1
|
Biswal S, Mallick B. Unlocking the potential of signature-based drug repurposing for anticancer drug discovery. Arch Biochem Biophys 2024; 761:110150. [PMID: 39265695 DOI: 10.1016/j.abb.2024.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Cancer is the leading cause of death worldwide and is often associated with tumor relapse even after chemotherapeutics. This reveals malignancy is a complex process, and high-throughput omics strategies in recent years have contributed significantly in decoding the molecular mechanisms of these complex events in cancer. Further, the omics studies yield a large volume of cancer-specific molecular signatures that promote the discovery of cancer therapy drugs by a method termed signature-based drug repurposing. The drug repurposing method identifies new uses for approved drugs beyond their intended initial therapeutic use, and there are several approaches to it. In this review, we discuss signature-based drug repurposing in cancer, how cancer omics have revolutionized this method of drug discovery, and how one can use the cancer signature data for repurposed drug identification by providing a step-by-step procedural handout. This modern approach maximizes the use of existing therapeutic agents for cancer therapy or combination therapy to overcome chemotherapeutics resistance, making it a pragmatic and efficient alternative to traditional resource-intensive and time-consuming methods.
Collapse
Affiliation(s)
- Sruti Biswal
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India.
| |
Collapse
|
2
|
Guney Eskiler G, Deveci Ozkan A, Acikel Elmas M, Ozturk M, Arbak S. The recovery from taxane mediated apoptosis in PC-3 castration-resistant metastatic prostate cancer cells. Toxicol In Vitro 2024; 100:105894. [PMID: 38996827 DOI: 10.1016/j.tiv.2024.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
Here, we revealed the reversibility of cabazitaxel (CBZ)-induced apoptosis in PC-3 castration resistant metastatic prostate cancer cells (mCRPC) through the hallmarks of apoptosis. The recovery of PC-3 cells from apoptosis upon removal of CBZ at different recovery periods was evaluated by Annexin V, DNA damage, oxidative damage, mitochondrial membrane depolarization, and caspase activation. Our results showed that the administration of CBZ caused apoptosis for 72 h in PC-3 cells. However, recovered cells exhibited decreased nuclear damage, plasma membrane disruption, ROS level, release cytochrome c level and caspase-3 activation with upregulation of Bcl-2 expression upon removal of especially 1 nM CBZ for 24 h recovery period in PC-3 cells. Our study indicates that CBZ treated PC-3 cells can recover after apoptotic cell death. However, advanced molecular analysis should elucidate the relationship between the molecular mechanisms of recovery and taxane response or resistance in PC-3 mCRPC cells.
Collapse
Affiliation(s)
- Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey.
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Merve Acikel Elmas
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Melek Ozturk
- Department of Medical Biology, Faculty of Medicine, Istanbul-Cerrahpasa University, Istanbul, Turkey
| | - Serap Arbak
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
3
|
Ajiboye BO, Fatoki TH, Akinola OG, Ajeigbe KO, Bamisaye AF, Domínguez-Martín EM, Rijo P, Oyinloye BE. In silico exploration of anti-prostate cancer compounds from differential expressed genes. BMC Urol 2024; 24:138. [PMID: 38956591 PMCID: PMC11221101 DOI: 10.1186/s12894-024-01521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
Prostate cancer (PCa) is a complex and biologically diverse disease with no curative treatment options at present. This study aims to utilize computational methods to explore potential anti-PCa compounds based on differentially expressed genes (DEGs), with the goal of identifying novel therapeutic indications or repurposing existing drugs. The methods employed in this study include DEGs-to-drug prediction, pharmacokinetics prediction, target prediction, network analysis, and molecular docking. The findings revealed a total of 79 upregulated DEGs and 110 downregulated DEGs in PCa, which were used to identify drug compounds capable of reversing the dysregulated conditions (dexverapamil, emetine, parthenolide, dobutamine, terfenadine, pimozide, mefloquine, ellipticine, and trifluoperazine) at a threshold probability of 20% on several molecular targets, such as serotonin receptors 2a/2b/2c, HERG protein, adrenergic receptors alpha-1a/2a, dopamine D3 receptor, inducible nitric oxide synthase (iNOS), epidermal growth factor receptor erbB1 (EGFR), tyrosine-protein kinases, and C-C chemokine receptor type 5 (CCR5). Molecular docking analysis revealed that terfenadine binding to inducible nitric oxide synthase (-7.833 kcal.mol-1) and pimozide binding to HERG (-7.636 kcal.mol-1). Overall, binding energy ΔGbind (Total) at 0 ns was lower than that of 100 ns for both the Terfenadine-iNOS complex (-101.707 to -103.302 kcal.mol-1) and Ellipticine-TOPIIα complex (-42.229 to -58.780 kcal.mol-1). In conclusion, this study provides insight on molecular targets that could possibly contribute to the molecular mechanisms underlying PCa. Further preclinical and clinical studies are required to validate the therapeutic effectiveness of these identified drugs in PCa disease.
Collapse
Affiliation(s)
- Basiru Olaitan Ajiboye
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria.
| | - Toluwase Hezekiah Fatoki
- Applied Bioinformatics Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Olamilekan Ganiu Akinola
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Kazeem Olasunkanmi Ajeigbe
- Department of Physiology, Faculty of Basic Medical Sciences, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | | | - Eva-María Domínguez-Martín
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lusófona University, Campo Grande 376, Lisbon, 1749-024, Portugal
- Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología), Universidad de Alcalá de Henares, Nuevos Agentes Antitumorales, Acción Tóxica Sobre Células Leucémicas, Ctra. Madrid-Barcelona km. 33,600, Alcalá de Henares, Madrid, 28805, España
| | - Patricia Rijo
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lusófona University, Campo Grande 376, Lisbon, 1749-024, Portugal
| | - Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| |
Collapse
|
4
|
Zhang W, Huang RS. Computer-aided drug discovery strategies for novel therapeutics for prostate cancer leveraging next-generating sequencing data. Expert Opin Drug Discov 2024; 19:841-853. [PMID: 38860709 PMCID: PMC11537242 DOI: 10.1080/17460441.2024.2365370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Prostate cancer (PC) is the most common malignancy and accounts for a significant proportion of cancer deaths among men. Although initial therapy success can often be observed in patients diagnosed with localized PC, many patients eventually develop disease recurrence and metastasis. Without effective treatments, patients with aggressive PC display very poor survival. To curb the current high mortality rate, many investigations have been carried out to identify efficacious therapeutics. Compared to de novo drug designs, computational methods have been widely employed to offer actionable drug predictions in a fast and cost-efficient way. Particularly, powered by an increasing availability of next-generation sequencing molecular profiles from PC patients, computer-aided approaches can be tailored to screen for candidate drugs. AREAS COVERED Herein, the authors review the recent advances in computational methods for drug discovery utilizing molecular profiles from PC patients. Given the uniqueness in PC therapeutic needs, they discuss in detail the drug discovery goals of these studies, highlighting their translational values for clinically impactful drug nomination. EXPERT OPINION Evolving molecular profiling techniques may enable new perspectives for computer-aided approaches to offer drug candidates for different tumor microenvironments. With ongoing efforts to incorporate new compounds into large-scale high-throughput screens, the authors envision continued expansion of drug candidate pools.
Collapse
Affiliation(s)
- Weijie Zhang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - R. Stephanie Huang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
5
|
Li J, Cheng C, Zhang J. An analysis of AURKB's prognostic and immunological roles across various cancers. J Cell Mol Med 2024; 28:e18475. [PMID: 38898693 PMCID: PMC11187167 DOI: 10.1111/jcmm.18475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Aurora kinase B (AURKB), an essential regulator in the process of mitosis, has been revealed through various studies to have a significant role in cancer development and progression. However, the specific mechanisms remain poorly understood. This study, therefore, seeks to elucidate the multifaceted role of AURKB in diverse cancer types. This study utilized bioinformatics techniques to examine the transcript, protein, promoter methylation and mutation levels of AURKB. The study further analysed associations between AURKB and factors such as prognosis, pathological stage, biological function, immune infiltration, tumour mutational burden (TMB) and microsatellite instability (MSI). In addition, immunohistochemical staining data of 50 cases of renal clear cell carcinoma and its adjacent normal tissues were collected to verify the difference in protein expression of AURKB in the two tissues. The results show that AURKB is highly expressed in most cancers, and the protein level of AURKB and the methylation level of its promoter vary among cancer types. Survival analysis showed that AURKB was associated with overall survival in 12 cancer types and progression-free survival in 11 cancer types. Elevated levels of AURKB were detected in the advanced stages of 10 different cancers. AURKB has a potential impact on cancer progression through its effects on cell cycle regulation as well as inflammatory and immune-related pathways. We observed a strong association between AURKB and immune cell infiltration, immunomodulatory factors, TMB and MSI. Importantly, we confirmed that the AURKB protein is highly expressed in kidney renal clear cell carcinoma (KIRC). Our study reveals that AURKB may be a potential biomarker for pan-cancer and KIRC.
Collapse
Affiliation(s)
- Jun Li
- Department of UrologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuChina
| | - Cui Cheng
- Department of Gynaecological OncologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuChina
| | - Jiajun Zhang
- Department of UrologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuChina
| |
Collapse
|
6
|
Hongo H, Kosaka T, Takayama KI, Baba Y, Yasumizu Y, Ueda K, Suzuki Y, Inoue S, Beltran H, Oya M. G-protein signaling of oxytocin receptor as a potential target for cabazitaxel-resistant prostate cancer. PNAS NEXUS 2024; 3:pgae002. [PMID: 38250514 PMCID: PMC10799637 DOI: 10.1093/pnasnexus/pgae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Although the treatment armamentarium for patients with metastatic prostate cancer has improved recently, treatment options after progression on cabazitaxel (CBZ) are limited. To identify the mechanisms underlying CBZ resistance and therapeutic targets, we performed single-cell RNA sequencing of circulating tumor cells (CTCs) from patients with CBZ-resistant prostate cancer. Cells were clustered based on gene expression profiles. In silico screening was used to nominate candidate drugs for overcoming CBZ resistance in castration-resistant prostate cancer. CTCs were divided into three to four clusters, reflecting intrapatient tumor heterogeneity in refractory prostate cancer. Pathway analysis revealed that clusters in two cases showed up-regulation of the oxytocin (OXT) receptor-signaling pathway. Spatial gene expression analysis of CBZ-resistant prostate cancer tissues confirmed the heterogeneous expression of OXT-signaling molecules. Cloperastine (CLO) had significant antitumor activity against CBZ-resistant prostate cancer cells. Mass spectrometric phosphoproteome analysis revealed the suppression of OXT signaling specific to CBZ-resistant models. These results support the potential of CLO as a candidate drug for overcoming CBZ-resistant prostate cancer via the inhibition of OXT signaling.
Collapse
Affiliation(s)
- Hiroshi Hongo
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-001, Japan
| | - Yuto Baba
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yota Yasumizu
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-001, Japan
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Hidaka, Saitama 350-1298, Japan
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
7
|
Martinez MJ, Lyles RD, Peinetti N, Grunfeld AM, Burnstein KL. Inhibition of the serine/threonine kinase BUB1 reverses taxane resistance in prostate cancer. iScience 2023; 26:107681. [PMID: 37705955 PMCID: PMC10495664 DOI: 10.1016/j.isci.2023.107681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Men with incurable castration resistant prostate cancer (CRPC) are typically treated with taxanes; however, drug resistance rapidly develops. We previously identified a clinically relevant seven gene network in aggressive CRPC, which includes the spindle assembly checkpoint (SAC) kinase BUB1. Since SAC is deregulated in taxane resistant PC, we evaluated BUB1 and found that it was over-expressed in advanced PC patient datasets and taxane resistant PC cells. Treatment with a specific BUB1 kinase inhibitor re-sensitized resistant CRPC cells, including cells expressing constitutively active androgen receptor (AR) variants, to clinically used taxanes. Consistent with a role of AR variants in taxane resistance, ectopically expressed AR-V7 increased BUB1 levels and reduced sensitivity to taxanes. This work shows that disruption of BUB1 kinase activity reverted resistance to taxanes, which is essential to advancing BUB1 as a potential therapeutic target for intractable chemotherapy resistant CRPC including AR variant driven CRPC, which lacks durable treatment options.
Collapse
Affiliation(s)
- Maria J. Martinez
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Rolando D.Z. Lyles
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Sheila and David Fuente Graduate Program in Cancer Biology, Miami, FL 33136, USA
| | - Nahuel Peinetti
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Alex M. Grunfeld
- Sheila and David Fuente Graduate Program in Cancer Biology, Miami, FL 33136, USA
| | - Kerry L. Burnstein
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
8
|
Jin Z, Peng F, Zhang C, Tao S, Xu D, Zhu Z. Expression, regulating mechanism and therapeutic target of KIF20A in multiple cancer. Heliyon 2023; 9:e13195. [PMID: 36798768 PMCID: PMC9925975 DOI: 10.1016/j.heliyon.2023.e13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Kinesin family member 20A (KIF20A) is a member of the kinesin family. It transports chromosomes during mitosis, plays a key role in cell division. Recently, studies proved that KIF20A was highly expressed in cancer. High expression of KIF20A was correlated with poor overall survival (OS). In this review, we summarized all the cancer that highly expressed KIF20A, described the role of KIF20A in cancer. We also organized phase I and phase II clinical trials of KIF20A peptides vaccine. All results indicated that KIF20A was a promising therapeutic target for multiple cancer.
Collapse
Key Words
- ATP, adenosine triphosphate
- BTC, biliary tract cancer
- CPC, chromosomal passenger complex
- CTL, cytotoxic T lymphocyte
- Cancer
- Cdk1, cyclin-dependent kinase 1
- DLG5, discs large MAGUK scaffold protein 5
- EMT, epithelial-mesenchymal transition
- Expression
- FoxM1, forkhead box protein M1
- GC, gastric cancer
- GEM, gemcitabine
- Gli2, glioma-associated oncogene 2
- HLA, human leukocyte antigen
- HNMT, head-and-neck malignant tumor
- IRF, interferon regulatory factor
- JAK, Janus kinase
- KIF20A
- KIF20A, kinesin family member 20A
- LP, long peptide
- MHC I, major histocompatibility complex I
- MKlp2, mitotic kinesin-like protein 2
- Mad2, mitotic arrest deficient 2
- OS, overall survival
- PBMC, peripheral blood mononuclear cell
- Plk1, polo-like kinase 1
- Regulating mechanisms
- Therapeutic target
- circRNA, circular RNA
- miRNA, microRNA
Collapse
Affiliation(s)
- Zheng Jin
- Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Fei Peng
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, Texas, USA
| | - Chao Zhang
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shuang Tao
- Department of Otorhinolaryngology Head and Neck Surgery, Longgang Central Hospital of Shenzhen, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Damo Xu
- Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China,State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong Province, China,Corresponding author. Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China.
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China,Corresponding author. Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
9
|
Budhwani KI, Patel ZH, Guenter RE, Charania AA. A hitchhiker's guide to cancer models. Trends Biotechnol 2022; 40:1361-1373. [PMID: 35534320 PMCID: PMC9588514 DOI: 10.1016/j.tibtech.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 01/21/2023]
Abstract
Cancer is a complex and uniquely personal disease. More than 1.7 million people in the United States are diagnosed with cancer every year. As the burden of cancer grows, so does the need for new, more effective therapeutics and for predictive tools to identify optimal, personalized treatment options for every patient. Cancer models that recapitulate various aspects of the disease are fundamental to making advances along the continuum of cancer treatment from benchside discoveries to bedside delivery. In this review, we use a thought experiment as a vehicle to arrive at four broad categories of cancer models and explore the strengths, weaknesses, opportunities, and threats for each category in advancing our understanding of the disease and improving treatment strategies.
Collapse
Affiliation(s)
- Karim I Budhwani
- CerFlux, Inc., Birmingham, AL, USA; Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Department of Physics, Coe College, Cedar Rapids, IA, USA.
| | | | | | | |
Collapse
|
10
|
Basak D, Gregori L, Johora F, Deb S. Preclinical and Clinical Research Models of Prostate Cancer: A Brief Overview. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101607. [PMID: 36295041 PMCID: PMC9605520 DOI: 10.3390/life12101607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022]
Abstract
The incidence and mortality from prostate cancer (PCa) are on the rise which poses a major public health concern worldwide. In this narrative review, we have summarized the characteristics of major in vitro and in vivo PCa models including their utility in developing treatment strategies. Androgens, particularly, testosterone and dihydrotestosterone (DHT) activate the androgen receptor (AR) signaling pathway that facilitates the development and progression of castration resistant PCa. Several enzymes namely, CYP17A1, HSD17B, and SRD5A are essential to furnishing DHT from dehydroepiandrosterone in the classical pathway while DHT is formed from androstanediol in the backdoor pathway. The advancement in delineating the molecular heterogeneity of PCa has been possible through the development of several in vitro and in vivo research models. Generally, tissue culture models are advantageous to understand PCa biology and investigate the efficacy and toxicity of novel agents; nevertheless, animal models are indispensable to studying the PCa etiology and treatment since they can simulate the tumor microenvironment that plays a central role in initiation and progression of the disease. Moreover, the availability of several genetically engineered mouse models has made it possible to study the metastasis process. However, the conventional models are not devoid of limitations. For example, the lack of heterogeneity in tissue culture models and the variation of metastatic characteristics in xenograft models are obviously challenging. Additionally, due to the racial and ethnic disparities in PCa pathophysiology, a new model that can represent PCa encompassing different ethnicities is urgently needed. New models should continue to evolve to address the genetic and molecular complexities as well as to further elucidate the finer details of the steroidogenic pathway associated with PCa.
Collapse
|
11
|
Yi Q, Wei J, Li Y. Effects of miR-103a-3p Targeted Regulation of TRIM66 Axis on Docetaxel Resistance and Glycolysis in Prostate Cancer Cells. Front Genet 2022; 12:813793. [PMID: 35211152 PMCID: PMC8861206 DOI: 10.3389/fgene.2021.813793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Objective: We aimed to study the expressions of miR-103a-3p and TRIM66 in prostate cancer (PCa) cells, explore the direct target genes of miR-103a-3p, and analyze the effects of miR-103a-3p targeted regulation of the TRIM66 axis on docetaxel (DTX) resistance and glycolysis of PCa cells. Methods: Human normal prostate cells and PCa cells were used to detect the expressions of miR-103a-3p and TRIM66 and analyze their relationship. DTX-resistant (DR) PCa cells were established and transfected with miR-103a-3p and TRIM66 plasmids. The MTT assay, the plate cloning assay, the wound healing assay, and the Transwell assay were used to detect cell viability, colony formation, cell migration, and cell invasion, respectively. Cell glycolysis was analyzed using a cell glycolysis kit. Results: The expression of miR-103a-3p was low and that of TRIM66 was high in PCa cells. MiR-103a-3p had a binding site with TRIM66, and the double luciferase report confirmed that they had a targeting relationship. Compared with the PCa group cells, the DTX-resistant group cells showed increased resistance to DTX. The resistance index was 13.33, and the doubling time of the DTX-resistant group cells was significantly longer than that of the PCa group cells. The DTX-resistant group showed more obvious low expression of miR-103a-3p and high expression of TRIM66. After the DTX-resistant group cells were transfected with miR-103a-3p and TRIM66 plasmids, the expression of miR-103a-3p increased significantly and that of TRIM66 decreased significantly. Upregulation of miR-103a-3p and interference with TRIM66 can inhibit the proliferation, metastasis, and glycolysis of DTX-resistant cells. Conclusion: The expression of miR-103a-3p was downregulated and that of TRIM66 was upregulated in the malignant progression of PCa, especially during DTX resistance. Upregulation of miR-103a-3p and interference with TRIM66 can inhibit DTX resistance and glycolysis of PCa cells. Targeting TRIM66 may provide potential application value in molecular therapy for PCa.
Collapse
Affiliation(s)
- Qiang Yi
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Junfeng Wei
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yangzhou Li
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Repurposing Antipsychotics for Cancer Treatment. Biomedicines 2021; 9:biomedicines9121785. [PMID: 34944601 PMCID: PMC8698939 DOI: 10.3390/biomedicines9121785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
Cancer is a leading cause of death worldwide, with approximately 19 million new cases each year. Lately, several novel chemotherapeutic drugs have been introduced, efficiently inhibiting tumor growth and proliferation. However, developing a new drug is a time- and money-consuming process, requiring around 1 billion dollars and nearly ten years, with only a minority of the initially effective anti-cancer drugs experimentally finally being efficient in human clinical trials. Drug repurposing for cancer treatment is an optimal alternative as the safety of these drugs has been previously tested, and thus, in case of successful preclinical studies, can be introduced faster and with a lower cost into phase 3 clinical trials. Antipsychotic drugs are associated with anti-cancer properties and, lately, there has been an increasing interest in their role in cancer treatment. In the present review, we discussed in detail the in-vitro and in-vivo properties of the most common typical and atypical antipsychotics, along with their mechanism of action.
Collapse
|
13
|
Hongo H, Kosaka T, Suzuki Y, Mikami S, Fukada J, Oya M. Topoisomerase II alpha inhibition can overcome taxane-resistant prostate cancer through DNA repair pathways. Sci Rep 2021; 11:22284. [PMID: 34782700 PMCID: PMC8593019 DOI: 10.1038/s41598-021-01697-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/02/2021] [Indexed: 11/19/2022] Open
Abstract
Cabazitaxel (CBZ) is approved for the treatment of docetaxel-resistant castration-resistant prostate cancer (CRPC). However, its efficacy against CRPC is limited, and there are no effective treatments for CBZ-resistant CRPC. This study explored the optimal treatment for CRPC in the post-cabazitaxel setting. PC3 (CBZ-sensitive) and PC3CR cells (CBZ-resistant) were used in this study. We performed in silico drug screening for candidate drugs that could reprogram the gene expression signature of PC3CR cells. The in vivo effect of the drug combination was tested in xenograft mice models. We identified etoposide (VP16) as a promising treatment candidate for CBZ-resistant CRPC. The WST assay revealed that VP16 had a significant antitumor effect on PC3CR cells. PC3CR cells exhibited significantly higher topoisomerase II alpha (TOP2A) expression than PC3 cells. Higher TOP2A expression was a poor prognostic factor in The Cancer Genome Atlas prostate cancer cohort. In the Fred Hutchinson Cancer Research Center dataset, docetaxel-exposed tissues and metastatic tumors had higher TOP2A expression. In addition, VP16 significantly inhibited the growth of tumors generated from both cell lines. Based on these findings, VP16-based chemotherapy may be an optimal treatment for CPRC in the post-CBZ setting.
Collapse
Affiliation(s)
- Hiroshi Hongo
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Yoko Suzuki
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shuji Mikami
- Department of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | - Junichi Fukada
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|