1
|
Kang J, Lee H, Yu S, Lee M, Kim HJ, Kwon R, Kim S, Fond G, Boyer L, Rahmati M, Koyanagi A, Smith L, Nehs CJ, Kim MS, Sánchez GFL, Dragioti E, Kim T, Yon DK. Effects and safety of transcranial direct current stimulation on multiple health outcomes: an umbrella review of randomized clinical trials. Mol Psychiatry 2024:10.1038/s41380-024-02624-3. [PMID: 38816583 DOI: 10.1038/s41380-024-02624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Transcranial direct current stimulation (tDCS), which delivers a direct current to the brain, emerged as a non-invasive potential therapeutic in treating a range of neurological and neuropsychiatric disorders. However, a comprehensive quantitative evidence synthesis on the effects of tDCS on a broad range of mental illnesses is lacking. Here, we systematically assess the certainty of the effects and safety of tDCS on several health outcomes using an umbrella review of randomized controlled trials (RCTs). The methodological quality of each included original meta-analysis was assessed by the A Measurement Tool for Assessing Systematic Reviews 2 (AMSTAR2), and the certainty of the evidence for each effect was evaluated with Grading of Recommendations, Assessment, Development, and Evaluation (GRADE). We followed an a priori protocol (PROSPERO CRD42023458700). We identified 15 meta-analyses of RCTs (AMSTAR 2; high 3, moderate 3, and low 9) that included 282 original articles, covering 22 unique health endpoints across 22 countries and six continents. From meta-analyses of RCTs supported by very low to high certainty of evidence, it was found that tDCS improved symptoms related to post-stroke, including post-stroke depression scale score (equivalent standardized mean difference [eSMD], 1.61 [95% confidence level, 0.72-2.50]; GRADE=moderate), activities of daily living independence (7.04 [3.41-10.67]; GRADE=high), motor recovery of upper and lower extremity (upper extremity: 0.15 [0.06-0.24], GRADE=high; lower extremity: 0.10 [0.03-0.16], GRADE=high), swallowing performance (GRADE=low), and spasticity (GRADE=moderate). In addition, tDCS had treatment effects on symptoms of several neurological and neuropsychiatric disorders, including obsessive-compulsive disorder (0.81 [0.44-1.18]; GRADE=high), pain in fibromyalgia (GRADE=low), disease of consciousness (GRADE=low), insight score (GRADE=moderate) and working memory (0.34 [0.01-0.67]; GRADE=high) in schizophrenia, migraine-related pain (-1.52 [-2.91 to -0.13]; GRADE=high), attention-deficit/hyperactivity disorder (reduction in overall symptom severity: 0.24 [0.04-0.45], GRADE=low; reduction in inattention: 0.56 [0.02-1.11], GRADE=low; reduction in impulsivity: 0.28 [0.04-0.51], GRADE=low), depression (GRADE=low), cerebellar ataxia (GRADE=low), and pain (GRADE=very low). Importantly, tDCS induced an increased number of reported cases of treatment-emergent mania or hypomania (0.88 [0.62-1.13]; GRADE=moderate). We found varied levels of evidence for the effects of tDCS with multiple neurological and neuropsychiatric conditions, from very low to high certainty of evidence. tDCS was effective for people with stroke, obsessive-compulsive disorder, fibromyalgia, disease of consciousness, schizophrenia, migraine, attention-deficit/hyperactivity disorder, depression, cerebellar ataxia, and pain. Therefore, these findings suggest the benefit of tDCS for several neurological and neuropsychiatric disorders; however, further studies are needed to understand the underlying mechanism and optimize its therapeutic potential.
Collapse
Affiliation(s)
- Jiseung Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Hyeri Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Seungyeong Yu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Myeongcheol Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Hyeon Jin Kim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Rosie Kwon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Sunyoung Kim
- Department of Family Medicine, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Guillaume Fond
- Assistance Publique-Hopitaux de Marseille, Research Centre on Health Services and Quality of Life, Aix Marseille University, Marseille, France
| | - Laurent Boyer
- Assistance Publique-Hopitaux de Marseille, Research Centre on Health Services and Quality of Life, Aix Marseille University, Marseille, France
| | - Masoud Rahmati
- Assistance Publique-Hopitaux de Marseille, Research Centre on Health Services and Quality of Life, Aix Marseille University, Marseille, France
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Deu, Barcelona, Spain
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Christa J Nehs
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Min Seo Kim
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Guillermo F López Sánchez
- Division of Preventive Medicine and Public Health, Department of Public Health Sciences, School of Medicine, University of Murcia, Murcia, Spain
| | - Elena Dragioti
- Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Research Laboratory Psychology of Patients, Families, and Health Professionals, Department of Nursing, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea.
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea.
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea.
- Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea.
| |
Collapse
|
2
|
Arora T, Liu J, Mohan A, Li X, O'laughlin K, Bennett T, Nemunaitis G, Bethoux F, Pundik S, Forrest G, Kirshblum S, Kilgore K, Bryden A, Kristi Henzel M, Wang X, Baker K, Brihmat N, Bayram M, Plow EB. Corticospinal inhibition investigated in relation to upper extremity motor function in cervical spinal cord injury. Clin Neurophysiol 2024; 161:188-197. [PMID: 38520799 DOI: 10.1016/j.clinph.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/29/2023] [Accepted: 02/22/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVE Corticospinal inhibitory mechanisms are relevant to functional recovery but remain poorly understood after spinal cord injury (SCI). Post-injury characteristics of contralateral silent period (CSP), a measure of corticospinal inhibition evaluated using transcranial magnetic stimulation (TMS), is inconsistent in literature. We envisioned that investigating CSP across muscles with varying degrees of weakness may be a reasonable approach to resolve inconsistencies and elucidate the relevance of corticospinal inhibition for upper extremity function following SCI. METHODS We studied 27 adults with chronic C1-C8 SCI (age 48.8 ± 16.1 years, 3 females) and 16 able-bodied participants (age 33.2 ± 11.8 years, 9 females). CSP characteristics were assessed across biceps (muscle power = 3-5) and triceps (muscle power = 1-3) representing stronger and weaker muscles, respectively. We assessed functional abilities using the Capabilities of the Upper Extremity Test (CUE-T). RESULTS Participants with chronic SCI had prolonged CSPs for biceps but delayed and diminished CSPs for triceps compared to able-bodied participants. Early-onset CSPs for biceps and longer, deeper CSPs for triceps correlated with better CUE-T scores. CONCLUSIONS Corticospinal inhibition is pronounced for stronger biceps but diminished for weaker triceps muscle in SCI indicating innervation relative to the level of injury matters in the study of CSP. SIGNIFICANCE Nevertheless, corticospinal inhibition or CSP holds relevance for upper extremity function following SCI.
Collapse
Affiliation(s)
- Tarun Arora
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, OH, USA; Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Norway
| | - Jia Liu
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, OH, USA
| | - Akhil Mohan
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, OH, USA
| | - Xin Li
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, OH, USA
| | - Kyle O'laughlin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, OH, USA
| | - Teale Bennett
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, OH, USA
| | - Gregory Nemunaitis
- Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic Foundation, OH, USA
| | - Francois Bethoux
- Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic Foundation, OH, USA
| | - Svetlana Pundik
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Ohio, USA; Department of Neurology, Case Western Reserve University School of Medicine, Cleveland OH, USA
| | - Gail Forrest
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, New Jersey, USA
| | - Steven Kirshblum
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, New Jersey, USA; Kessler Institute for Rehabilitation, West Orange, New Jersey, USA; Kessler Foundation, West Orange, New Jersey, USA
| | - Kevin Kilgore
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Ohio, USA; Department of Physical Medicine and Rehabilitation, MetroHealth Center for Rehabilitation Research, OH, USA; Institute for Functional Restoration, Case Western Reserve University, Cleveland, OH, USA
| | - Anne Bryden
- Department of Physical Medicine and Rehabilitation, MetroHealth Center for Rehabilitation Research, OH, USA; Institute for Functional Restoration, Case Western Reserve University, Cleveland, OH, USA
| | - M Kristi Henzel
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Ohio, USA; Department of Physical Medicine and Rehabilitation, Case Western Reserve University School of Medicine, Cleveland OH, USA
| | - Xiaofeng Wang
- Department of Quantitative Health Sciences, Cleveland Clinic Foundation, OH, USA
| | - Kelsey Baker
- Department of Neuroscience, School of Medicine, University of Texas RioGrande Valley, RioGrande Valley, TX, USA
| | - Nabila Brihmat
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, New Jersey, USA
| | - Mehmed Bayram
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, New Jersey, USA
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, OH, USA; Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic Foundation, OH, USA; Cleveland Clinic Rehabilitation Hospitals, Cleveland, OH, USA.
| |
Collapse
|