1
|
Huang Q, Liu Z, Yu Y, Rong Z, Wang P, Wang S, Wu H, Yan X, Cho WC, Mu T, Li J, Zhao J, Qiu M, Hou Y, Li X. Prediction of response to neoadjuvant chemo-immunotherapy in patients with esophageal squamous cell carcinoma by a rapid breath test. Br J Cancer 2024; 130:694-700. [PMID: 38177659 PMCID: PMC10876947 DOI: 10.1038/s41416-023-02547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Neoadjuvant chemo-immunotherapy combination has shown remarkable advances in the management of esophageal squamous cell carcinoma (ESCC). However, the identification of a reliable biomarker for predicting the response to this chemo-immunotherapy regimen remains elusive. While computed tomography (CT) is widely utilized for response evaluation, its inherent limitations in terms of accuracy are well recognized. Therefore, in this study, we present a novel technique to predict the response of ESCC patients before receiving chemo-immunotherapy by testing volatile organic compounds (VOCs) in exhaled breath. METHODS This study employed a prospective-specimen-collection, retrospective-blinded-evaluation design. Patients' baseline breath samples were collected and analyzed using high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS). Subsequently, patients were categorized as responders or non-responders based on the evaluation of therapeutic response using pathology (for patients who underwent surgery) or CT images (for patients who did not receive surgery). RESULTS A total of 133 patients were included in this study, with 91 responders who achieved either a complete response (CR) or a partial response (PR), and 42 non-responders who had stable disease (SD) or progressive disease (PD). Among 83 participants who underwent both evaluations with CT and pathology, the paired t-test revealed significant differences between the two methods (p < 0.05). For the breath test prediction model using breath test data from all participants, the validation set demonstrated mean area under the curve (AUC) of 0.86 ± 0.06. For 83 patients with pathological reports, the breath test achieved mean AUC of 0.845 ± 0.123. CONCLUSIONS Since CT has inherent weakness in hollow organ assessment and no other ideal biomarker has been found, our study provided a noninvasive, feasible, and inexpensive tool that could precisely predict ESCC patients' response to neoadjuvant chemo-immunotherapy combination using breath test based on HPPI-TOFMS.
Collapse
Affiliation(s)
- Qi Huang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Zheng Liu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
| | - Yipei Yu
- Department of Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Zhiwei Rong
- Department of Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Peiyu Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
| | - Shaodong Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Hao Wu
- Department of Thoracic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Xiang Yan
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Teng Mu
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Jilun Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Jia Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China.
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing, 100074, China.
| | - Yan Hou
- Department of Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| | - Xiangnan Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
2
|
Dedecker H, Teuwen LA, Vandamme T, Domen A, Prenen H. The role of Immunotherapy in esophageal and gastric cancer. Clin Colorectal Cancer 2023; 22:175-182. [PMID: 37005190 DOI: 10.1016/j.clcc.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Upper gastrointestinal tract tumors historically have a poor prognosis. The decision to treat esophageal or gastric cancers by surgery, radiotherapy, systemic therapy, or a combination of these treatment modalities should always be discussed multidisciplinary. The introduction of immunotherapy has drastically transformed the treatment landscape of multiple solid malignancies. Emerging data from early and late phase clinical trials suggests that the use of immunotherapies that target immune checkpoint proteins such as PD-1/PD-L1 result in superior overall survival in advanced, metastatic, or recurrent esophageal and gastric cancer, whether or not with specific molecular characteristics such as PD-L1 expression level or microsatellite instability. This review offers an overview of the most recent advances in the field of immunotherapy treatment in esophageal and gastric cancer.
Collapse
Affiliation(s)
- Hans Dedecker
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), 2650, Edegem, Belgium
| | - Laure-Anne Teuwen
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), 2650, Edegem, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk, Belgium
| | - Timon Vandamme
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), 2650, Edegem, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk, Belgium
| | - Andreas Domen
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), 2650, Edegem, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk, Belgium
| | - Hans Prenen
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), 2650, Edegem, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk, Belgium.
| |
Collapse
|