1
|
Gholami M, Asouri M, Ahmadi AA. Genetic Variants and Haplotype Structures in the CASC Gene Family to Predict Cancer Risk: A Bioinformatics Study. Health Sci Rep 2024; 7:e70228. [PMID: 39640032 PMCID: PMC11618408 DOI: 10.1002/hsr2.70228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/01/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Background and Aims The cancer susceptibility (CASC) gene family of long noncoding RNAs (lncRNAs) plays an important role in cancer. The aim of this study was to identify genetic variants and haplotype structures of CASC genes associated with cancer risk. Methods Genome-wide association studies (GWAS) significant variants (p ≤ 5 × 10-8) on CASC family genes were identified from the GWAS Catalog-EMBL-EBI, and then cancer-associated variants on CASC genes were extracted. These variants were functionally analyzed, including lncRNA:miRNA binding sites, Regulomedb scores, and eQTL. The 1000 Genome Project genotyping data Phase III were used to identify haplotypic blocks. Finally, the genes associated with them were examined for expression and gene-gene correlation analyses using OncoDB. Results There were six haplotypic blocks in four genes. The GC, TA, and AGAC haplotypes are located in the CASC8 gene and increase the risk of prostate cancer, breast cancer, and colorectal cancer, respectively. The CA haplotype in the CASC15 gene increases the risk of neuroblastoma, AA haplotype in the CASC16 gene increases the risk of breast cancer, and ACGATG haplotype in the CASC17 gene increases the risk of prostate cancer (p ≤ 5 × 10-8). Their genes are interrelated and their expression is increased in these cancers. The rs2294214 is associated with skin cancer and has positive effects on five CASC15:miRNA binding sites. The rs3803662 is located in CASC16:miRNA binding sites, which has positive effects on hsa-miR-4475 and hsa-miR-7845-5p and negative effects on hsa-miR-4524a-3p and hsa-miR-4524b-3p. Conclusion These haplotypic structures and lncRNA:miRNA:SNP interactions on CASC family lncRNAs reveal novel genetic associations between CASC genes and various cancers.
Collapse
Affiliation(s)
- Morteza Gholami
- Department of ParamedicineAmol School of Paramedicine, Mazandaran University of Medical SciencesSariIran
- Metabolic Disorders Research CenterEndocrinology and Metabolism Molecular‐Cellular Sciences Institute, Tehran University of Medical SciencesTehranIran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Mohsen Asouri
- Department of ParamedicineAmol School of Paramedicine, Mazandaran University of Medical SciencesSariIran
| | | |
Collapse
|
2
|
Zheng C, Allen KO, Liu T, Solodin NM, Meyer MB, Salem K, Tsourkas PK, McIlwain SJ, Vera JM, Cromwell ER, Ozers MS, Fowler AM, Alarid ET. Elevated GRHL2 Imparts Plasticity in ER-Positive Breast Cancer Cells. Cancers (Basel) 2024; 16:2906. [PMID: 39199676 PMCID: PMC11353109 DOI: 10.3390/cancers16162906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Estrogen receptor (ER)-positive breast cancer is characterized by late recurrences following initial treatment. The epithelial cell fate transcription factor Grainyhead-like protein 2 (GRHL2) is overexpressed in ER-positive breast cancers and is linked to poorer prognosis as compared to ER-negative breast cancers. To understand how GRHL2 contributes to progression, GRHL2 was overexpressed in ER-positive cells. We demonstrated that elevated GRHL2 imparts plasticity with stem cell- and dormancy-associated traits. RNA sequencing and immunocytochemistry revealed that high GRHL2 not only strengthens the epithelial identity but supports a hybrid epithelial to mesenchymal transition (EMT). Proliferation and tumor studies exhibited a decrease in growth and an upregulation of dormancy markers, such as NR2F1 and CDKN1B. Mammosphere assays and flow cytometry revealed enrichment of stem cell markers CD44 and ALDH1, and increased self-renewal capacity. Cistrome analyses revealed a change in transcription factor motifs near GRHL2 sites from developmental factors to those associated with disease progression. Together, these data support the idea that the plasticity and properties induced by elevated GRHL2 may provide a selective advantage to explain the association between GRHL2 and breast cancer progression.
Collapse
Affiliation(s)
- Christy Zheng
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kaelyn O. Allen
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tianrui Liu
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natalia M. Solodin
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mark B. Meyer
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kelley Salem
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Phillipos K. Tsourkas
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sean J. McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jessica M. Vera
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erika R. Cromwell
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Mary Szatkowski Ozers
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Proteovista LLC, Madison, WI 53719, USA
| | - Amy M. Fowler
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin-Madison, WI 53705, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elaine T. Alarid
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
3
|
Gholami M. Common and novel haplotype structures between different types of cancer. Cancer Rep (Hoboken) 2024; 7:e2107. [PMID: 39031745 PMCID: PMC11190585 DOI: 10.1002/cnr2.2107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/03/2024] [Accepted: 05/07/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Background: Genome-wide association studies (GWAS) have identified hundreds of genetic variants associated with cancer risk. GWAS data are important for cancer prevention and understanding the underlying mechanisms of cancer. AIMS This study aimed to investigate the genetic association between different types of cancer using GWAS data and a bioinformatics approach. METHODS AND RESULTS The significant GWAS variants associated with more than one cancer type were identified. Common linkage disequilibrium (LD) variants between different types of cancer were identified by 1000 genomes phase 3 LD data. Haplotype blocks were identified by analyzing 1000 Genomes phase 3 genotyping data in the GWAS populations. Subsequent analyses included functional SNP analyses and TCGA gene expression. The results associated with significant GWAS variants (P<5E-8) showed the following haplotype associations in European population: GT rs4808075-rs8170 haplotype on BABAM1 with breast and ovarian cancers, GC rs16857609-rs11693806 haplotype on DIRC3 with breast and thyroid cancers, GCG rs380286-rs401681-rs31487 haplotype on CLPTM1L with skin and lung cancers, GGG rs4430796-rs11651052-rs11263763 haplotype on HNF1B with prostate and endometrial cancers, and GT rs10505477-rs6983267 haplotype on CASC8 associated with colorectal and prostate cancers. All these genes had significantly different expressions in tumor tissues (P<1E-3). In addition, the rs11693806 variant is located in the hsa-miR-873-5p binding site and has an enhancing effect on the hsa-miR-873-5p:DIRC3 interaction. CONCLUSION These novel haplotype structures and miRNA:lncRNA interactions are important for understanding the common genetic link between cancers. These results can potentially be used in genetic panels.
Collapse
Affiliation(s)
- Morteza Gholami
- Department of Paramedicine, Amol School of Paramedical SciencesMazandaran University of Medical SciencesSariIran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Shah Y, Kulm S, Nauseef JT, Chen Z, Elemento O, Kensler KH, Sharaf RN. Benchmarking multi-ancestry prostate cancer polygenic risk scores in a real-world cohort. PLoS Comput Biol 2024; 20:e1011990. [PMID: 38598551 PMCID: PMC11034641 DOI: 10.1371/journal.pcbi.1011990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/22/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Prostate cancer is a heritable disease with ancestry-biased incidence and mortality. Polygenic risk scores (PRSs) offer promising advancements in predicting disease risk, including prostate cancer. While their accuracy continues to improve, research aimed at enhancing their effectiveness within African and Asian populations remains key for equitable use. Recent algorithmic developments for PRS derivation have resulted in improved pan-ancestral risk prediction for several diseases. In this study, we benchmark the predictive power of six widely used PRS derivation algorithms, including four of which adjust for ancestry, against prostate cancer cases and controls from the UK Biobank and All of Us cohorts. We find modest improvement in discriminatory ability when compared with a simple method that prioritizes variants, clumping, and published polygenic risk scores. Our findings underscore the importance of improving upon risk prediction algorithms and the sampling of diverse cohorts.
Collapse
Affiliation(s)
- Yajas Shah
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York City, New York, United States of America
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, New York, United States of America
| | - Scott Kulm
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York City, New York, United States of America
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, New York, United States of America
| | - Jones T. Nauseef
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York City, New York, United States of America
- Department of Medicine—Hematology and Medical Oncology, Weill Cornell Medicine, New York City, New York, United States of America
| | - Zhengming Chen
- Department of Population Health Sciences, Weill Cornell Medicine, New York City, New York, United States of America
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York City, New York, United States of America
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, New York, United States of America
| | - Kevin H. Kensler
- Department of Population Health Sciences, Weill Cornell Medicine, New York City, New York, United States of America
| | - Ravi N. Sharaf
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York City, New York, United States of America
- Department of Population Health Sciences, Weill Cornell Medicine, New York City, New York, United States of America
- Department of Medicine–Gastroenterology and Hepatology, Weill Cornell Medicine, New York City, New York, United States of America
| |
Collapse
|
5
|
Rafikova G, Gilyazova I, Enikeeva K, Pavlov V, Kzhyshkowska J. Prostate Cancer: Genetics, Epigenetics and the Need for Immunological Biomarkers. Int J Mol Sci 2023; 24:12797. [PMID: 37628978 PMCID: PMC10454494 DOI: 10.3390/ijms241612797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Epidemiological data highlight prostate cancer as a significant global health issue, with high incidence and substantial impact on patients' quality of life. The prevalence of this disease is associated with various factors, including age, heredity, and race. Recent research in prostate cancer genetics has identified several genetic variants that may be associated with an increased risk of developing the disease. However, despite the significance of these findings, genetic markers for prostate cancer are not currently utilized in clinical practice as reliable indicators of the disease. In addition to genetics, epigenetic alterations also play a crucial role in prostate cancer development. Aberrant DNA methylation, changes in chromatin structure, and microRNA (miRNA) expression are major epigenetic events that influence oncogenesis. Existing markers for prostate cancer, such as prostate-specific antigen (PSA), have limitations in terms of sensitivity and specificity. The cost of testing, follow-up procedures, and treatment for false-positive results and overdiagnosis contributes to the overall healthcare expenditure. Improving the effectiveness of prostate cancer diagnosis and prognosis requires either narrowing the risk group by identifying new genetic factors or enhancing the sensitivity and specificity of existing markers. Immunological biomarkers (both circulating and intra-tumoral), including markers of immune response and immune dysfunction, represent a potentially useful area of research for enhancing the diagnosis and prognosis of prostate cancer. Our review emphasizes the need for developing novel immunological biomarkers to improve the diagnosis, prognosis, and management of prostate cancer. We highlight the most recent achievements in the identification of biomarkers provided by circulating monocytes and tumor-associated macrophages (TAMs). We highlight that monocyte-derived and TAM-derived biomarkers can enable to establish the missing links between genetic predisposition, hormonal metabolism and immune responses in prostate cancer.
Collapse
Affiliation(s)
- Guzel Rafikova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Irina Gilyazova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Kadriia Enikeeva
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Julia Kzhyshkowska
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050 Tomsk, Russia
- Genetic Technology Laboratory, Siberian State Medical University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 68167 Mannheim, Germany
| |
Collapse
|
6
|
Masud N. Symphony in the crowd: Key genetic alterations in prostate cancer. CANCER INNOVATION 2023; 2:203-209. [PMID: 38089408 PMCID: PMC10686121 DOI: 10.1002/cai2.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 02/02/2024]
Abstract
Androgen receptor (AR) signaling have been frequently targeted for treating prostate cancer (PCa). Even though primarily patients receive a good therapeutic outcome by targeting AR signaling axis, eventually it emerges resistance by altering the genetic makeup of prostate cells. However, to develop an effective therapeutic regime, it is essential to recognize key genetic alterations in PCa. The most common genetic alterations that give rise to distinct androgen different differentiation states are gene fusion of TMPRSS2 with ETS family genes, deletion, or mutation of tumor suppressor PTEN and TP53 gene, amplification or splicing of AR, altered DNA repair genes. In this review, we describe key genes and genetic changes that have been recognized to contribute to altered prostate environment.
Collapse
Affiliation(s)
- Neshat Masud
- Department of PharmacologyUniversity of Louisiana at MonroeMonroeLAUSA
| |
Collapse
|
7
|
Bozgeyik E. Variations in genomic regions encoding long non-coding RNA genes associated with increased prostate cancer risk. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 791:108456. [PMID: 36948485 DOI: 10.1016/j.mrrev.2023.108456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
From a single restriction fragment length polymorphism analysis to next generation sequencing analysis that screens the entire human genome, testing for genomic variations provides a great and robust approach to cancer testing. Non-coding RNAs have been shown to have a major impact on the development and progression of human cancers, including prostate cancer. However, the low stability of these molecules under laboratory conditions has made their clinical utility challenging, as in the case of PCA3 long non-coding RNA. Since testing for variations in genomic regions encoding non-coding RNAs offers a promising approach for cancer testing, identification and interpretation of single nucleotide polymorphisms associated with prostate cancer susceptibility is of great interest. Accordingly, here, for the first time, we review and discuss current available knowledge about genomic variation of long non-coding RNA molecules in prostate cancer.
Collapse
Affiliation(s)
- Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey.
| |
Collapse
|
8
|
Kulkarni A, Wafik M. Genomics makes prostate cancer personal. TRENDS IN UROLOGY & MEN'S HEALTH 2022. [DOI: 10.1002/tre.883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Abstract
Insights into the genetic basis of human disease are helping to address some of the key challenges in new drug development including the very high rates of failure. Here we review the recent history of an emerging, genomics-assisted approach to pharmaceutical research and development, and its relationship to Mendelian randomization (MR), a well-established analytical approach to causal inference. We demonstrate how human genomic data linked to pharmaceutically relevant phenotypes can be used for (1) drug target identification (mapping relevant drug targets to diseases), (2) drug target validation (inferring the likely effects of drug target perturbation), (3) evaluation of the effectiveness and specificity of compound-target engagement (inferring the extent to which the effects of a compound are exclusive to the target and distinguishing between on-target and off-target compound effects), and (4) the selection of end points in clinical trials (the diseases or conditions to be evaluated as trial outcomes). We show how genomics can help identify indication expansion opportunities for licensed drugs and repurposing of compounds developed to clinical phase that proved safe but ineffective for the original intended indication. We outline statistical and biological considerations in using MR for drug target validation (drug target MR) and discuss the obstacles and challenges for scaled applications of these genomics-based approaches.
Collapse
Affiliation(s)
- Amand F Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London WC1E 6BT, United Kingdom
- UCL British Heart Foundation Research Accelerator, London WC1E 6BT, United Kingdom
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London WC1E 6BT, United Kingdom
- UCL British Heart Foundation Research Accelerator, London WC1E 6BT, United Kingdom
- Health Data Research UK, London NW1 2BE, United Kingdom
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London WC1E 6BT, United Kingdom
- UCL British Heart Foundation Research Accelerator, London WC1E 6BT, United Kingdom
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
- Health Data Research UK, London NW1 2BE, United Kingdom
| |
Collapse
|