1
|
Li Z, Chen L, Fei F, Wang W, Yang L, Wang Y, Cheng H, Xu Y, Xu C, Wang S, Gu Y, Han F, Chen Z, Wang Y. Enriched Environment Reduces Seizure Susceptibility via Entorhinal Cortex Circuit Augmented Adult Neurogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410927. [PMID: 39435757 PMCID: PMC11633471 DOI: 10.1002/advs.202410927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Enriched environment (EE), characterized by multi-sensory stimulation, represents a non-invasive alternative for alleviating epileptic seizures. However, the mechanism by which EE exerts its therapeutic impact remains incompletely understood. Here, it is elucidated that EE mitigates seizure susceptibility through the augmentation of adult neurogenesis within the entorhinal cortex (EC) circuit. A substantial upregulation of adult hippocampal neurogenesis concomitant with a notable reduction in seizure susceptibility has been found following exposure to EE. EE-enhanced adult-born dentate granule cells (abDGCs) are functionally activated during seizure events. Importantly, the selective activation of abDGCs mimics the anti-seizure effects observed with EE, while their inhibition negates these effects. Further, whole-brain c-Fos mapping demonstrates increased activity in DG-projecting EC CaMKIIα+ neurons in response to EE. Crucially, EC CaMKIIα+ neurons exert bidirectional modulation over the proliferation and maturation of abDGCs that can activate local GABAergic interneurons; thus, they are essential components for the anti-seizure effects mediated by EE. Collectively, this study provides compelling evidence regarding the circuit mechanisms underlying the effects of EE treatment on epileptic seizures, shedding light on the involvement of the EC-DG circuit in augmenting the functionality of abDGCs. This may help for the translational application of EE for epilepsy management.
Collapse
Affiliation(s)
- Zhongxia Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
- Zhejiang Rehabilitation Medical Center DepartmentThe Third Affiliated HospitalZhejiang Chinese Medical UniversityHangzhouZhejiang310061China
| | - Liying Chen
- Department of PharmacySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016China
- Epilepsy CenterThe Second Affiliated Hospital & School of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310027China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Wenqi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Yu Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Heming Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Yingwei Xu
- Epilepsy CenterThe Second Affiliated Hospital & School of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310027China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Shuang Wang
- Epilepsy CenterThe Second Affiliated Hospital & School of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310027China
| | - Yan Gu
- Epilepsy CenterThe Second Affiliated Hospital & School of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310027China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular MedicineDrug Target and Drug Discovery CenterSchool of PharmacyNanjing Medical UniversityNanjingJiangsu211166China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
- Epilepsy CenterThe Second Affiliated Hospital & School of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310027China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
- Zhejiang Rehabilitation Medical Center DepartmentThe Third Affiliated HospitalZhejiang Chinese Medical UniversityHangzhouZhejiang310061China
- Epilepsy CenterThe Second Affiliated Hospital & School of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310027China
| |
Collapse
|
2
|
Adeyeye A, Mirsadeghi S, Gutierrez M, Hsieh J. Integrating adult neurogenesis and human brain organoid models to advance epilepsy and associated behavioral research. Epilepsy Behav 2024; 159:109982. [PMID: 39181108 DOI: 10.1016/j.yebeh.2024.109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Epilepsy is a chronic neurological disorder characterized by recurring, unprovoked seizures, asymmetrical electroencephalogram patterns, and other pathological abnormalities. The hippocampus plays a pivotal role in learning, memory consolidation, attentional control, and pattern separation. Impairment of hippocampal network circuitry can induce long-term cognitive and memory dysfunction. In this review, we discuss how aberrant adult neurogenesis and plasticity collectively alter the network balance for information processing within the hippocampal neural network. Subsequently, we explore the potential of human brain organoids integrated into microelectrode array technology as an electrophysiological tool. We also discuss the utilization of a closed-loop platform that connects the brain organoid to a mobile robot in a virtual environment. While in vivo models provide valuable insights into some aspects of epileptogenesis, such as the impact of adult neurogenesis on hippocampal function, brain organoids are indispensable for comprehensively studying epileptogenesis involving genetic mutations that underlie human epilepsy. More importantly, a combinational approach using brain organoids on MEA paves the way for studying impaired plasticity and abnormal information processing within epileptic neural networks. This innovative in vitro approach may provide a new pathway for investigating the behavioral outcomes of aberrant neural networks when integrated with a mobile robot, closing the loop between the neural network in brain organoids and the mobile robot. In this review, we aim to discuss the use of each model to study the behavioral changes in epilepsy and highlight the benefits of both in vivo and in vitro models for understanding the behavioral aspects of epilepsy.
Collapse
Affiliation(s)
- Adebayo Adeyeye
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA; Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Sara Mirsadeghi
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA; Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Maryfer Gutierrez
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA; Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Jenny Hsieh
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA; Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
3
|
Song Y, Gao M, Wei B, Huang X, Yang Z, Zou J, Guo Y. Mitochondrial ferritin alleviates ferroptosis in a kainic acid-induced mouse epilepsy model by regulating iron homeostasis: Involvement of nuclear factor erythroid 2-related factor 2. CNS Neurosci Ther 2024; 30:e14663. [PMID: 38439636 PMCID: PMC10912846 DOI: 10.1111/cns.14663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Epilepsy is a widespread and chronic disease of the central nervous system caused by a variety of factors. Mitochondrial ferritin (FtMt) refers to ferritin located within the mitochondria that may protect neurons against oxidative stress by binding excess free iron ions in the cytoplasm. However, the potential role of FtMt in epilepsy remains unclear. We aimed to investigate whether FtMt and its related mechanisms can regulate epilepsy by modulating ferroptosis. METHODS Three weeks after injection of adeno-associated virus (AAV) in the skull of adult male C57BL/6 mice, kainic acid (KA) was injected into the hippocampus to induce seizures. Primary hippocampal neurons were transfected with siRNA using a glutamate-mediated epilepsy model. After specific treatments, Western blot analysis, immunofluorescence, EEG recording, transmission electron microscopy, iron staining, silver staining, and Nissl staining were performed. RESULTS At different time points after KA injection, the expression of FtMt protein in the hippocampus of mice showed varying degrees of increase. Knockdown of the FtMt gene by AAV resulted in an increase in intracellular free iron levels and a decrease in the function of iron transport-related proteins, promoting neuronal ferroptosis and exacerbating epileptic brain activity in the hippocampus of seizure mice. Additionally, increasing the expression level of FtMt protein was achieved by AAV-mediated upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) gene in the hippocampus of seizure mice. CONCLUSIONS In epilepsy, Nrf2 modulates ferroptosis by involving the expression of FtMt and may be a potential therapeutic mechanism of neuronal injury after epilepsy. Targeting this relevant process for treatment may be a therapeutic strategy to prevent epilepsy.
Collapse
Affiliation(s)
- Yu Song
- Department of Functional Neurosurgery, Neurosurgery Center, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Mengjiao Gao
- Department of Functional Neurosurgery, Neurosurgery Center, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Boyang Wei
- Department of Cerebrovascular Surgery, Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | | | - Zeyu Yang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSun Yat‐sen UniversityGuangzhouChina
| | - Junjie Zou
- Department of Functional Neurosurgery, Neurosurgery Center, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yanwu Guo
- Department of Functional Neurosurgery, Neurosurgery Center, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
4
|
Zhang S, Xie S, Zheng Y, Chen Z, Xu C. Current advances in rodent drug-resistant temporal lobe epilepsy models: Hints from laboratory studies. Neurochem Int 2024; 174:105699. [PMID: 38382810 DOI: 10.1016/j.neuint.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Anti-seizure drugs (ASDs) are the first choice for the treatment of epilepsy, but there is still one-third of patients with epilepsy (PWEs) who are resistant to two or more appropriately chosen ASDs, named drug-resistant epilepsy (DRE). Temporal lobe epilepsy (TLE), a common type of epilepsy usually associated with hippocampal sclerosis (HS), shares the highest proportion of drug resistance (approximately 70%). In view of the key role of the temporal lobe in memory, emotion, and other physiological functions, patients with drug-resistant temporal lobe epilepsy (DR-TLE) are often accompanied by serious complications, and surgical procedures also yield extra considerations. The exact mechanisms for the genesis of DR-TLE remain unillustrated, which makes it hard to manage patients with DR-TLE in clinical practice. Animal models of DR-TLE play an irreplaceable role in both understanding the mechanism and searching for new therapeutic strategies or drugs. In this review article, we systematically summarized different types of current DR-TLE models, and then recent advances in mechanism investigations obtained in these models were presented, especially with the development of advanced experimental techniques and tools. We are deeply encouraged that novel strategies show great therapeutic potential in those DR-TLE models. Based on the big steps reached from the bench, a new light has been shed on the precise management of DR-TLE.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shengyang Xie
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yang Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|