1
|
Cui H, Liu Y, Yu Y, Lv D, Ma S, Gao M, Yang Y, Yuan C, Liu Y, Wang C. Panax notoginseng saponins and acetylsalicylic acid co-delivered liposomes for targeted treatment of ischemic stroke. Int J Pharm 2024; 667:124782. [PMID: 39349224 DOI: 10.1016/j.ijpharm.2024.124782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 09/28/2024] [Indexed: 10/02/2024]
Abstract
In this study, we aimed to develop brain-targeted co-delivery liposomes for the concurrent delivery of Panax notoginseng saponins (PNS) and acetylsalicylic acid (ASA) for the treatment of ischemic stroke. Within this system, PNS served as a cholesterol substitute, integrating into the phospholipid bilayer of the liposomes, while ASA was encapsulated internally. A poly-2-methacryloyloxyethyl phosphorylcholine (PMPC) polymer was synthesized and incorporated into the liposome surface. This formulation demonstrated an enhanced PNS-loading capacity and facilitated the synchronized delivery of key saponin components. Following PMPC modification, the liposomes exhibited prolonged circulation and improved transport across the blood-brain barrier (BBB) through acetylcholine receptor-mediated pathways. Furthermore, the co-delivery system exhibited enhanced therapeutic efficacy in a rat model of cerebral ischemia-reperfusion injury via the phosphoinositide 3-kinase/protein kinase C pathway. Additional analyses revealed significant effects on the metabolism of neurotransmitters, amino acids, folate, and various other pathways, indicating a multi-faceted therapeutic effect. Overall, this study presents an innovative research strategy for the comprehensive delivery of diverse components in traditional Chinese medicine formulations, highlighting the potential for synergistic treatments that combine traditional Chinese medicine with chemical agents.
Collapse
Affiliation(s)
- Hao Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Yanchi Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Ying Yu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Dong Lv
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Sha Ma
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Mingju Gao
- Wenshan University, Wenshan 663099, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Cheng Yuan
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuan Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| |
Collapse
|
2
|
Bian X, Yang L, Jiang D, Grippin AJ, Ma Y, Wu S, Wu L, Wang X, Tang Z, Tang K, Pan W, Dong S, Kim BYS, Jiang W, Yang Z, Li C. Regulation of cerebral blood flow boosts precise brain targeting of vinpocetine-derived ionizable-lipidoid nanoparticles. Nat Commun 2024; 15:3987. [PMID: 38734698 PMCID: PMC11088666 DOI: 10.1038/s41467-024-48461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Despite advances in active drug targeting for blood-brain barrier penetration, two key challenges persist: first, attachment of a targeting ligand to the drug or drug carrier does not enhance its brain biodistribution; and second, many brain diseases are intricately linked to microcirculation disorders that significantly impede drug accumulation within brain lesions even after they cross the barrier. Inspired by the neuroprotective properties of vinpocetine, which regulates cerebral blood flow, we propose a molecular library design centered on this class of cyclic tertiary amine compounds and develop a self-enhanced brain-targeted nucleic acid delivery system. Our findings reveal that: (i) vinpocetine-derived ionizable-lipidoid nanoparticles efficiently breach the blood-brain barrier; (ii) they have high gene-loading capacity, facilitating endosomal escape and intracellular transport; (iii) their administration is safe with minimal immunogenicity even with prolonged use; and (iv) they have potent pharmacologic brain-protective activity and may synergize with treatments for brain disorders as demonstrated in male APP/PS1 mice.
Collapse
Affiliation(s)
- Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, PR China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, PR China
| | - Ling Yang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, PR China
| | - Dingxi Jiang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, PR China
| | - Adam J Grippin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifan Ma
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shuang Wu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, PR China
| | - Linchong Wu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, PR China
| | - Xiaoyou Wang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, PR China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, PR China
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, PR China
| | - Kaicheng Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, PR China
| | - Weidong Pan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, PR China
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun, PR China.
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, PR China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, PR China.
| |
Collapse
|
3
|
Hao C, Sha M, Ye Y, Wang C. Cell Membrane-Derived Nanovehicles for Targeted Therapy of Ischemic Stroke: From Construction to Application. Pharmaceutics 2023; 16:6. [PMID: 38276484 PMCID: PMC10819970 DOI: 10.3390/pharmaceutics16010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke (IS) is a prevalent form of stroke and a leading cause of mortality and disability. Recently, cell membrane-derived nanovehicles (CMNVs) derived from erythrocytes, thrombocytes, neutrophils, macrophages, neural stem cells, and cancer cells have shown great promise as drug delivery systems for IS treatment. By precisely controlling drug release rates and targeting specific sites in the brain, CMNVs enable the reduction in drug dosage and minimization of side effects, thus significantly enhancing therapeutic strategies and approaches for IS. While there are some reviews regarding the applications of CMNVs in the treatment of IS, there has been limited attention given to important aspects such as carrier construction, structural design, and functional modification. Therefore, this review aims to address these key issues in CMNVs preparation, structural composition, modification, and other relevant aspects, with a specific focus on targeted therapy for IS. Finally, the challenges and prospects in this field are discussed.
Collapse
Affiliation(s)
- Cui Hao
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (H.C.); (S.M.); (Y.Y.)
| | - Ma Sha
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (H.C.); (S.M.); (Y.Y.)
| | - Yang Ye
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (H.C.); (S.M.); (Y.Y.)
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (H.C.); (S.M.); (Y.Y.)
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| |
Collapse
|
4
|
Wang C, Aguilar A, Ojima I. Strategies for the drug discovery and development of taxane anticancer therapeutics. Expert Opin Drug Discov 2022; 17:1193-1207. [PMID: 36200759 PMCID: PMC11483169 DOI: 10.1080/17460441.2022.2131766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 09/28/2022] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Paclitaxel and docetaxel have been extensively used in the clinic over the past three decades. Although the patents of these first-generation taxanes have expired, their clinical applications, particularly new formulations and combination therapies, are under active investigations. Inspired by the notable success of Abraxane and Lipusu, new formulations have been extensively developed. In parallel, to overcome multidrug resistance (MDR) and to eradicate cancer stem cells, immense efforts have been made on the discovery and development of new-generation taxanes with improved potency and superior pharmacological properties. AREAS COVERED This review covers (a) natural sources of advanced intermediates used for semi-synthesis of taxane API, (b) new formulations, (c) the major issues of FDA approved taxanes, (d) the design and development of next-generation taxanes, (e) new mechanisms of action, and (f) a variety of taxane-based drug delivery systems. EXPERT OPINION As the highly potent next-generation taxanes can eradicate cancer stem cells and overcome MDR, the priority is to develop these compounds as an integral part of cancer therapy, especially for pancreatic, colon and prostate cancers which hardly respond to checkpoint inhibitors. In order to mitigate undesirable side effects, the exploration of effective nanoformulations and tumor-targeted drug delivery systems are essential.
Collapse
Affiliation(s)
- Changwei Wang
- Rogel Cancer Center and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, U.S.A
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, U.S.A
- Drug Discovery Pipeline, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China
| | - Angelo Aguilar
- Rogel Cancer Center and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, U.S.A
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, U.S.A
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, U.S.A
| |
Collapse
|
5
|
Xia J, Zhang S, Zhang R, Wang A, Zhu Y, Dong M, Ma S, Hong C, Liu S, Wang D, Wang J. Targeting therapy and tumor microenvironment remodeling of triple-negative breast cancer by ginsenoside Rg3 based liposomes. J Nanobiotechnology 2022; 20:414. [PMID: 36109762 PMCID: PMC9479350 DOI: 10.1186/s12951-022-01623-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
The chemotherapy effect of docetaxel (DTX) against triple-negative breast cancer (TNBC) remains mediocre and limited when encapsulated in conventional cholesterol liposomes, mainly ascribed to poor penetration and immunosuppressive tumor microenvironment (TME) caused by tumor stroma cells, especially cancer-associated fibroblasts (CAFs). Many studies have attempted to address these problems but trapped into the common dilemma of excessively complicated formulation strategies at the expense of druggability as well as clinical translational feasibility. To better address the discrepancy, ginsenoside Rg3 was utilized to substitute cholesterol to develop a multifunctional DTX-loaded Rg3 liposome (Rg3-Lp/DTX). The obtained Rg3-Lp/DTX was proved to be preferentially uptake by 4T1 cells and accumulate more at tumor site via the interaction between the glycosyl moiety of Rg3 exposed on liposome surface and glucose transporter1 (Glut1) overexpressed on tumor cells. After reaching tumor site, Rg3 was shown to reverse the activated CAFs to the resting stage and attenuate the dense stroma barrier by suppressing secretion of TGF-β from tumor cells and regulating TGF-β/Smad signaling. Therefore, reduced levels of CAFs and collagens were found in TME after incorporation of Rg3, inducing enhanced penetration of Rg3-Lp/DTX in the tumor and reversed immune system which can detect and neutralize tumor cells. Compared with wooden cholesterol liposomes, the smart and versatile Rg3-Lp/DTX could significantly improve the anti-tumor effect of DTX, providing a promising approach for TNBC therapy with excellent therapeutic efficacy and simple preparation process.
Collapse
|
6
|
Gong F, Wang Z, Mo R, Wang Y, Su J, Li X, Omonova CTQ, Khamis AM, Zhang Q, Dong M, Su Z. Nano-sponge-like liposomes remove cholesterol crystals for antiatherosclerosis. J Control Release 2022; 349:940-953. [PMID: 35870569 DOI: 10.1016/j.jconrel.2022.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/25/2022] [Accepted: 07/18/2022] [Indexed: 10/15/2022]
Abstract
Atherosclerotic cardiovascular diseases remain the leading causes of morbidity and mortality worldwide. Cholesterol crystals in atherosclerotic plaques play an essential role in atherosclerosis progression. However, no clinical drugs have been used for removing cholesterol crystals from plaque to counter atherosclerosis. Previous studies identified the hydrophobic domain of lipid bilayer in liposomes acted as sinks for solubilizing hydrophobic cholesterol. Moreover, adjusting the composition of the lipid bilayer in liposomes can enhance its hydrophobic molecule loading capacity. Therefore, in this study, ginsenosides Rb1 (Rb1), one of main active components of ginseng which has a similar structure to cholesterol, is anchored into soy phospholipids bilayer with its hydrophobic region to prepare nano-sponge-like liposomes (Rb1-LPs), aiming to amplify the solubilization of cholesterol in lipid bilayer. For targeting delivery to atherosclerotic plaques, Annexin V (AnxV), a protein that can specifically recognize phosphatidylserine upregulated in atherosclerotic plaques, is applied to decorate the surface of Rb1-LPs by click reaction to obtain the final preparation of AnxV-Rb1-LPs. The in vitro studies showed that incorporating Rb1 into lipid bilayer remarkably increased the affinity of the lipid bilayer to free cholesterol and the solubilization of cholesterol crystals. Additionally, nano-sponge-like liposomes could efficiently reduce the accumulation of cholesterol crystals and improve cholesterol efflux, finally inhibiting inflammation and apoptosis in cholesterol-laden cells. Furthermore, AnxV-Rb1-LPs could efficiently accumulate in atherosclerotic plaques after intravenous injection, exert nano-sponge-like functions to remove intra- and extracellular cholesterol crystals, ultimately alleviating inflammation and apoptosis in atherosclerotic plaques for antiatherosclerosis. Therefore, AnxV-Rb1-LPs provide a potential strategy for removing cholesterol crystals in atherosclerotic plaques and can be further utilized in other diseases with excessive cholesterol accumulation.
Collapse
Affiliation(s)
- Fanglin Gong
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zibin Wang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Rui Mo
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yutong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jin Su
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xianglong Li
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Charos Tuychi Qizi Omonova
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Amari Mohamed Khamis
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qing Zhang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, PR China.
| | - Mei Dong
- Jiangsu Provincial Enginerring Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Zhigui Su
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
7
|
Ke Y, Huang L, Song Y, Liu Z, Liang L, Wang L, Wang T. Preparation and pharmacological effects of minor ginsenoside nanoparticles: a review. Front Pharmacol 2022; 13:974274. [PMID: 36003522 PMCID: PMC9393412 DOI: 10.3389/fphar.2022.974274] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Ginseng (Panax ginseng) is a perennial herbaceous plant belonging to Panax genus of Araliaceae. Ginsenosides are a kind of important compounds in ginseng and minor ginsenosides are secondary metabolic derivatives of ginsenosides. Studies have shown that minor ginsenosides have many pharmacological effects, such as antioxidant, anti-tumor, anti-platelet aggregation, and neuroprotective effects. However, the therapeutic effects of minor ginsenosides are limited due to poor solubility in water, short half-life, and poor targeting accuracy. In recent years, to improve the application efficiency, the research on the nanocrystallization of minor ginsenosides have attracted extensive attention from researchers. This review focuses on the classification, preparation methods, pharmacological effects, and action mechanisms of minor ginsenoside nanoparticles, as well as existing problems and future direction of relevant research, which provides a reference for the in-depth research of minor ginsenoside nanoparticles.
Collapse
Affiliation(s)
- Yue Ke
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Lei Huang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Yu Song
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Zhenxin Liu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Linshuang Liang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Linmao Wang
- Department of Thoracic Surgery, The First People’s Hospital of Yancheng, Affiliated Hospital 4 of Nantong University, Yancheng, China
- *Correspondence: Taoyun Wang, ; Linmao Wang,
| | - Taoyun Wang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
- *Correspondence: Taoyun Wang, ; Linmao Wang,
| |
Collapse
|
8
|
Tang L, He S, Yin Y, Li J, Xiao Q, Wang R, Gao L, Wang W. Combining nanotechnology with the multifunctional roles of neutrophils against cancer and inflammatory disease. NANOSCALE 2022; 14:1621-1645. [PMID: 35079756 DOI: 10.1039/d1nr07725b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neutrophils, the most abundant leukocytes in humans, play a crucial role in acute inflammation during infection and tumorigenesis. Neutrophils are the major types of cells recruited to the inflammation sites induced by pathogens, exhibiting great homing ability towards inflammatory disorders and tumor sites. Therefore, a neutrophil-based drug delivery system (NDDS) has become a promising platform for anti-cancer and anti-inflammatory treatment. Recent decades have witnessed the huge progress of applying nanomaterials in drug delivery. Nanomaterials are regarded as innovative components to enrich the field of neutrophil-based therapies due to their unique physiochemical characteristics. In this review, the latest advancement of combining diverse nanomaterials with an NDDS for cancer and inflammatory disease treatment will be summarized. It is discussed how nanomaterials empower the therapeutic area of an NDDS and how an NDDS circumvents the limitations of nanomaterials. Moreover, based on the finding that neutrophils are closely involved in the progression of cancer and inflammatory diseases, emerging therapeutic strategies that target neutrophils will be outlined. Finally, as neutrophils were demonstrated to play a central role in the immunopathology of COVID-19, which causes necroinflammation that is responsible for the cytokine storm and sepsis during coronavirus infections, novel therapeutic approaches that anchor neutrophils against the pathological consequences related to COVID-19 will be highlighted as well.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Jing Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Qiaqia Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Ruotong Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Lijun Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| |
Collapse
|
9
|
Wu J, Chen G, Jia Y, Ji C, Wang Y, Zhou Y, Leblanc RM, Peng Z. Carbon dot composites for bioapplications: a review. J Mater Chem B 2022; 10:843-869. [DOI: 10.1039/d1tb02446a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advancements in the synthesis of carbon dot composites and their applications in biomedical fields (bioimaging, drug delivery and biosensing) have been carefully summarized. The current challenges and future trends of CD composites in this field have also been discussed.
Collapse
Affiliation(s)
- Jiajia Wu
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Gonglin Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Yinnong Jia
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Chunyu Ji
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Yuting Wang
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Roger M. Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Zhili Peng
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
10
|
Wang H, Zheng Y, Sun Q, Zhang Z, Zhao M, Peng C, Shi S. Ginsenosides emerging as both bifunctional drugs and nanocarriers for enhanced antitumor therapies. J Nanobiotechnology 2021; 19:322. [PMID: 34654430 PMCID: PMC8518152 DOI: 10.1186/s12951-021-01062-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Ginsenosides, the main components isolated from Panax ginseng, can play a therapeutic role by inducing tumor cell apoptosis and reducing proliferation, invasion, metastasis; by enhancing immune regulation; and by reversing tumor cell multidrug resistance. However, clinical applications have been limited because of ginsenosides' physical and chemical properties such as low solubility and poor stability, as well as their short half-life, easy elimination, degradation, and other pharmacokinetic properties in vivo. In recent years, developing a ginsenoside delivery system for bifunctional drugs or carriers has attracted much attention from researchers. To create a precise treatment strategy for cancer, a variety of nano delivery systems and preparation technologies based on ginsenosides have been conducted (e.g., polymer nanoparticles [NPs], liposomes, micelles, microemulsions, protein NPs, metals and inorganic NPs, biomimetic NPs). It is desirable to design a targeted delivery system to achieve antitumor efficacy that can not only cross various barriers but also can enhance immune regulation, eventually converting to a clinical application. Therefore, this review focused on the latest research about delivery systems encapsulated or modified with ginsenosides, and unification of medicines and excipients based on ginsenosides for improving drug bioavailability and targeting ability. In addition, challenges and new treatment methods were discussed to support the development of these new tumor therapeutic agents for use in clinical treatment.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|