1
|
Jung Y, Kim B, Kim CK, Won HH, Chae SH, Oh K, Shin MJ, Hwang GS, Seo WK. Long-Chain Polysaturated Fatty Acid in Atrial Fibrillation-Associated Stroke: Lipidomic-GWAS Study. Thromb Haemost 2025. [PMID: 39694057 DOI: 10.1055/a-2504-0903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
This study aimed to explore the relationship between lipidomic domains, particularly free fatty acids (FFAs), and the presence of atrial fibrillation (AF) in patients with acute stroke, and to identify mechanisms of AF-associated stroke through genetic studies.A total of 483 stroke patients without AF (n = 391) and with AF (n = 92) were selected from a prospectively collected stroke registry. Lipidomic profiling was conducted, and the lipid components associated with AF were explored using fold-change analyses and clustering. Genotyping was conducted through trait comparison. Colocalization was also performed.Among the lipidomic domains, the free fatty acid (FFA) class was positively associated with AF. Long-chain fatty acids with 14 to 24 carbons and unsaturated FFAs distinguished AF. Clustering analysis based on FFAs revealed differences in AF proportion across groups. Genome-wide association study (GWAS) identified two loci associated with clustered groups of FFA metabolites: near MIR548F3 associated with FFA 20:1, FFA 20:2, FFA 22:5, and FFA 22:6; and near RPL37A associated with FFA 22:5 and FFA 22:6. These loci were associated with increased fibrinogen levels. In the GWAS for the FFA metabolite, quantitative trial locus analysis, loci near rs28456 and rs3770088, and FFA 20:4-QTLs were co-localized with the eQTLs of FADS2, a gene involved in the peroxisome proliferator-activated receptor gamma-related signaling pathway, in the whole blood, left ventricle, and atrial appendage tissue.Elevated FFA levels, especially those of long-chain unsaturated FFAs, are strongly associated with AF-associated stroke. This relationship is regulated by the peroxisome proliferator-activated receptor (PPAR) gamma-related signaling pathway.
Collapse
Affiliation(s)
- Youngae Jung
- Integrated Metabolomics Research Group/Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Beomsu Kim
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Chi Kyung Kim
- Department of Neurology, Korea University Guro Hospital, Korea University, Seoul, Republic of Korea
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Su-Hyun Chae
- Integrated Metabolomics Research Group/Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyungmi Oh
- Department of Neurology, Korea University Guro Hospital, Korea University, Seoul, Republic of Korea
| | - Min-Jeong Shin
- Department of Public Health Sciences, Korea University, Seoul, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group/Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Woo-Keun Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University and Department of Digital Health, SAIHST, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Hou HT, Wang XC, Chen HX, Wang J, Yang Q, He GW. Lysine 2-hydroxyisobutyrylation of HXK1 alters energy metabolism and K ATP channel function in the atrium from patients with atrial fibrillation. Cell Commun Signal 2025; 23:117. [PMID: 40033384 PMCID: PMC11874433 DOI: 10.1186/s12964-025-02108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/14/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common form of arrhythmia and is a growing clinical problem. Post-translational modifications (PTMs) constitute crucial epigenetic mechanisms but modification of lysine 2-hydroxyisobutyrylation (Khib) in AF is still unknown. This study aimed to investigate the role and mechanism of Khib in AF. METHODS PTM proteomics was applied in the human atrial tissue from AF and sinus rhythm patients with heart valve disease during cardiac surgery to identify the Khib sites. The functional changes of differential modification sites were further validated at the cellular level. Cellular electrophysiology was performed to record the ion channel current and action potential duration (APD). RESULTS The modification of 124 Khib sites in 35 proteins and 67 sites in 48 proteins exhibited significant increase or decrease in AF compared to sinus rhythm. Ten Khib sites were included in energy metabolism-related signaling pathways (HXK1, TPIS, PGM1, and ODPX in glycolysis; MDHC and IDH3A in tricarboxylic acid cycle; NDUS2, ETFB, ADT3, and ATPB in oxidative respiratory chain). Importantly, decreased HXK1 K418hib regulated by HDAC2 attenuated the original chemical binding domain between HXK1 and glucose, inhibited the binding ability between HXK1 and glucose, and reduced catalytic ability of the enzyme, resulting in low production of glucose-6-phosphate and ATP. Further, it also increased Kir6.2 protein and the current of KATP channel, and decreased APD. CONCLUSIONS This study demonstrates the importance of Khib to catalysis of HXK1 and reveals molecular mechanisms of HXK1 K418hib in AF, providing new insight into strategies of AF.
Collapse
Affiliation(s)
- Hai-Tao Hou
- Institute of Cardiovascular Diseases, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences & Peking Union Medical College, No.61, 3rd Ave, TEDA, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Xiang-Chong Wang
- Institute of Cardiovascular Diseases, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences & Peking Union Medical College, No.61, 3rd Ave, TEDA, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
- Department of Pharmacology, Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Hebei International Cooperation Center for Ion channel Function and Innovative Traditional Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Huan-Xin Chen
- Institute of Cardiovascular Diseases, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences & Peking Union Medical College, No.61, 3rd Ave, TEDA, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Jun Wang
- Institute of Cardiovascular Diseases, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences & Peking Union Medical College, No.61, 3rd Ave, TEDA, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Qin Yang
- Institute of Cardiovascular Diseases, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences & Peking Union Medical College, No.61, 3rd Ave, TEDA, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Guo-Wei He
- Institute of Cardiovascular Diseases, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences & Peking Union Medical College, No.61, 3rd Ave, TEDA, Tianjin, 300457, China.
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China.
- Department of Surgery, OHSU, Portland, OR, USA.
| |
Collapse
|
3
|
Bass-Stringer S, Bernardo BC, Yildiz GS, Matsumoto A, Kiriazis H, Harmawan CA, Tai CMK, Chooi R, Bottrell L, Ezeani M, Donner DG, D'Elia AA, Ooi JYY, Mellett NA, Luo J, Masterman EI, Janssens K, Olshansky G, Howden EJ, Cross JH, Hagemeyer CE, Lin RCY, Thomas CJ, Magor GW, Perkins AC, Marwick TH, Kawakami H, Meikle PJ, Greening DW, Weeks KL, La Gerche A, Tham YK, McMullen JR. Reduced PI3K(p110α) induces atrial myopathy, and PI3K-related lipids are dysregulated in athletes with atrial fibrillation. JOURNAL OF SPORT AND HEALTH SCIENCE 2025; 14:101023. [PMID: 39826614 PMCID: PMC11978378 DOI: 10.1016/j.jshs.2025.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/11/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Elucidating mechanisms underlying atrial myopathy, which predisposes individuals to atrial fibrillation (AF), will be critical for preventing/treating AF. In a serendipitous discovery, we identified atrial enlargement, fibrosis, and thrombi in mice with reduced phosphoinositide 3-kinase (PI3K) in cardiomyocytes. PI3K(p110α) is elevated in the heart with exercise and is critical for exercise-induced ventricular enlargement and protection, but the role in the atria was unknown. Physical inactivity and extreme endurance exercise can increase AF risk. Therefore, our objective was to investigate whether too little and/or too much PI3K alone induces cardiac pathology. METHODS New cardiomyocyte-specific transgenic mice with increased or decreased PI3K(p110α) activity were generated. Multi-omics was conducted in mouse atrial tissue, and lipidomics in human plasma. RESULTS Elevated PI3K led to an increase in heart size with preserved/enhanced function. Reduced PI3K led to atrial dysfunction, fibrosis, arrhythmia, increased susceptibility to atrial enlargement and thrombi, and dysregulation of monosialodihexosylganglioside (GM3), a lipid that regulates insulin-like growth factor-1 (IGF1)-PI3K signaling. Proteomic profiling identified distinct signatures and signaling networks across atria with varying degrees of dysfunction, enlargement, and thrombi, including commonalities with the human AF proteome. PI3K-related lipids were dysregulated in plasma from athletes with AF. CONCLUSION PI3K(p110α) is a critical regulator of atrial biology and function in mice. This work provides a proteomic resource of candidates for further validation as potential new drug targets and biomarkers for atrial myopathy. Further investigation of PI3K-related lipids as markers for identifying individuals at risk of AF is warranted. Dysregulation of PI3K may contribute to the association between increased cardiac risk with physical inactivity and extreme endurance exercise.
Collapse
Affiliation(s)
- Sebastian Bass-Stringer
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Bianca C Bernardo
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC 3800, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gunes S Yildiz
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Aya Matsumoto
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - Celeste M K Tai
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Roger Chooi
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Lauren Bottrell
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Martin Ezeani
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Aascha A D'Elia
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Jenny Y Y Ooi
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | | | - Jieting Luo
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Emma I Masterman
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Kristel Janssens
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Gavriel Olshansky
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Erin J Howden
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jonathon H Cross
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Christoph E Hagemeyer
- Australian Centre for Blood Diseases, Monash University, Clayton, VIC 3800, Australia
| | - Ruby C Y Lin
- School of Medical Sciences, University of NSW, Sydney, NSW 2052, Australia; Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Colleen J Thomas
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; Centre for Cardiovascular Biology and Disease Research, La Trobe University, Bundoora, VIC 3086, Australia
| | - Graham W Magor
- Australian Centre for Blood Diseases, Monash University, Clayton, VIC 3800, Australia
| | - Andrew C Perkins
- Australian Centre for Blood Diseases, Monash University, Clayton, VIC 3800, Australia
| | - Thomas H Marwick
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia; Menzies Institute for Medical Research, University of TAS, Hobart, TAS 7000, Australia; Department of Cardiology, Royal Hobart Hospital, Hobart, TAS 7001, Australia
| | - Hiroshi Kawakami
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Cardiology, Pulmonology, Hypertension, and Nephrology, Ehime University Graduate School of Medicine, Toon 791-0295, Japan
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia; Centre for Cardiovascular Biology and Disease Research, La Trobe University, Bundoora, VIC 3086, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia; Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC 3800, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia; Department of Anatomy & Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - André La Gerche
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Yow Keat Tham
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC 3800, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia; Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC 3800, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia; Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Clayton, VIC 3800, Australia; Heart Research Institute, Newtown, NSW 2042, Australia.
| |
Collapse
|
4
|
Liu X, Liu H, Nie H, Tian L, Shi Y, Lai W, Xi Z, Lin B. Oil mist particulate matter induces myocardial tissue injury by impairing fatty acid metabolism and mitochondrial bioenergetics function via inhibiting the PPAR alpha signaling pathway in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125340. [PMID: 39581367 DOI: 10.1016/j.envpol.2024.125340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/10/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Air pollution is a significant concern for human health, particularly in relation to cardiovascular damage. Currently, the precise mechanisms underlying myocardial tissue injury induced by air pollution remain to be fully elucidated. Oil mist particulate matter (OMPM) is a key environmental factor that has been linked to increased mortality from cardiovascular diseases. The research aims to explore the detrimental effects and underlying molecular mechanisms of OMPM exposure on myocardial tissue. In this study, we established exposure models with different concentrations of OMPM both in vivo and in vitro to assess their deleterious effects on myocardial tissue. The results indicated that OMPM exposure induced alterations in myocardial enzymes and large accumulation of lipid droplets in rat myocardial tissue, with a dose-dependent increase in cell apoptosis, oxidative stress, and inflammatory responses, accompanied by mitochondrial structural damage and dysfunction. Proteomic analysis suggested that OMPM induced myocardial tissue damage is closely associated with changes in mitochondrial biological functions and fatty acid metabolism, possibly through inhibition of the PPAR signaling pathway. Further experiments using a PPARα agonist (WY-14643) and PPARα siRNA transfection cell model demonstrated that WY-14643 could mitigate abnormal fatty acid metabolism, mitochondrial dysfunction, and cell apoptosis caused by OMPM exposure. Overall, the study suggests that OMPM exposure disrupts myocardial fatty acid metabolism, contributes to mitochondrial damage and dysfunction through targeted inhibition of the PPAR signaling pathway, and ultimately results in cardiomyocyte apoptosis and myocardial tissue injury.
Collapse
Affiliation(s)
- Xuan Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Huanliang Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Huipeng Nie
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Lei Tian
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Yue Shi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Wenqing Lai
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Zhuge Xi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China.
| | - Bencheng Lin
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China.
| |
Collapse
|
5
|
Mushtaq A, Iqbal MZ, Tang J, Sun W. The wonders of X-PDT: an advance route to cancer theranostics. J Nanobiotechnology 2024; 22:655. [PMID: 39456085 PMCID: PMC11520131 DOI: 10.1186/s12951-024-02931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Global mortality data indicates cancer as the second-leading cause of death worldwide. Therefore, there's a pressing need to innovate effective treatments to address this significant medical and societal challenge. In recent years, X-ray-induced photodynamic therapy (X-PDT) has emerged as a promising advancement, revolutionizing traditional photodynamic therapy (PDT) for deeply entrenched malignancies by harnessing penetrating X-rays as external stimuli. Recent developments in X-ray photodynamic therapy have shown a trend toward minimizing radiation doses to remarkably low levels after the proof-of-concept demonstration. Early detection and real-time monitoring are crucial aspects of effective cancer treatment. Sophisticated X-ray imaging techniques have been enhanced by the introduction of X-ray luminescence nano-agents, alongside contrast nanomaterials based on X-ray attenuation. X-ray luminescence-based in vivo imaging offers excellent detection sensitivity and superior image quality in deep tissues at a reasonable cost, due to unhindered penetration and unimpeded auto-fluorescence of X-rays. This review emphasizes the significance of X-ray responsive theranostics, exploring their mechanism of action, feasibility, biocompatibility, and promising prospects in imaging-guided therapy for deep-seated tumors. Additionally, it discusses promising applications of X-PDT in treating breast cancer, liver cancer, lung cancer, skin cancer, and colorectal cancer.
Collapse
Affiliation(s)
- Asim Mushtaq
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, Zhejiang, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
| | - Muhammad Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jianbin Tang
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, Zhejiang, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
| | - Wenjing Sun
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, Zhejiang, China.
| |
Collapse
|
6
|
Chen Y, Wijekoon S, Matsumoto A, Luo J, Kiriazis H, Masterman E, Yildiz G, Cross J, Parslow A, Chooi R, Sadoshima J, Greening D, Weeks K, McMullen J. Distinct functional and molecular profiles between physiological and pathological atrial enlargement offer potential new therapeutic opportunities for atrial fibrillation. Clin Sci (Lond) 2024; 138:941-962. [PMID: 39018488 PMCID: PMC11292366 DOI: 10.1042/cs20240178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Atrial fibrillation (AF) remains challenging to prevent and treat. A key feature of AF is atrial enlargement. However, not all atrial enlargement progresses to AF. Atrial enlargement in response to physiological stimuli such as exercise is typically benign and reversible. Understanding the differences in atrial function and molecular profile underpinning pathological and physiological atrial remodelling will be critical for identifying new strategies for AF. The discovery of molecular mechanisms responsible for pathological and physiological ventricular hypertrophy has uncovered new drug targets for heart failure. Studies in the atria have been limited in comparison. Here, we characterised mouse atria from (1) a pathological model (cardiomyocyte-specific transgenic (Tg) that develops dilated cardiomyopathy [DCM] and AF due to reduced protective signalling [PI3K]; DCM-dnPI3K), and (2) a physiological model (cardiomyocyte-specific Tg with an enlarged heart due to increased insulin-like growth factor 1 receptor; IGF1R). Both models presented with an increase in atrial mass, but displayed distinct functional, cellular, histological and molecular phenotypes. Atrial enlargement in the DCM-dnPI3K Tg, but not IGF1R Tg, was associated with atrial dysfunction, fibrosis and a heart failure gene expression pattern. Atrial proteomics identified protein networks related to cardiac contractility, sarcomere assembly, metabolism, mitochondria, and extracellular matrix which were differentially regulated in the models; many co-identified in atrial proteomics data sets from human AF. In summary, physiological and pathological atrial enlargement are associated with distinct features, and the proteomic dataset provides a resource to study potential new regulators of atrial biology and function, drug targets and biomarkers for AF.
Collapse
MESH Headings
- Atrial Fibrillation/physiopathology
- Atrial Fibrillation/metabolism
- Atrial Fibrillation/genetics
- Animals
- Heart Atria/metabolism
- Heart Atria/physiopathology
- Heart Atria/pathology
- Mice, Transgenic
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Atrial Remodeling
- Receptor, IGF Type 1/metabolism
- Receptor, IGF Type 1/genetics
- Cardiomyopathy, Dilated/physiopathology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Disease Models, Animal
- Fibrosis
- Mice
- Humans
- Signal Transduction
- Phosphatidylinositol 3-Kinases/metabolism
- Heart Failure/physiopathology
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
Collapse
Affiliation(s)
- Yi Ching Chen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Seka Wijekoon
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Aya Matsumoto
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jieting Luo
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Emma Masterman
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Gunes Yildiz
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jonathon Cross
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Adam C. Parslow
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Roger Chooi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, NJ, U.S.A
| | - David W. Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Kate L. Weeks
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Julie R. McMullen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Monash Alfred Baker Centre for Cardiovascular Research, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Yang M, Xu X, Zhao XA, Ge YN, Qin J, Wang XY, Dai HL, Jia J, Tao SM. Comprehensive Analysis of Immune Cell Infiltration and M2-Like Macrophage Biomarker Expression Patterns in Atrial Fibrillation. Int J Gen Med 2024; 17:3147-3169. [PMID: 39049829 PMCID: PMC11268662 DOI: 10.2147/ijgm.s462895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Background Macrophages play a crucial role in the progression of AF, closely linked to atrial inflammation and myocardial fibrosis. However, the functions and molecular mechanisms of different phenotypic macrophages in AF are not well understood. This study aims to analyze the infiltration characteristics of atrial immune cells in AF patients and further explore the role and molecular expression patterns of M2 macrophage-related genes in AF. Methods This study integrates single-cell and large-scale sequencing data to analyze immune cell infiltration and molecular characterization of the LAA in patients with AF, using SR as a control group. CIBERSORT assesses immune cell types in LAA tissues; WGCNA identifies signature genes; cell clustering analyzes cell types and subpopulations; cell communication explores macrophage interactions; hdWGCNA identifies M2 macrophage gene modules in AF. AF biomarkers are identified using LASSO and Random Forest, validated with ROC curves and RT-qPCR. Potential molecular mechanisms are inferred through TF-miRNA-mRNA networks and single-gene enrichment analyses. Results Myeloid cell subsets varied considerably between the AF and SR groups, with a significant increase in M2 macrophages in the AF group. Signals of inflammation and matrix remodeling were observed in AF. M2 macrophage-related genes IGF1, PDK4, RAB13, and TMEM176B were identified as AF biomarkers, with RAB13 and TMEM176B being novel markers. A TF-miRNA-mRNA network was constructed using target genes, which are enriched in the PPAR signaling pathway and fatty acid metabolism. Conclusion Over infiltration of M2 macrophages may be an important factor in the progression of AF. The M2 macrophage-related genes IGF1, RAB13, TMEM176B and PDK4 may regulate the progression of AF through the PPAR signaling pathway and fatty acid metabolism.
Collapse
Affiliation(s)
- Man Yang
- Department of Cardiology, The Affiliated Hospital of Yunnan University, Kunming City, Yunnan Province, People’s Republic of China
- School of Medicine, Dali University, Dali City, Yunnan Province, People’s Republic of China
- Department of Cardiology, The First People’s Hospital of Dali, Dali City, Yunnan Province, People’s Republic of China
| | - Xiang Xu
- School of Medicine, Yunnan University, Kunming City, Yunnan Province, People’s Republic of China
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People’s Republic of China
| | - Xing-an Zhao
- Department of Cardiology, The Affiliated Hospital of Yunnan University, Kunming City, Yunnan Province, People’s Republic of China
- School of Medicine, Dali University, Dali City, Yunnan Province, People’s Republic of China
| | - Yun-na Ge
- Department of Cardiology, The Affiliated Hospital of Yunnan University, Kunming City, Yunnan Province, People’s Republic of China
- School of Medicine, Dali University, Dali City, Yunnan Province, People’s Republic of China
| | - Juan Qin
- Department of Cardiology, The Affiliated Hospital of Yunnan University, Kunming City, Yunnan Province, People’s Republic of China
| | - Xi-ya Wang
- Department of Cardiology, The Affiliated Hospital of Yunnan University, Kunming City, Yunnan Province, People’s Republic of China
- School of Medicine, Dali University, Dali City, Yunnan Province, People’s Republic of China
| | - Hua-lei Dai
- Department of Cardiology, The Affiliated Hospital of Yunnan University, Kunming City, Yunnan Province, People’s Republic of China
| | - Ji Jia
- Department of Cardiology, The Affiliated Hospital of Yunnan University, Kunming City, Yunnan Province, People’s Republic of China
| | - Si-ming Tao
- Department of Cardiology, The Affiliated Hospital of Yunnan University, Kunming City, Yunnan Province, People’s Republic of China
| |
Collapse
|
8
|
Zhang J, Hou H, Song Y, Guo M, Liu X, Yang Q, He G. Proteomics study and protein biomarkers of malignant ventricular arrhythmia in acute myocardial infarction patients. Clin Transl Med 2023; 13:e1435. [PMID: 37962003 PMCID: PMC10644326 DOI: 10.1002/ctm2.1435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/13/2023] [Accepted: 10/01/2023] [Indexed: 11/15/2023] Open
Affiliation(s)
- Jian‐Liang Zhang
- The Institute of Cardiovascular Diseases and Department of Cardiovascular surgery, TEDA International Cardiovascular HospitalChinese Academy of Medical Sciences and Graduate School of Peking Union Medical College and Tianjin UniversityTianjinChina
| | - Hai‐Tao Hou
- The Institute of Cardiovascular Diseases and Department of Cardiovascular surgery, TEDA International Cardiovascular HospitalChinese Academy of Medical Sciences and Graduate School of Peking Union Medical College and Tianjin UniversityTianjinChina
| | - Yu Song
- Critical Care Unit, The Institute of Cardiovascular DiseasesTEDA International Cardiovascular Hospital, Tianjin UniversityTianjinChina
| | - Mu Guo
- Critical Care Unit, The Institute of Cardiovascular DiseasesTEDA International Cardiovascular Hospital, Tianjin UniversityTianjinChina
| | - Xiao‐Cheng Liu
- The Institute of Cardiovascular Diseases and Department of Cardiovascular surgery, TEDA International Cardiovascular HospitalChinese Academy of Medical Sciences and Graduate School of Peking Union Medical College and Tianjin UniversityTianjinChina
| | - Qin Yang
- The Institute of Cardiovascular Diseases and Department of Cardiovascular surgery, TEDA International Cardiovascular HospitalChinese Academy of Medical Sciences and Graduate School of Peking Union Medical College and Tianjin UniversityTianjinChina
| | - Guo‐Wei He
- The Institute of Cardiovascular Diseases and Department of Cardiovascular surgery, TEDA International Cardiovascular HospitalChinese Academy of Medical Sciences and Graduate School of Peking Union Medical College and Tianjin UniversityTianjinChina
| |
Collapse
|
9
|
Huiskes FG, Creemers EE, Brundel BJJM. Dissecting the Molecular Mechanisms Driving Electropathology in Atrial Fibrillation: Deployment of RNA Sequencing and Transcriptomic Analyses. Cells 2023; 12:2242. [PMID: 37759465 PMCID: PMC10526291 DOI: 10.3390/cells12182242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Despite many efforts to treat atrial fibrillation (AF), the most common progressive and age-related cardiac tachyarrhythmia in the Western world, the efficacy is still suboptimal. A plausible reason for this is that current treatments are not directed at underlying molecular root causes that drive electrical conduction disorders and AF (i.e., electropathology). Insights into AF-induced transcriptomic alterations may aid in a deeper understanding of electropathology. Specifically, RNA sequencing (RNA-seq) facilitates transcriptomic analyses and discovery of differences in gene expression profiles between patient groups. In the last decade, various RNA-seq studies have been conducted in atrial tissue samples of patients with AF versus controls in sinus rhythm. Identified differentially expressed molecular pathways so far include pathways related to mechanotransduction, ECM remodeling, ion channel signaling, and structural tissue organization through developmental and inflammatory signaling pathways. In this review, we provide an overview of the available human AF RNA-seq studies and highlight the molecular pathways identified. Additionally, a comparison is made between human RNA-seq findings with findings from experimental AF model systems and we discuss contrasting findings. Finally, we elaborate on new exciting RNA-seq approaches, including single-nucleotide variants, spatial transcriptomics and profiling of different populations of total RNA, small RNA and long non-coding RNA.
Collapse
Affiliation(s)
- Fabries G. Huiskes
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, VUmc, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ, Amsterdam, The Netherlands;
- Department of Experimental Cardiology, Amsterdam UMC, Location AMC, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1105 AZ Amsterdam, The Netherlands;
| | - Esther E. Creemers
- Department of Experimental Cardiology, Amsterdam UMC, Location AMC, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1105 AZ Amsterdam, The Netherlands;
| | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, VUmc, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ, Amsterdam, The Netherlands;
| |
Collapse
|
10
|
Chen HX, Wang XC, Hou HT, Wang J, Yang Q, Chen YL, Chen HZ, He GW. Lysine crotonylation of SERCA2a correlates to cardiac dysfunction and arrhythmia in Sirt1 cardiac-specific knockout mice. Int J Biol Macromol 2023; 242:125151. [PMID: 37270127 DOI: 10.1016/j.ijbiomac.2023.125151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Protein post-translational modifications (PTMs) are important regulators of protein functions and produce proteome complexity. SIRT1 has NAD+-dependent deacylation of acyl-lysine residues. The present study aimed to explore the correlation between lysine crotonylation (Kcr) on cardiac function and rhythm in Sirt1 cardiac-specific knockout (ScKO) mice and related mechanism. Quantitative proteomics and bioinformatics analysis of Kcr were performed in the heart tissue of ScKO mice established with a tamoxifen-inducible Cre-loxP system. The expression and enzyme activity of crotonylated protein were assessed by western blot, co-immunoprecipitation, and cell biology experiment. Echocardiography and electrophysiology were performed to investigate the influence of decrotonylation on cardiac function and rhythm in ScKO mice. The Kcr of SERCA2a was significantly increased on Lys120 (1.973 folds). The activity of SERCA2a decreased due to lower binding energy of crotonylated SERCA2a and ATP. Changes in expression of PPAR-related proteins suggest abnormal energy metabolism in the heart. ScKO mice had cardiac hypertrophy, impaired cardiac function, and abnormal ultrastructure and electrophysiological activities. We conclude that knockout of SIRT1 alters the ultrastructure of cardiac myocytes, induces cardiac hypertrophy and dysfunction, causes arrhythmia, and changes energy metabolism by regulating Kcr of SERCA2a. These findings provide new insight into the role of PTMs in heart diseases.
Collapse
Affiliation(s)
- Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Xiang-Chong Wang
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Hai-Tao Hou
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Jun Wang
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Yuan-Lu Chen
- Department of Electrophysiology, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China; Department of Surgery, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| |
Collapse
|
11
|
Shalihat A, Lesmana R, Hasanah AN, Mutakin M. Selenium Organic Content Prediction in Jengkol ( Archidendron pauciflorum) and Its Molecular Interaction with Cardioprotection Receptors PPAR-γ, NF-κB, and PI3K. Molecules 2023; 28:molecules28103984. [PMID: 37241725 DOI: 10.3390/molecules28103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Selenium (Se) is a trace mineral found in plants with a distinct sulfuric odor that is cardioprotective and reported to have low toxicity. West Java, Indonesia, has a variety of plants with a distinct odor that are consumed raw, such as jengkol (Archidendron pauciflorum). This study is conducted to determine the Se content of jengkol using the fluorometric method, where the jengkol extract is separated, and the Se content is detected using high-pressure liquid chromatography (HPLC), combined with fluorometry. Two fractions with the highest Se concentration (A and B) are found and characterized using liquid chromatography mass spectrometry to predict the organic Se content by comparing the results with those in the external literature. The Se content of fraction (A) is found to be selenomethionine (m/z 198), gamma glutamyl-methyl-selenocysteine-(GluMetSeCys; m/z 313), and the Se-sulfur (S) conjugate of cysteine-selenoglutathione (m/z 475). Furthermore, these compounds are docked on receptors involved in cardioprotection. The receptors are peroxisome proliferator-activated receptor-γ (PPAR-γ), nuclear factor kappa-B (NF-κB), and phosphoinositide 3-kinase (PI3K/AKT). The interaction of receptor and ligan that has the lowest binding energy of the docking simulation is measured with molecular dynamic simulation. MD is performed to observe bond stability and conformation based on root mean square deviation, root mean square fluctuation, radius gyration, and MM-PBSA parameters. The results of the MD simulation show that the stability of the complex organic Se compounds tested with the receptors is lower than that of the native ligand, while the binding energy is lower than that of the native ligand based on the MM-PSBA parameter. This indicates that the predicted organic Se in jengkol, i.e., gamma-GluMetSeCys to PPAR-γ, gamma-GluMetSeCys AKT/PI3K, and Se-S conjugate of cysteine-selenoglutathione to NF-κB, has the best interaction results and provides a cardioprotection effect, compared to the molecular interaction of the test ligands with the receptors.
Collapse
Affiliation(s)
- Ayu Shalihat
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia
| | - Mutakin Mutakin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia
| |
Collapse
|
12
|
Wu Y, Dong X, Hu J, Wang L, Xu R, Wang Y, Zeng Y. Transcriptomics Based Network Analyses and Molecular Docking Highlighted Potentially Therapeutic Biomarkers for Colon Cancer. Biochem Genet 2023:10.1007/s10528-023-10333-9. [PMID: 36645555 DOI: 10.1007/s10528-023-10333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023]
Abstract
In this study, machine learning-based multiple bioinformatics analysis was carried out for the purpose of the deep and efficient mining of high-throughput transcriptomics data from the TCGA database. Compared with normal colon tissue, 2469 genes were significantly differentially expressed in colon cancer tissue. Gene functional annotation and pathway analysis suggested that most DEGs were functionally related to the cell cycle and metabolism. Weighted gene co-expression network analysis revealed a significant module and the enriched genes that were closely related to fatty acid degradation and metabolism. Based on colon cancer progression, the trend analysis highlighted that several gene sets were significantly correlated with disease development. At the same time, the most specific genes were functionally related to cancer cell features such as the high performance of DNA replication and cell division. Moreover, survival analysis and target drug prediction were performed to prioritize reliable biomarkers and potential drugs. In consideration of a combination of different evidence, four genes (ACOX1, CPT2, CDC25C and PKMYT1) were suggested as novel biomarkers in colon cancer. The potential biomarkers and target drugs identified in our study may provide new ideas for colonic-related prevention, diagnosis, and treatment; therefore, our results have high clinical value for colon cancer.
Collapse
Affiliation(s)
- Yun Wu
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410011, Hunan, China
| | - Xiaoping Dong
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410011, Hunan, China
| | - Jia Hu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lingxiang Wang
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410011, Hunan, China
| | - Rongfang Xu
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410011, Hunan, China
| | - Yongjun Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Yong Zeng
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410011, Hunan, China. .,Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
13
|
Koroleva OA, Dutikova YV, Trubnikov AV, Zenov FA, Manasova EV, Shtil AA, Kurkin AV. PROTAC: targeted drug strategy. Principles and limitations. Russ Chem Bull 2022; 71:2310-2334. [PMID: 36569659 PMCID: PMC9762658 DOI: 10.1007/s11172-022-3659-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 12/23/2022]
Abstract
The PROTAC (PROteolysis TArgeting Chimera) technology is a method of targeting intracellular proteins previously considered undruggable. This technology utilizes the ubiquitin-proteasome system in cells to specifically degrade target proteins, thereby offering significant advantages over conventional small-molecule inhibitors of the enzymatic function. Preclinical and preliminary clinical trials of PROTAC-based compounds (degraders) are presented. The review considers the general principles of the design of degraders. Advances and challenges of the PROTAC technology are discussed.
Collapse
Affiliation(s)
- O. A. Koroleva
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| | - Yu. V. Dutikova
- Patent & Law Firm “A. Zalesov and Partners”, Build. 9, 2 ul. Marshala Rybalko, 123060 Moscow, Russian Federation
| | - A. V. Trubnikov
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| | - F. A. Zenov
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| | - E. V. Manasova
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| | - A. A. Shtil
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Build. 15, 24 Kashirskoe shosse, 115478 Moscow, Russian Federation
| | - A. V. Kurkin
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| |
Collapse
|
14
|
Abstract
Bile acids wear many hats, including those of an emulsifier to facilitate nutrient absorption, a cholesterol metabolite, and a signaling molecule in various tissues modulating itching to metabolism and cellular functions. Bile acids are synthesized in the liver but exhibit wide-ranging effects indicating their ability to mediate organ-organ crosstalk. So, how does a steroid metabolite orchestrate such diverse functions? Despite the inherent chemical similarity, the side chain decorations alter the chemistry and biology of the different bile acid species and their preferences to bind downstream receptors distinctly. Identification of new modifications in bile acids is burgeoning, and some of it is associated with the microbiota within the intestine. Here, we provide a brief overview of the history and the various receptors that mediate bile acid signaling in addition to its crosstalk with the gut microbiota.
Collapse
Affiliation(s)
| | | | - Sayeepriyadarshini Anakk
- Correspondence: Sayeepriyadarshini Anakk, PhD, Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, 506 S Mathews Ave, 453 Medical Sciences Bldg, Urbana, IL 61801, USA.
| |
Collapse
|
15
|
Duan Y, Li Q, Zhou J, Zhao H, Zhao Z, Wang L, Luo M, Du J, Dong Z. Studies on the molecular level changes and potential resistance mechanism of Coreius guichenoti under temperature stimulation. Front Genet 2022; 13:1015505. [PMID: 36263436 PMCID: PMC9574000 DOI: 10.3389/fgene.2022.1015505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, we used transcriptome and proteome technology to analyze molecular level changes in tissues of Coreius guichenoti cultured at high temperature (HT) and low temperature (LT). We also screened for specific anti-stress genes and proteins and evaluated the relationships between them. We identified 201,803 unigenes and 10,623 proteins. Compared with the normal temperature (NT), 408 genes and 1,204 proteins were up- or down-regulated in brain tissues, respectively, at HT, and the numbers were 8 and 149 at LT. In gill tissues, the numbers were 101 and 1,745 at HT and 27 and 511 at LT. In gill tissues at both temperatures, the degree of down-regulation (average, HT 204.67-fold, LT 443.13-fold) was much greater than that of up-regulation (average, HT 28.69-fold, LT 17.68-fold). The protein expression in brain (average, up 52.67-fold, down 13.54-fold) and gill (average, up 73.02-fold, down 12.92-fold) tissues increased more at HT than at LT. The protein expression in brain (up 3.77-fold, down 4.79-fold) tissues decreased more at LT than at HT, whereas the protein expression in gill (up 8.64-fold, down 4.35-fold) tissues was up-regulated more at LT than at HT. At HT, brain tissues were mainly enriched in pathways related to metabolism and DNA repair; at LT, they were mainly enriched in cancer-related pathways. At both temperatures, gill tissues were mainly enriched in pathways related to cell proliferation, apoptosis, immunity, and inflammation. Additionally, Kyoto Encyclopedia of Genes and Genomes pathway analysis showed more differentially expressed proteins in gill tissues than in brain tissues at HT and LT, and temperature stimulation led to the strengthening of metabolic pathways in both tissues. Of the 96 genes we identified as potentially being highly related to temperature stress (59 from transcriptome and 38 from proteome data), we detected heat shock protein 70 in both the transcriptome and proteome. Our results improved our understanding of the differential relationship between gene expression and protein expression in C. guichenoti. Identifying important temperature stress genes will help lay a foundation for cultivating C. guichenoti, and even other fish species, that are resistant to HT or LT.
Collapse
Affiliation(s)
- Yuanliang Duan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qiang Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jian Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Han Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zhongmeng Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lanmei Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
| | - Mingkun Luo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
| | - Jun Du
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
- *Correspondence: Zaijie Dong,
| |
Collapse
|
16
|
Hu B, Ge W, Wang Y, Zhang X, Li T, Cui H, Qian Y, Zhang Y, Li Z. Metabolomic and Proteomic Analyses of Persistent Valvular Atrial Fibrillation and Non-Valvular Atrial Fibrillation. Front Genet 2021; 12:789485. [PMID: 34917134 PMCID: PMC8669813 DOI: 10.3389/fgene.2021.789485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
Atrial fibrillation (AF) is an abnormal heart rhythm related to an increased risk of heart failure, dementia, and stroke. The distinction between valvular and non-valvular AF remains a debate. In this study, proteomics and metabolomics were integrated to describe the dysregulated metabolites and proteins of AF patients relative to sinus rhythm (SR) patients. Totally 47 up-regulated and 41 down-regulated proteins in valvular AF, and 59 up-regulated and 149 down-regulated proteins in non-valvular AF were recognized in comparison to SR patients. Moreover, 58 up-regulated and 49 significantly down-regulated metabolites in valvular AF, and 47 up-regulated and 122 down-regulated metabolites in persistent non-valvular AF patients were identified in comparison to SR patients. Based on analysis of differential levels of metabolites and proteins, 15 up-regulated and 22 down-regulated proteins, and 13 up-regulated and 122 down-regulated metabolites in persistent non-valvular AF were identified relative to valvular AF. KEGG pathway enrichment analysis showed the altered proteins and metabolites were significantly related to multiple metabolic pathways, such as Glycolysis/Gluconeogenesis. Interestingly, the enrichment pathways related to non-valvular AF were obviously different from those in valvular AF. For example, valvular AF was significantly related to Glycolysis/Gluconeogenesis, but non-valvular AF was more related to Citrate cycle (TCA cycle). Correlation analysis between the differentially expressed proteins and metabolites was also performed. Several hub proteins with metabolites were identified in valvular AF and non-valvular AF. For example, Taurine, D-Threitol, L-Rhamnose, and DL-lactate played crucial roles in valvular AF, while Glycerol-3-phosphate dehydrogenase, Inorganic pyrophosphatase 2, Hydroxymethylglutaryl-CoAlyase, and Deoxyuridine 5-triphosphate nucleotidohydrolase were crucial in non-valvular AF. Then two hub networks were recognized as potential biomarkers, which can effectively distinguish valvular AF and non-valvular persistent AF from SR samples, with areas under curve of 0.75 and 0.707, respectively. Hence, these metabolites and proteins can be used as potential clinical molecular markers to discriminate two types of AF from SR samples. In summary, this study provides novel insights to understanding the mechanisms of AF progression and identifying novel biomarkers for prognosis of non-valvular AF and valvular AF by using metabolomics and proteomics analyses.
Collapse
Affiliation(s)
- Bo Hu
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen Ge
- Department of Cardiothoracic Surgery, Shuguang Hospital, Affiliated to Shanghai University of TCM, Shanghai, China
| | - Yuliang Wang
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Xiaobin Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Li
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Cui
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yongjun Qian
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yangyang Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Li
- Department of Cardiovascular Surgery, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Zhang DD, Shi Y, Liu JB, Yang XL, Xin R, Wang HM, Wang PY, Jia CY, Zhang WJ, Ma YS, Fu D. Construction of a Myc-associated ceRNA network reveals a prognostic signature in hepatocellular carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:1033-1050. [PMID: 34141458 PMCID: PMC8167205 DOI: 10.1016/j.omtn.2021.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) remains an extremely lethal disease worldwide. High-throughput methods have revealed global transcriptome dysregulation; however, a comprehensive investigation of the complexity and behavioral characteristics of the competing endogenous RNA (ceRNA) network in HCC is lacking. In this study, we extracted the transcriptome (RNA) sequencing data of 371 HCC patients from The Cancer Genome Atlas platform. With the comparison of the high Myc expression (Mychigh) tumor and low Myc expression (Myclow) tumor groups in HCC, we identified 1,125 differentially expressed (DE) mRNAs, 589 long non-coding RNAs (lncRNAs), and 93 microRNAs (miRNAs). DE RNAs predicted the interactions necessary to construct an associated Myc ceRNA network, including 19 DE lncRNAs, 5 miRNAs, and 72 mRNAs. We identified a significant signature (long intergenic non-protein-coding [LINC] RNA 2691 [LINC02691] and LINC02499) that effectively predicted overall survival and had protective effects. The target genes of microRNA (miR)-212-3p predicted to intersect with DE mRNAs included SEC14-like protein 2 (SEC14L2) and solute carrier family 6 member 1 (SLC6A1), which were strongly correlated with survival and prognosis. With the use of the lncRNA-miRNA-mRNA axis, we constructed a ceRNA network containing four lncRNAs (LINC02691, LINC02499, LINC01354, and NAV2 antisense RNA 4), one miRNA (miR-212-3p), and two mRNAs (SEC14L2 and SLC6A1). Overall, we successfully constructed a mutually regulated ceRNA network and identified potential precision-targeted therapies and prognostic biomarkers.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China.,Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Yi Shi
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Min Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Cheng-You Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wen-Jie Zhang
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China.,The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Yu-Shui Ma
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, National Center for Liver Cancer, the Second Military Medical University, Shanghai 200433, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
18
|
Li MY, Chen HX, Hou HT, Wang J, Liu XC, Yang Q, He GW. Biomarkers and key pathways in atrial fibrillation associated with mitral valve disease identified by multi-omics study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:393. [PMID: 33842614 PMCID: PMC8033373 DOI: 10.21037/atm-20-3767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Mitral valve disease (MVD)-associated atrial fibrillation (AF) is one of the most common arrhythmias with an increased risk of thromboembolic events. This study aimed to identify the molecular mechanisms and possible biomarkers for chronic AF in MVD by using multi-omics methods. Methods This prospective study enrolled patients with MVD (n=100) undergoing mitral valve replacement surgery. The patients were allocated into chronic AF and sinus rhythm (SR) groups. Plasma samples were collected preoperatively. Proteomics was performed with isobaric tags for relative and absolute quantitation (iTRAQ) to identify differential proteins (DPs) between the two groups. The selected DPs were then validated in a new cohort of patients by enzyme-linked immunosorbent assay (ELISA). A gas chromatography-mass spectrometer was used in the metabolomics study to identify differential metabolites (DMs). Bioinformatics analyses were performed to analyze the results. Results Among the 447 plasma proteins and 322 metabolites detected, 57 proteins and 55 metabolites, including apolipoprotein A-I (ApoA-I), apolipoprotein A-II (ApoA-II), LIM domain only protein 7 (LMO7), and vitronectin (VN) were differentially expressed between AF and SR patients. Bioinformatics analyses identified enriched pathways related to AF, including peroxisome proliferator-activated receptor alpha (PPARα), the renin angiotensin aldosterone system (RAAS), galactose, biosynthesis of unsaturated fatty acids, and linoleic acid metabolism. Conclusions Using integrated multi-omics technologies in MVD-associated AF patients, the present study, for the first time, revealed important signaling pathways, such as PPARα, as well as possible roles of other signaling pathways, including the RAAS and galactose metabolism to understand the molecular mechanism of MVD-associated AF. It also identified a large number of DPs and DMs. Some identified proteins and metabolites, such as ApoA-I, ApoA-II, LMO7, and VN, may be further developed as biomarkers for MVD-associated AF.
Collapse
Affiliation(s)
- Ming-Yang Li
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School, Peking Union Medical College, Beijing, China
| | - Huan-Xin Chen
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School, Peking Union Medical College, Beijing, China
| | - Hai-Tao Hou
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School, Peking Union Medical College, Beijing, China
| | - Jun Wang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School, Peking Union Medical College, Beijing, China
| | - Xiao-Cheng Liu
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School, Peking Union Medical College, Beijing, China
| | - Qin Yang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School, Peking Union Medical College, Beijing, China
| | - Guo-Wei He
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School, Peking Union Medical College, Beijing, China.,The Institute of Cardiovascular Diseases, Tianjin University, Tianjin, China.,Drug Research and Development Center, Wannan Medical College, Wuhu, China.,Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
19
|
Taghizadeh B, Ghavami L, Derakhshankhah H, Zangene E, Razmi M, Jaymand M, Zarrintaj P, Zarghami N, Jaafari MR, Moallem Shahri M, Moghaddasian A, Tayebi L, Izadi Z. Biomaterials in Valvular Heart Diseases. Front Bioeng Biotechnol 2020; 8:529244. [PMID: 33425862 PMCID: PMC7793990 DOI: 10.3389/fbioe.2020.529244] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/16/2020] [Indexed: 01/07/2023] Open
Abstract
Valvular heart disease (VHD) occurs as the result of valvular malfunction, which can greatly reduce patient's quality of life and if left untreated may lead to death. Different treatment regiments are available for management of this defect, which can be helpful in reducing the symptoms. The global commitment to reduce VHD-related mortality rates has enhanced the need for new therapeutic approaches. During the past decade, development of innovative pharmacological and surgical approaches have dramatically improved the quality of life for VHD patients, yet the search for low cost, more effective, and less invasive approaches is ongoing. The gold standard approach for VHD management is to replace or repair the injured valvular tissue with natural or synthetic biomaterials. Application of these biomaterials for cardiac valve regeneration and repair holds a great promise for treatment of this type of heart disease. The focus of the present review is the current use of different types of biomaterials in treatment of valvular heart diseases.
Collapse
Affiliation(s)
- Bita Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laleh Ghavami
- Laboratory of Biophysics and Molecular Biology, Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Zangene
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdieh Razmi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Payam Zarrintaj
- Polymer Engineering Department, Faculty of Engineering, Urmia University, Urmia, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matin Moallem Shahri
- Cardiology Department, Taleghani Trauma Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, United States
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Regenerative Medicine, Cell Science Research Center, Academic Center for Education, Culture and Research (ACECR), Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| |
Collapse
|
20
|
Garg S, Khan SI, Malhotra RK, Sharma MK, Kumar M, Kaur P, Nag TC, RumaRay, Bhatia J, Arya DS. The molecular mechanism involved in cardioprotection by the dietary flavonoid fisetin as an agonist of PPAR-γ in a murine model of myocardial infarction. Arch Biochem Biophys 2020; 694:108572. [PMID: 32926843 DOI: 10.1016/j.abb.2020.108572] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
The methodology exploring the cardioprotective potential of the flavonoid Fisetin through its ability to modulate PPAR-γ was unraveled in the present study. Computational modelling through molecular docking based binding study of interactions between Fiestin and PPAR-γ revealed the potential role of Fisetin as an agonist of PPAR-γ. A murine model of cardiac ischemia-reperfusion injury was used to explore this further. Male Wistar Rats were randomly assigned to five groups. Fisetin (20 mg/kg; p. o) was administered for 28 days. Ischemia was induced for 45 min on the 29th day followed by 60 min of reperfusion. Fisetin pretreatment upregulated the expression of PPAR-γ in heart tissue significantly Cardioprotection was assessed by measurement of hemodynamic parameters, infarct size, ELISA for oxidative stress, immunohistochemistry and TUNEL assay for apoptosis, and western blot analysis for MAPK proteins and inflammation. PPAR-γ activation by fisetin led to significantly reduced infarct size, suppression of oxidative stress, reduction of cardiac injury markers, alleviation of inflammation, and inhibition of apoptosis The MAPK-based molecular mechanism showed a rise in a key prosurvival kinase, ERK1/ERK2 and suppression of JNK and p38 proteins. The aforementioned beneficial findings of fisetin were reversed on the administration of a specific antagonist of PPAR-γ. In conclusion, through our experiments, we have proved that fisetin protects the heart against ischemia-reperfusion injury and the evident cardioprotection is PPAR-γ dependant. In conclusion, our study has revealed a prime mechanism involved in the cardioprotective effects of fisetin. Hence, Fisetin may be evaluated in further clinical studies as a cardioprotective agent in patients undergoing reperfusion interventions.
Collapse
Affiliation(s)
- Shanky Garg
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Sana Irfan Khan
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Rajiv Kumar Malhotra
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Kumar Sharma
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Manoj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - RumaRay
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Jagriti Bhatia
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|