küstner
- Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Brigitte Gückel
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Bernd Kühn
- Siemens Healthcare AG, Erlangen, Germany
| | - Fritz Schick
- Section on Experimental Radiology, Departement of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Petros Martirosian
- Section on Experimental Radiology, Departement of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Ferdinand Seith
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
MacAskill CJ, Kretzler ME, Parsons A, Gange V, Hach J, Larson S, Zhu Y, Perino J, Farr S, Markley M, Pritts N, Perera-Gonzalez M, Clark HA, Kuehn B, Liu KC, Yu X, Ma D, Chen Y, Flask CA, Dell KM. Multimodal Magnetic Resonance Imaging Assessments of Kidney Disease Severity in Autosomal Recessive Polycystic Kidney Disease. Kidney Int Rep 2024; 9:3592-3595. [PMID: 39698366 PMCID: PMC11652188 DOI: 10.1016/j.ekir.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 12/20/2024] Open
Affiliation(s)
- Christina J. MacAskill
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Madison E. Kretzler
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ashlee Parsons
- Section for Pediatric Nephrology and Hypertension, Cleveland Clinic Children’s, Cleveland, Ohio, USA
| | - Victoria Gange
- Section for Pediatric Nephrology and Hypertension, Cleveland Clinic Children’s, Cleveland, Ohio, USA
| | - Jenna Hach
- Section for Pediatric Nephrology and Hypertension, Cleveland Clinic Children’s, Cleveland, Ohio, USA
| | - Stephanie Larson
- Section for Pediatric Nephrology and Hypertension, Cleveland Clinic Children’s, Cleveland, Ohio, USA
| | - Yuran Zhu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jacob Perino
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Susan Farr
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael Markley
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nicole Pritts
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Heather A. Clark
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | | | | | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yong Chen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chris A. Flask
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Katherine M. Dell
- Section for Pediatric Nephrology and Hypertension, Cleveland Clinic Children’s, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Serai SD, Robson MD, Tirkes T, Trout AT. T 1 Mapping of the Abdomen, From the AJR "How We Do It" Special Series. AJR Am J Roentgenol 2024. [PMID: 39194308 DOI: 10.2214/ajr.24.31643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
By exploiting different tissues' characteristic T1 relaxation times, T1-weighted images help distinguish normal and abnormal tissues, aiding assessment of diffuse and local pathologies. However, such images do not provide quantitative T1 values. Advances in abdominal MRI techniques have enabled measurement of abdominal organs' T1 relaxation times, which can be used to create color-coded quantitative maps. T1 mapping is sensitive to tissue microenvironments including inflammation and fibrosis and has received substantial interest for noninvasive imaging of abdominal organ pathology. In particular, quantitative mapping provides a powerful tool for evaluation of diffuse disease by making apparent changes in T1 occurring across organs that may otherwise be difficult to identify. Quantitative measurement also facilitates sensitive monitoring of longitudinal T1 changes. Increased T1 in liver helps to predict parenchymal fibro-inflammation, in pancreas is associated with reduced exocrine function from chronic or autoimmune pancreatitis, and in kidney is associated with impaired renal function and aids diagnosis of chronic kidney disease. In this review, we describe the acquisition, postprocessing, and analysis of T1 maps in the abdomen and explore applications in liver, spleen, pancreas, and kidney. We highlight practical aspects of implementation and standardization, technical pitfalls and confounding factors, and areas of likely greatest clinical impact.
Collapse
Affiliation(s)
- Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Temel Tirkes
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
4
|
Wang F, Lee SY, Adelnia F, Takahashi K, Harkins KD, He L, Zu Z, Ellinger P, Grundmann M, Harris RC, Takahashi T, Gore JC. Severity of polycystic kidney disease revealed by multiparametric MRI. Magn Reson Med 2023; 90:1151-1165. [PMID: 37093746 PMCID: PMC10805116 DOI: 10.1002/mrm.29679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE We aimed to compare multiple MRI parameters, including relaxation rates (R 1 $$ {R}_1 $$ ,R 2 $$ {R}_2 $$ , andR 1 ρ $$ {R}_{1\rho } $$ ), ADC from diffusion weighted imaging, pool size ratio (PSR) from quantitative magnetization transfer, and measures of exchange from spin-lock imaging (S ρ $$ {S}_{\rho } $$ ), for assessing and predicting the severity of polycystic kidney disease (PKD) over time. METHODS Pcy/Pcy mice with CD1 strain, a mouse model of autosomal dominant PKD, were imaged at 5, 9, and 26 wk of age using a 7T MRI system. Twelve-week normal CD1 mice were used as controls. Post-mortem paraffin tissue sections were stained using hematoxylin and eosin and picrosirius red to identify histological changes. RESULTS Histology detected segmental cyst formation in the early stage (week 5) and progression of PKD over time in Pcy kidneys. InT 2 $$ {T}_2 $$ -weighted images, small cysts appeared locally in cystic kidneys in week 5 and gradually extended to the whole cortex and outer stripe of outer medulla region from week 5 to week 26. Regional PSR,R 1 $$ {R}_1 $$ ,R 2 $$ {R}_2 $$ , andR 1 ρ $$ {R}_{1\rho } $$ decreased consistently over time compared to normal kidneys, with significant changes detected in week 5. Among all the MRI measures,R 2 $$ {R}_2 $$ andR 1 ρ $$ {R}_{1\rho } $$ allow highest detectability to PKD, while PSR andR 1 $$ {R}_1 $$ have highest correlation with pathological indices of PKD. Using optimum MRI parameters as regressors, multiple linear regression provides reliable prediction of PKD progression. CONCLUSION R 2 $$ {R}_2 $$ ,R 1 $$ {R}_1 $$ , and PSR are sensitive indicators of the presence of PKD. Multiparametric MRI allows a comprehensive analysis of renal changes caused by cyst formation and expansion.
Collapse
Affiliation(s)
- Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
- Vanderbilt O’Brien Kidney Research Center, Vanderbilt University Medical Center
| | - Seo Yeon Lee
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - Fatemeh Adelnia
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center
| | - Keiko Takahashi
- Vanderbilt O’Brien Kidney Research Center, Vanderbilt University Medical Center
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - Kevin D. Harkins
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
| | - Lilly He
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
| | - Philipp Ellinger
- Bayer AG Research & Development, Pharmaceuticals, 42113 Wuppertal, Germany
| | - Manuel Grundmann
- Bayer AG Research & Development, Pharmaceuticals, 42113 Wuppertal, Germany
| | - Raymond C. Harris
- Vanderbilt O’Brien Kidney Research Center, Vanderbilt University Medical Center
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - Takamune Takahashi
- Vanderbilt O’Brien Kidney Research Center, Vanderbilt University Medical Center
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
5
|
Fleischer LT, Ballester L, Dutt M, Howarth K, Poznick L, Darge K, Furth SL, Hartung EA. Evaluation of galectin-3 and intestinal fatty acid binding protein as serum biomarkers in autosomal recessive polycystic kidney disease. J Nephrol 2023; 36:133-145. [PMID: 35980535 DOI: 10.1007/s40620-022-01416-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/27/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autosomal recessive polycystic kidney disease (ARPKD) causes fibrocystic kidney disease, congenital hepatic fibrosis, and portal hypertension. Serum galectin-3 (Gal-3) and intestinal fatty acid binding protein (I-FABP) are potential biomarkers of kidney fibrosis and portal hypertension, respectively. We examined whether serum Gal-3 associates with kidney disease severity and serum I-FABP associates with liver disease severity in ARPKD. METHODS Cross-sectional study of 29 participants with ARPKD (0.2-21 years old) and presence of native kidneys (Gal-3 analyses, n = 18) and/or native livers (I-FABP analyses, n = 21). Serum Gal-3 and I-FABP were analyzed using enzyme linked immunosorbent assay. Kidney disease severity variables included estimated glomerular filtration rate (eGFR) and height-adjusted total kidney volume (htTKV). Liver disease severity was characterized using ultrasound elastography to measure liver fibrosis, and spleen length and platelet count as markers of portal hypertension. Simple and multivariable linear regression examined associations between Gal-3 and kidney disease severity (adjusted for liver disease severity) and between I-FABP and liver disease severity (adjusted for eGFR). RESULTS Serum Gal-3 was negatively associated with eGFR; 1 standard deviation (SD) lower eGFR was associated with 0.795 SD higher Gal-3 level (95% CI - 1.116, - 0.473; p < 0.001). This association remained significant when adjusted for liver disease severity. Serum Gal-3 was not associated with htTKV in adjusted analyses. Overall I-FABP levels were elevated, but there were no linear associations between I-FABP and liver disease severity in unadjusted or adjusted models. CONCLUSIONS Serum Gal-3 is associated with eGFR in ARPKD, suggesting its value as a possible novel biomarker of kidney disease severity. We found no associations between serum I-FABP and ARPKD liver disease severity despite overall elevated I-FABP levels.
Collapse
Affiliation(s)
| | - Lance Ballester
- Biostatistics and Data Management Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mohini Dutt
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Kathryn Howarth
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Laura Poznick
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kassa Darge
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan L Furth
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erum A Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Liebau MC, Hartung EA, Perrone RD. Perspectives on Drug Development in Autosomal Recessive Polycystic Kidney Disease. Clin J Am Soc Nephrol 2022; 17:1551-1554. [PMID: 35998973 PMCID: PMC9528277 DOI: 10.2215/cjn.04870422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Max C. Liebau
- Department of Pediatrics, Center for Family Health, Center for Rare Diseases, and Center for Molecular Medicine, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Erum A. Hartung
- Division of Nephrology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronald D. Perrone
- Division of Nephrology, Department of Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
7
|
Dillman JR, Benoit SW, Gandhi DB, Trout AT, Tkach JA, VandenHeuvel K, Devarajan P. Multiparametric quantitative renal MRI in children and young adults: comparison between healthy individuals and patients with chronic kidney disease. Abdom Radiol (NY) 2022; 47:1840-1852. [PMID: 35237897 DOI: 10.1007/s00261-022-03456-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Multiparametric quantitative renal MRI may provide noninvasive radiologic biomarkers of chronic kidney disease (CKD) based on investigations in animal models and adults. We aimed to (1) obtain normative multiparametric quantitative MRI data from the kidneys of healthy children and young adults, (2) compare MRI measurements between healthy control participants and patients with CKD, and (3) determine if MRI measurements correlate with clinical and laboratory data as well as histology. METHODS This was a prospective, case-control study of 20 healthy controls and 12 CKD patients who underwent percutaneous renal biopsy ranging from 12 to 23 years of age between October 2018 and March 2020. Kidney function was documented and pathology assessed for fibrosis/inflammation. Utilizing a field strength of 1.5T, we examined renal T1, T2, and T2* relaxation mapping, MR elastography (MRE), and diffusion-weighted imaging (DWI). A single analyst made all manual measurements for quantitative MRI pulse sequences. Independent measurements from cortex, medulla, and whole kidney were obtained by drawing regions of interest on single slices from the upper, mid, and lower kidney. A weighted average was calculated for each kidney; if two kidneys, the right and left were averaged. Continuous variables were compared with Mann-Whitney U test; bivariate relationships were assessed using Spearman rank-order correlation. RESULTS Median estimated glomerular filtration rate (eGFR) was 112.3 ml/min/1.73 m2 in controls (n = 20, 10 females) and 55.0 ml/min/m2 in CKD patients (n = 12, 2 females) (p < 0.0001). Whole kidney (1333 vs. 1291 ms; p = 0.018) and cortical (1212 vs 1137 ms; p < 0.0001) T1 values were higher in CKD patients. Cortical T1 values correlated with eGFR (rho = - 0.62; p = 0.0003) and cystatin C (rho = 0.58; p = 0.0007). Whole kidney (1.87 vs. 2.02 10-3 mm2/s; p = 0.007), cortical (1.89 vs. 2.04 10-3 mm2/s; p = 0.008), and medullary (1.87 vs. 1.98 10-3 mm2/s; p = 0.0095) DWI apparent diffusion coefficients (ADC) were lower in CKD patients. Whole kidney ADC correlated with eGFR (rho = 0.45; p = 0.012) and cystatin C (rho = - 0.46; p = 0.009). Cortical histologic inflammation correlated with DWI ADC (rho = - 0.71; p = 0.011). CONCLUSION Renal T1 relaxation and DWI ADC measurements differ between pediatric healthy controls and CKD patients, correlate with laboratory markers of CKD, and may have histologic correlates.
Collapse
Affiliation(s)
- Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45244, USA.
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Stefanie W Benoit
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Deep B Gandhi
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45244, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45244, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jean A Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45244, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Katherine VandenHeuvel
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
8
|
Multiparametric Functional MRI of the Kidney: Current State and Future Trends with Deep Learning Approaches. ROFO-FORTSCHR RONTG 2022; 194:983-992. [PMID: 35272360 DOI: 10.1055/a-1775-8633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Until today, assessment of renal function has remained a challenge for modern medicine. In many cases, kidney diseases accompanied by a decrease in renal function remain undetected and unsolved, since neither laboratory tests nor imaging diagnostics provide adequate information on kidney status. In recent years, developments in the field of functional magnetic resonance imaging with application to abdominal organs have opened new possibilities combining anatomic imaging with multiparametric functional information. The multiparametric approach enables the measurement of perfusion, diffusion, oxygenation, and tissue characterization in one examination, thus providing more comprehensive insight into pathophysiological processes of diseases as well as effects of therapeutic interventions. However, application of multiparametric fMRI in the kidneys is still restricted mainly to research areas and transfer to the clinical routine is still outstanding. One of the major challenges is the lack of a standardized protocol for acquisition and postprocessing including efficient strategies for data analysis. This article provides an overview of the most common fMRI techniques with application to the kidney together with new approaches regarding data analysis with deep learning. METHODS This article implies a selective literature review using the literature database PubMed in May 2021 supplemented by our own experiences in this field. RESULTS AND CONCLUSION Functional multiparametric MRI is a promising technique for assessing renal function in a more comprehensive approach by combining multiple parameters such as perfusion, diffusion, and BOLD imaging. New approaches with the application of deep learning techniques could substantially contribute to overcoming the challenge of handling the quantity of data and developing more efficient data postprocessing and analysis protocols. Thus, it can be hoped that multiparametric fMRI protocols can be sufficiently optimized to be used for routine renal examination and to assist clinicians in the diagnostics, monitoring, and treatment of kidney diseases in the future. KEY POINTS · Multiparametric fMRI is a technique performed without the use of radiation, contrast media, and invasive methods.. · Multiparametric fMRI provides more comprehensive insight into pathophysiological processes of kidney diseases by combining functional and structural parameters.. · For broader acceptance of fMRI biomarkers, there is a need for standardization of acquisition, postprocessing, and analysis protocols as well as more prospective studies.. · Deep learning techniques could significantly contribute to an optimization of data acquisition and the postprocessing and interpretation of larger quantities of data.. CITATION FORMAT · Zhang C, Schwartz M, Küstner T et al. Multiparametric Functional MRI of the Kidney: Current State and Future Trends with Deep Learning Approaches. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1775-8633.
Collapse
|
9
|
Predictors of progression in autosomal dominant and autosomal recessive polycystic kidney disease. Pediatr Nephrol 2021; 36:2639-2658. [PMID: 33474686 PMCID: PMC8292447 DOI: 10.1007/s00467-020-04869-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/19/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are characterized by bilateral cystic kidney disease leading to progressive kidney function decline. These diseases also have distinct liver manifestations. The range of clinical presentation and severity of both ADPKD and ARPKD is much wider than was once recognized. Pediatric and adult nephrologists are likely to care for individuals with both diseases in their lifetimes. This article will review genetic, clinical, and imaging predictors of kidney and liver disease progression in ADPKD and ARPKD and will briefly summarize pharmacologic therapies to prevent progression.
Collapse
|
10
|
MacAskill CJ, Markley M, Farr S, Parsons A, Perino JR, McBennett K, Kutney K, Drumm ML, Pritts N, Griswold MA, Ma D, Dell KM, Flask CA, Chen Y. Rapid B 1-Insensitive MR Fingerprinting for Quantitative Kidney Imaging. Radiology 2021; 300:380-387. [PMID: 34100680 PMCID: PMC8328087 DOI: 10.1148/radiol.2021202302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/28/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022]
Abstract
Background MR fingerprinting (MRF) provides rapid and simultaneous quantification of multiple tissue parameters in a single scan. Purpose To evaluate a rapid kidney MRF technique at 3.0 T in phantoms, healthy volunteers, and patients. Materials and Methods A 15-second kidney MRF acquisition was designed with 12 acquisition segments, a range of low flip angles (5°-12°), multiple magnetization preparation schema (T1, T2, and fat suppression), and an undersampled spiral trajectory. This technique was first validated in vitro using standardized T1 and T2 phantoms. Kidney T1 and T2 maps were then obtained for 10 healthy adult volunteers (mean age ± standard deviation, 35 years ± 13; six men) and three pediatric patients with autosomal recessive polycystic kidney disease (ARPKD) (mean age, 10 years ± 3; two boys) between August 2019 and October 2020 to evaluate the method in vivo. Results Results in nine phantoms showed good agreement with spin-echo-based T1 and T2 values (R2 > 0.99). In vivo MRF kidney T1 and T2 assessments in healthy adult volunteers (cortex: T1, 1362 msec ± 5; T2, 64 msec ± 5; medulla: T1, 1827 msec ± 94; T2, 69 msec ± 3) were consistent with values in the literature but with improved precision in comparison with prior MRF implementations. In vivo MRF-based kidney T1 and T2 values with and without B1 correction were in good agreement (R2 > 0.96, P < .001), demonstrating limited sensitivity to B1 field inhomogeneities. Additional MRF reconstructions using the first nine segments of the MRF profiles (11-second acquisition time) were in good agreement with the reconstructions using 12 segments (15-second acquisition time) (R2 > 0.87, P < .001). Repeat kidney MRF scans for the three patients with ARPKD on successive days also demonstrated good reproducibility (T1 and T2: <3% difference). Conclusion A kidney MR fingerprinting method provided in vivo kidney T1 and T2 maps at 3.0 T in a single breath hold with improved precision and no need for B1 correction. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Laustsen in this issue.
Collapse
Affiliation(s)
- Christina J. MacAskill
- From the Departments of Radiology (C.J.M., S.F., J.R.P., N.P., M.A.G., D.M., C.A.F., Y.C.), Genetics and Genome Sciences (M.L.D.), Pediatrics (M.L.D., K.M.D., C.A.F.), and Biomedical Engineering (M.A.G., D.M., C.A.F.), Case Western Reserve University, 11100 Euclid Ave, Bowell Building, Room B131, Cleveland, OH 44106; Departments of Radiology (M.M.) and Pediatrics (K.M., K.K.), University Hospitals Cleveland Medical Center, Cleveland, Ohio; and Center for Pediatric Nephrology, Cleveland Clinic Children’s Hospital, Cleveland, Ohio (A.P., K.M.D.)
| | - Michael Markley
- From the Departments of Radiology (C.J.M., S.F., J.R.P., N.P., M.A.G., D.M., C.A.F., Y.C.), Genetics and Genome Sciences (M.L.D.), Pediatrics (M.L.D., K.M.D., C.A.F.), and Biomedical Engineering (M.A.G., D.M., C.A.F.), Case Western Reserve University, 11100 Euclid Ave, Bowell Building, Room B131, Cleveland, OH 44106; Departments of Radiology (M.M.) and Pediatrics (K.M., K.K.), University Hospitals Cleveland Medical Center, Cleveland, Ohio; and Center for Pediatric Nephrology, Cleveland Clinic Children’s Hospital, Cleveland, Ohio (A.P., K.M.D.)
| | - Susan Farr
- From the Departments of Radiology (C.J.M., S.F., J.R.P., N.P., M.A.G., D.M., C.A.F., Y.C.), Genetics and Genome Sciences (M.L.D.), Pediatrics (M.L.D., K.M.D., C.A.F.), and Biomedical Engineering (M.A.G., D.M., C.A.F.), Case Western Reserve University, 11100 Euclid Ave, Bowell Building, Room B131, Cleveland, OH 44106; Departments of Radiology (M.M.) and Pediatrics (K.M., K.K.), University Hospitals Cleveland Medical Center, Cleveland, Ohio; and Center for Pediatric Nephrology, Cleveland Clinic Children’s Hospital, Cleveland, Ohio (A.P., K.M.D.)
| | - Ashlee Parsons
- From the Departments of Radiology (C.J.M., S.F., J.R.P., N.P., M.A.G., D.M., C.A.F., Y.C.), Genetics and Genome Sciences (M.L.D.), Pediatrics (M.L.D., K.M.D., C.A.F.), and Biomedical Engineering (M.A.G., D.M., C.A.F.), Case Western Reserve University, 11100 Euclid Ave, Bowell Building, Room B131, Cleveland, OH 44106; Departments of Radiology (M.M.) and Pediatrics (K.M., K.K.), University Hospitals Cleveland Medical Center, Cleveland, Ohio; and Center for Pediatric Nephrology, Cleveland Clinic Children’s Hospital, Cleveland, Ohio (A.P., K.M.D.)
| | - Jacob R. Perino
- From the Departments of Radiology (C.J.M., S.F., J.R.P., N.P., M.A.G., D.M., C.A.F., Y.C.), Genetics and Genome Sciences (M.L.D.), Pediatrics (M.L.D., K.M.D., C.A.F.), and Biomedical Engineering (M.A.G., D.M., C.A.F.), Case Western Reserve University, 11100 Euclid Ave, Bowell Building, Room B131, Cleveland, OH 44106; Departments of Radiology (M.M.) and Pediatrics (K.M., K.K.), University Hospitals Cleveland Medical Center, Cleveland, Ohio; and Center for Pediatric Nephrology, Cleveland Clinic Children’s Hospital, Cleveland, Ohio (A.P., K.M.D.)
| | - Kimberly McBennett
- From the Departments of Radiology (C.J.M., S.F., J.R.P., N.P., M.A.G., D.M., C.A.F., Y.C.), Genetics and Genome Sciences (M.L.D.), Pediatrics (M.L.D., K.M.D., C.A.F.), and Biomedical Engineering (M.A.G., D.M., C.A.F.), Case Western Reserve University, 11100 Euclid Ave, Bowell Building, Room B131, Cleveland, OH 44106; Departments of Radiology (M.M.) and Pediatrics (K.M., K.K.), University Hospitals Cleveland Medical Center, Cleveland, Ohio; and Center for Pediatric Nephrology, Cleveland Clinic Children’s Hospital, Cleveland, Ohio (A.P., K.M.D.)
| | - Katherine Kutney
- From the Departments of Radiology (C.J.M., S.F., J.R.P., N.P., M.A.G., D.M., C.A.F., Y.C.), Genetics and Genome Sciences (M.L.D.), Pediatrics (M.L.D., K.M.D., C.A.F.), and Biomedical Engineering (M.A.G., D.M., C.A.F.), Case Western Reserve University, 11100 Euclid Ave, Bowell Building, Room B131, Cleveland, OH 44106; Departments of Radiology (M.M.) and Pediatrics (K.M., K.K.), University Hospitals Cleveland Medical Center, Cleveland, Ohio; and Center for Pediatric Nephrology, Cleveland Clinic Children’s Hospital, Cleveland, Ohio (A.P., K.M.D.)
| | - Mitchell L. Drumm
- From the Departments of Radiology (C.J.M., S.F., J.R.P., N.P., M.A.G., D.M., C.A.F., Y.C.), Genetics and Genome Sciences (M.L.D.), Pediatrics (M.L.D., K.M.D., C.A.F.), and Biomedical Engineering (M.A.G., D.M., C.A.F.), Case Western Reserve University, 11100 Euclid Ave, Bowell Building, Room B131, Cleveland, OH 44106; Departments of Radiology (M.M.) and Pediatrics (K.M., K.K.), University Hospitals Cleveland Medical Center, Cleveland, Ohio; and Center for Pediatric Nephrology, Cleveland Clinic Children’s Hospital, Cleveland, Ohio (A.P., K.M.D.)
| | - Nicole Pritts
- From the Departments of Radiology (C.J.M., S.F., J.R.P., N.P., M.A.G., D.M., C.A.F., Y.C.), Genetics and Genome Sciences (M.L.D.), Pediatrics (M.L.D., K.M.D., C.A.F.), and Biomedical Engineering (M.A.G., D.M., C.A.F.), Case Western Reserve University, 11100 Euclid Ave, Bowell Building, Room B131, Cleveland, OH 44106; Departments of Radiology (M.M.) and Pediatrics (K.M., K.K.), University Hospitals Cleveland Medical Center, Cleveland, Ohio; and Center for Pediatric Nephrology, Cleveland Clinic Children’s Hospital, Cleveland, Ohio (A.P., K.M.D.)
| | - Mark A. Griswold
- From the Departments of Radiology (C.J.M., S.F., J.R.P., N.P., M.A.G., D.M., C.A.F., Y.C.), Genetics and Genome Sciences (M.L.D.), Pediatrics (M.L.D., K.M.D., C.A.F.), and Biomedical Engineering (M.A.G., D.M., C.A.F.), Case Western Reserve University, 11100 Euclid Ave, Bowell Building, Room B131, Cleveland, OH 44106; Departments of Radiology (M.M.) and Pediatrics (K.M., K.K.), University Hospitals Cleveland Medical Center, Cleveland, Ohio; and Center for Pediatric Nephrology, Cleveland Clinic Children’s Hospital, Cleveland, Ohio (A.P., K.M.D.)
| | - Dan Ma
- From the Departments of Radiology (C.J.M., S.F., J.R.P., N.P., M.A.G., D.M., C.A.F., Y.C.), Genetics and Genome Sciences (M.L.D.), Pediatrics (M.L.D., K.M.D., C.A.F.), and Biomedical Engineering (M.A.G., D.M., C.A.F.), Case Western Reserve University, 11100 Euclid Ave, Bowell Building, Room B131, Cleveland, OH 44106; Departments of Radiology (M.M.) and Pediatrics (K.M., K.K.), University Hospitals Cleveland Medical Center, Cleveland, Ohio; and Center for Pediatric Nephrology, Cleveland Clinic Children’s Hospital, Cleveland, Ohio (A.P., K.M.D.)
| | - Katherine M. Dell
- From the Departments of Radiology (C.J.M., S.F., J.R.P., N.P., M.A.G., D.M., C.A.F., Y.C.), Genetics and Genome Sciences (M.L.D.), Pediatrics (M.L.D., K.M.D., C.A.F.), and Biomedical Engineering (M.A.G., D.M., C.A.F.), Case Western Reserve University, 11100 Euclid Ave, Bowell Building, Room B131, Cleveland, OH 44106; Departments of Radiology (M.M.) and Pediatrics (K.M., K.K.), University Hospitals Cleveland Medical Center, Cleveland, Ohio; and Center for Pediatric Nephrology, Cleveland Clinic Children’s Hospital, Cleveland, Ohio (A.P., K.M.D.)
| | - Chris A. Flask
- From the Departments of Radiology (C.J.M., S.F., J.R.P., N.P., M.A.G., D.M., C.A.F., Y.C.), Genetics and Genome Sciences (M.L.D.), Pediatrics (M.L.D., K.M.D., C.A.F.), and Biomedical Engineering (M.A.G., D.M., C.A.F.), Case Western Reserve University, 11100 Euclid Ave, Bowell Building, Room B131, Cleveland, OH 44106; Departments of Radiology (M.M.) and Pediatrics (K.M., K.K.), University Hospitals Cleveland Medical Center, Cleveland, Ohio; and Center for Pediatric Nephrology, Cleveland Clinic Children’s Hospital, Cleveland, Ohio (A.P., K.M.D.)
| | - Yong Chen
- From the Departments of Radiology (C.J.M., S.F., J.R.P., N.P., M.A.G., D.M., C.A.F., Y.C.), Genetics and Genome Sciences (M.L.D.), Pediatrics (M.L.D., K.M.D., C.A.F.), and Biomedical Engineering (M.A.G., D.M., C.A.F.), Case Western Reserve University, 11100 Euclid Ave, Bowell Building, Room B131, Cleveland, OH 44106; Departments of Radiology (M.M.) and Pediatrics (K.M., K.K.), University Hospitals Cleveland Medical Center, Cleveland, Ohio; and Center for Pediatric Nephrology, Cleveland Clinic Children’s Hospital, Cleveland, Ohio (A.P., K.M.D.)
| |
Collapse
|