1
|
Li Y, Feng X, Chen X, Yang S, Zhao Z, Chen Y, Li SC. PlasmidScope: a comprehensive plasmid database with rich annotations and online analytical tools. Nucleic Acids Res 2024:gkae930. [PMID: 39441081 DOI: 10.1093/nar/gkae930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Plasmids are extrachromosomal genetic molecules that replicate independent of chromosomes in bacteria, archaea, and eukaryotic organisms. They contain diverse functional elements and are capable of horizontal gene transfer among hosts. While existing plasmid databases have archived plasmid sequences isolated from individual microorganisms or natural environments, there is a need for a comprehensive, standardized, and annotated plasmid database to address the vast accumulation of plasmid sequences. Here, we propose PlasmidScope (https://plasmid.deepomics.org/), a plasmid database offering comprehensive annotations, automated online analysis, and interactive visualization. PlasmidScope harbors a substantial collection of 852 600 plasmids curated from 10 repositories. Along with consolidated background information, PlasmidScope utilizes 12 state-of-the-art tools and provides comprehensive annotations for the curated plasmids, covering genome completeness, topological structure, mobility, host source, tRNA, tmRNA, signal peptides, transmembrane proteins and CRISPR/Cas systems. PlasmidScope offers diverse functional annotations for its 25 231 059 predicted genes from 9 databases as well as corresponding protein structures predicted by ESMFold. In addition, PlasmidScope integrates online analytical modules and interactive visualization, empowering researchers to delve into the complexities of plasmids.
Collapse
Affiliation(s)
- Yinhu Li
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xikang Feng
- School of Software, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute, Northwestern Polytechnical University, Shenzhen 518063, China
| | - Xuhua Chen
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuo Yang
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Zicheng Zhao
- OmicLab Limited, Science Park East Avenue, Hong Kong Science Park, Hong Kong, China
| | - Yu Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
2
|
Siedentop B, Losa Mediavilla C, Kouyos RD, Bonhoeffer S, Chabas H. Assessing the Role of Bacterial Innate and Adaptive Immunity as Barriers to Conjugative Plasmids. Mol Biol Evol 2024; 41:msae207. [PMID: 39382385 DOI: 10.1093/molbev/msae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024] Open
Abstract
Plasmids are ubiquitous mobile genetic elements, that can be either costly or beneficial for their bacterial host. In response to constant viral threat, bacteria have evolved various immune systems, such as the prevalent restriction modification (innate immunity) and CRISPR-Cas systems (adaptive immunity). At the molecular level, both systems also target plasmids, but the consequences of these interactions for plasmid spread are unclear. Using a modeling approach, we show that restriction modification and CRISPR-Cas are effective as barriers against the spread of costly plasmids, but not against beneficial ones. Consequently, bacteria can profit from the selective advantages that beneficial plasmids confer even in the presence of bacterial immunity. While plasmids that are costly for bacteria may persist in the bacterial population for a certain period, restriction modification and CRISPR-Cas can eventually drive them to extinction. Finally, we demonstrate that the selection pressure imposed by bacterial immunity on costly plasmids can be circumvented through a diversity of escape mechanisms and highlight how plasmid carriage might be common despite bacterial immunity. In summary, the population-level outcome of interactions between plasmids and defense systems in a bacterial population is closely tied to plasmid cost: Beneficial plasmids can persist at high prevalence in bacterial populations despite defense systems, while costly plasmids may face extinction.
Collapse
Affiliation(s)
- Berit Siedentop
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | | - Roger D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Hélène Chabas
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Huang MH, Zhang DF, Wang HC, He W, Song XR. Description of Rhodobacter flavimaris sp. nov. and proposal of the genera Paenirhodobacter, Sedimentimonas, and Sinirhodobacter as synonyms of Rhodobacter. Int J Syst Evol Microbiol 2024; 74. [PMID: 39365647 DOI: 10.1099/ijsem.0.006540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Two Gram-stain-negative, aerobic, ovoid to short rod-shaped bacterial strains, designated as WL0062T and WL0115, were isolated from coastal zone of the Yellow Sea, Jiangsu Province, PR China, respectively. Strain WL0062T grew optimally at 28 °C, pH 7.0-8.0 and with 1.0-3.0% (w/v) NaCl. Strain WL0115 grew optimally at 28 °C, pH 6.0-7.0 and with 1.0-3.0% (w/v) NaCl. In the bac120 tree, strains WL0062T and WL0115 clustered together with Sedimentimonas flavescens B57T. The respiratory quinone of both strains was ubiquinone-10. The major polar lipids of both strains were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, glycolipid, phosphatidylmonomethylethanolamine, and one unidentified polar lipid. The major fatty acids of strain WL0062T were summed features 8 (C18 : 1 ω6c and/or C18 : 1 ω7c). The major fatty acids of strain WL0115 were summed features 8 (C18 : 1 ω6c and/or C18 : 1 ω7c), C18 : 0, iso-C17 : 1 ω5c and C20 : 4 ω6/9/12/15c (arachidonic acid). The G+C content of genomic DNA of strains WL0062T and WL0115 was 64.0 mol% in both of them. Combined with the analysis of average nucleotide identity, average amino acid identity, and digital DNA-DNA hybridization, strain WL0062T represents a novel species of the genus Rhodobacter, for which the name Rhodobacter flavimaris sp. nov is proposed. The type strain is WL0062T (=MCCC 1K06014T=JCM 34676T=GDMCC 1.2427T). Strain WL0115 (=MCCC 1K07531=JCM 35568=GDMCC 1.3088) should belong to the same species as Sedimentimonas flavescens B57T. In addition, on the basis of phylogenomic relationship and phenotypical characteristics, the genera Paenirhodobacter, Sedimentimonas, and Sinirhodobacter are proposed as synonyms of Rhodobacter.
Collapse
Affiliation(s)
- Meng-Han Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, PR China
| | - Dao-Feng Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, PR China
| | - Hong-Chuan Wang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, PR China
| | - Wei He
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, PR China
| | - Xiao-Rui Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, PR China
| |
Collapse
|
4
|
Kloub L, Gosselin S, Graf J, Gogarten JP, Bansal MS. Investigating Additive and Replacing Horizontal Gene Transfers Using Phylogenies and Whole Genomes. Genome Biol Evol 2024; 16:evae180. [PMID: 39163267 PMCID: PMC11375855 DOI: 10.1093/gbe/evae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Horizontal gene transfer (HGT) is fundamental to microbial evolution and adaptation. When a gene is horizontally transferred, it may either add itself as a new gene to the recipient genome (possibly displacing nonhomologous genes) or replace an existing homologous gene. Currently, studies do not usually distinguish between "additive" and "replacing" HGTs, and their relative frequencies, integration mechanisms, and specific roles in microbial evolution are poorly understood. In this work, we develop a novel computational framework for large-scale classification of HGTs as either additive or replacing. Our framework leverages recently developed phylogenetic approaches for HGT detection and classifies HGTs inferred between terminal edges based on gene orderings along genomes and phylogenetic relationships between the microbial species under consideration. The resulting method, called DART, is highly customizable and scalable and can classify a large fraction of inferred HGTs with high confidence and statistical support. Our application of DART to a large dataset of thousands of gene families from 103 Aeromonas genomes provides insights into the relative frequencies, functional biases, and integration mechanisms of additive and replacing HGTs. Among other results, we find that (i) the relative frequency of additive HGT increases with increasing phylogenetic distance, (ii) replacing HGT dominates at shorter phylogenetic distances, (iii) additive and replacing HGTs have strikingly different functional profiles, (iv) homologous recombination in flanking regions of a novel gene may be a frequent integration mechanism for additive HGT, and (v) phages and mobile genetic elements likely play an important role in facilitating additive HGT.
Collapse
Affiliation(s)
- Lina Kloub
- School of Computing, University of Connecticut, 371 Fairfield Way, Unit 4155, Storrs, CT 06269-4155, USA
| | - Sophia Gosselin
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit 3125, Storrs, CT 06269-3125, USA
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit 3125, Storrs, CT 06269-3125, USA
- Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI 96822, USA
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit 3125, Storrs, CT 06269-3125, USA
- The Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Mukul S Bansal
- School of Computing, University of Connecticut, 371 Fairfield Way, Unit 4155, Storrs, CT 06269-4155, USA
- The Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
5
|
Scales BS, Hassenrück C, Moldaenke L, Hassa J, Rückert-Reed C, Rummel C, Völkner C, Rynek R, Busche T, Kalinowski J, Jahnke A, Schmitt-Jansen M, Wendt-Potthoff K, Oberbeckmann S. Hunting for pigments in bacterial settlers of the Great Pacific Garbage Patch. Environ Microbiol 2024; 26:e16639. [PMID: 38899733 DOI: 10.1111/1462-2920.16639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
The Great Pacific Garbage Patch, a significant collection of plastic introduced by human activities, provides an ideal environment to study bacterial lifestyles on plastic substrates. We proposed that bacteria colonizing the floating plastic debris would develop strategies to deal with the ultraviolet-exposed substrate, such as the production of antioxidant pigments. We observed a variety of pigmentation in 67 strains that were directly cultivated from plastic pieces sampled from the Garbage Patch. The genomic analysis of four representative strains, each distinct in taxonomy, revealed multiple pathways for carotenoid production. These pathways include those that produce less common carotenoids and a cluster of photosynthetic genes. This cluster appears to originate from a potentially new species of the Rhodobacteraceae family. This represents the first report of an aerobic anoxygenic photoheterotrophic bacterium from plastic biofilms. Spectral analysis showed that the bacteria actively produce carotenoids, such as beta-carotene and beta-cryptoxanthin, and bacteriochlorophyll a. Furthermore, we discovered that the genetic ability to synthesize carotenoids is more common in plastic biofilms than in the surrounding water communities. Our findings suggest that plastic biofilms could be an overlooked source of bacteria-produced carotenoids, including rare forms. It also suggests that photoreactive molecules might play a crucial role in bacterial biofilm communities in surface water.
Collapse
Affiliation(s)
- Brittan S Scales
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Christiane Hassenrück
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Lynn Moldaenke
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Julia Hassa
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | | | - Christoph Rummel
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Corinna Völkner
- Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Robby Rynek
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Annika Jahnke
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | | | | | - Sonja Oberbeckmann
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| |
Collapse
|
6
|
Hahnke S, Berger M, Schlingloff A, Athale I, Wolf J, Neumann-Schaal M, Adenaya A, Poehlein A, Daniel R, Petersen J, Brinkhoff T. Roseobacter fucihabitans sp. nov., isolated from the brown alga Fucus spiralis. Int J Syst Evol Microbiol 2024; 74. [PMID: 38861315 DOI: 10.1099/ijsem.0.006403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
A Gram-negative, aerobic, pink-pigmented, and bacteriochlorophyll a-containing bacterial strain, designated B14T, was isolated from the macroalga Fucus spiralis sampled from the southern North Sea, Germany. Based on 16S rRNA gene sequences, species of the genera Roseobacter and Sulfitobacter were most closely related to strain B14T with sequence identities ranging from 98.15 % (Roseobacter denitrificans Och 114T) to 99.11 % (Roseobacter litoralis Och 149T), whereas Sulfitobacter mediterraneus CH-B427T exhibited 98.52 % sequence identity. Digital DNA-DNA hybridization and average nucleotide identity values between the genome of the novel strain and that of closely related Roseobacter and Sulfitobacter type strains were <20 % and <77 %, respectively. The novel strain contained ubiquinone-10 as the only respiratory quinone and C18 : 1 ω7c, C16 : 0, C18 : 0, C12 : 1 ω7c, C18 : 2 ω7,13c, and C10 : 0 3-OH as the major cellular fatty acids. The predominant polar lipids of strain B14T were phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol. The genome of strain B14T comprises a chromosome with a size of 4.5 Mbp, one chromid, and four plasmids. The genome contains the complete gene cluster for aerobic anoxygenic photosynthesis required for a photoheterotrophic lifestyle. The results of this study indicate that strain B14T (=DSM 116946T=LMG 33352T) represents a novel species of the genus Roseobacter for which the name Roseobacter fucihabitans sp. nov. is proposed.
Collapse
Affiliation(s)
- Sarah Hahnke
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Present address: Department of Human Medicine, University of Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Andrea Schlingloff
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Isha Athale
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Jacqueline Wolf
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Adenike Adenaya
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Jörn Petersen
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
7
|
Gomathinayagam S, Kodiveri Muthukaliannan G. Dynamics of antibiotic resistance genes in plasmids and bacteriophages. Crit Rev Microbiol 2024:1-10. [PMID: 38651513 DOI: 10.1080/1040841x.2024.2339262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
This brief review explores the intricate interplay between bacteriophages and plasmids in the context of antibiotic resistance gene (ARG) dissemination. Originating from studies in the late 1950s, the review traces the evolution of knowledge regarding extrachromosomal factors facilitating horizontal gene transfer and adaptation in bacteria. Analyzing the gene repertoires of plasmids and bacteriophages, the study highlights their contributions to bacterial evolution and adaptation. While plasmids encode essential and accessory genes influencing host characteristics, bacteriophages carry auxiliary metabolic genes (AMGs) that augment host metabolism. The debate on phages carrying ARGs is explored through a critical evaluation of various studies, revealing contrasting findings from researchers. Additionally, the review addresses the interplay between prophages and plasmids, underlining their similarities and divergences. Based on the available literature evidence, we conclude that plasmids generally encode ARGs while bacteriophages typically do not contain ARGs. But extra-chromosomaly present prophages with plasmid characteristics can encode and disseminate ARGs.
Collapse
|
8
|
Xu L, Yue XL, Li HZ, Jian SL, Shu WS, Cui L, Xu XW. Aerobic Anoxygenic Phototrophic Bacteria in the Marine Environments Revealed by Raman/Fluorescence-Guided Single-Cell Sorting and Targeted Metagenomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7087-7098. [PMID: 38651173 DOI: 10.1021/acs.est.4c02881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Aerobic anoxygenic phototrophic bacteria (AAPB) contribute profoundly to the global carbon cycle. However, most AAPB in marine environments are uncultured and at low abundance, hampering the recognition of their functions and molecular mechanisms. In this study, we developed a new culture-independent method to identify and sort AAPB using single-cell Raman/fluorescence spectroscopy. Characteristic Raman and fluorescent bands specific to bacteriochlorophyll a (Bchl a) in AAPB were determined by comparing multiple known AAPB with non-AAPB isolates. Using these spectroscopic biomarkers, AAPB in coastal seawater, pelagic seawater, and hydrothermal sediment samples were screened, sorted, and sequenced. 16S rRNA gene analysis and functional gene annotations of sorted cells revealed novel AAPB members and functional genes, including one species belonging to the genus Sphingomonas, two genera affiliated to classes Betaproteobacteria and Gammaproteobacteria, and function genes bchCDIX, pucC2, and pufL related to Bchl a biosynthesis and photosynthetic reaction center assembly. Metagenome-assembled genomes (MAGs) of sorted cells from pelagic seawater and deep-sea hydrothermal sediment belonged to Erythrobacter sanguineus that was considered as an AAPB and genus Sphingomonas, respectively. Moreover, multiple photosynthesis-related genes were annotated in both MAGs, and comparative genomic analysis revealed several exclusive genes involved in amino acid and inorganic ion metabolism and transport. This study employed a new single-cell spectroscopy method to detect AAPB, not only broadening the taxonomic and genetic contents of AAPB in marine environments but also revealing their genetic mechanisms at the single-genomic level.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, P. R. China
- Collge of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiao-Lan Yue
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, P. R. China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Hong-Zhe Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Shu-Ling Jian
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, P. R. China
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Wen-Sheng Shu
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou 510631, P. R. China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, P. R. China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
9
|
Jirasansawat K, Chiemchaisri W, Chiemchaisri C. Enhancement of sulfide removal and sulfur recovery in piggery wastewater via lighting-anaerobic digestion with bioaugmentation of phototrophic green sulfur bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13414-13425. [PMID: 38244164 DOI: 10.1007/s11356-024-31920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Anaerobic pig wastewater treatment commonly generates high sulfide concentrations in the treated wastewater. This study aims to apply phototrophic green sulfur bacteria (PGB) to promote sulfide removal in lighting-anaerobic digestion (lighting-AD) treating pig wastewater. Initially, batch AD tests of pig wastewater with/without PGB addition were carried out under dark (D) and light (L) conditions. The results showed that the lighting-AD with PGB gave a higher growth rate of PGB (0.056 h-1) and the highest COD/sulfide removals as compared to the dark-AD with PGB and lighting-AD solely. More experiments under various light intensities were performed in order to find an optimal intensity for PGB growth concurrently with metagenomic changes concerning treatment performance. It appeared that sulfide removal rates had increased as increasing light intensity up to 473 lx by giving the highest rate of 12.5 mg L-1 d-1 with the highest sulfur element content in the biomass. Contrastingly, many PGB species disappeared at 1350 lx exposure subsequently sharply decreasing the rate of sulfide removal. In sum, the application of low light intensities of 400-500 lx with bioaugmented PGB could promote PGB growth and activity in sulfide removal in pig wastewater in the lighting of the AD process.
Collapse
Affiliation(s)
- Kridsana Jirasansawat
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok, 10900, Thailand
| | - Wilai Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok, 10900, Thailand.
| | - Chart Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
10
|
Nishimura Y, Yamada K, Okazaki Y, Ogata H. DiGAlign: Versatile and Interactive Visualization of Sequence Alignment for Comparative Genomics. Microbes Environ 2024; 39:ME23061. [PMID: 38508742 PMCID: PMC10982109 DOI: 10.1264/jsme2.me23061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/08/2024] [Indexed: 03/22/2024] Open
Abstract
With the explosion of available genomic information, comparative genomics has become a central approach to understanding microbial ecology and evolution. We developed DiGAlign (https://www.genome.jp/digalign/), a web server that provides versatile functionality for comparative genomics with an intuitive interface. It allows the user to perform the highly customizable visualization of a synteny map by simply uploading nucleotide sequences of interest, ranging from a specific region to the whole genome landscape of microorganisms and viruses. DiGAlign will serve a wide range of biological researchers, particularly experimental biologists, with multifaceted features that allow the rapid characterization of genomic sequences of interest and the generation of a publication-ready figure.
Collapse
Affiliation(s)
- Yosuke Nishimura
- Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization (MRU), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237–0061, Japan
| | - Kohei Yamada
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611–0011, Japan
| | - Yusuke Okazaki
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611–0011, Japan
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611–0011, Japan
| |
Collapse
|
11
|
Degli Esposti M, Guerrero G, Rogel MA, Issotta F, Rojas-Villalobos C, Quatrini R, Martinez-Romero E. The phylogeny of Acetobacteraceae: photosynthetic traits and deranged respiratory enzymes. Microbiol Spectr 2023; 11:e0057523. [PMID: 37975678 PMCID: PMC10715153 DOI: 10.1128/spectrum.00575-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Acetobacteraceae are one of the best known and most extensively studied groups of bacteria, which nowadays encompasses a variety of taxa that are very different from the vinegar-producing species defining the family. Our paper presents the most detailed phylogeny of all current taxa classified as Acetobacteraceae, for which we propose a taxonomic revision. Several of such taxa inhabit some of the most extreme environments on the planet, from the deserts of Antarctica to the Sinai desert, as well as acidic niches in volcanic sites like the one we have been studying in Patagonia. Our work documents the progressive variation of the respiratory chain in early branching Acetobacteraceae into the different respiratory chains of acidophilic taxa such as Acidocella and acetous taxa such as Acetobacter. Remarkably, several genomes retain remnants of ancestral photosynthetic traits and functional bc 1 complexes. Thus, we propose that the common ancestor of Acetobacteraceae was photosynthetic.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Center for Genomic Sciences, UNAM Campus de Morelos, Cuernavaca, Morelos, Mexico
| | - Gabriela Guerrero
- Center for Genomic Sciences, UNAM Campus de Morelos, Cuernavaca, Morelos, Mexico
| | - Marco A. Rogel
- Center for Genomic Sciences, UNAM Campus de Morelos, Cuernavaca, Morelos, Mexico
| | - Francisco Issotta
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia y Vida, Huechuraba, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica, Santiago, Chile
| | - Camila Rojas-Villalobos
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia y Vida, Huechuraba, Santiago, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - Raquel Quatrini
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia y Vida, Huechuraba, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago, Chile
| | | |
Collapse
|
12
|
Abe M, Kanaly RA, Mori JF. Genomic analysis of a marine alphaproteobacterium Sagittula sp. strain MA-2 that carried eight plasmids. Mar Genomics 2023; 72:101070. [PMID: 38008530 DOI: 10.1016/j.margen.2023.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 11/28/2023]
Abstract
Bacteria that belong to the family Roseobacteraceae in the Alphaproteobacteria class are widely distributed in marine environments with remarkable physiological diversity, which is considered to be attributed to their genomic plasticity. In this study, a novel isolate of the genus Sagittula within Roseobacteraceae, strain MA-2, was obtained from a coastal marine bacterial consortium enriched with aromatic hydrocarbons, and its complete genome was sequenced. The genome with a total size of 5.69 Mbp was revealed to consist of a 4.67-Mbp circular chromosome and eight circular plasmids ranging in size from 19.5 to 361.5 kbp. Further analyses of functional genes in the strain MA-2 genome identified homologous genes responsible for the biotransformation of gentisic acid, which were located on one of its plasmids and were not found in genomes of other Sagittula strains available from databases. This suggested that strain MA-2 had acquired these genes via horizontal gene transfers that enabled them to degrade and utilize gentisic acid as a growth substrate. This study provided the second complete genome sequence of the genus Sagittula and supports the hypothesis that acquisition of ecologically relevant genes in extrachromosomal replicons allows Roseobacteraceae to be highly adaptable to diverse lifestyles.
Collapse
Affiliation(s)
- Mayuko Abe
- Graduate School of Nanobiosciences, Yokohama City University, Japan
| | - Robert A Kanaly
- Graduate School of Nanobiosciences, Yokohama City University, Japan
| | - Jiro F Mori
- Graduate School of Nanobiosciences, Yokohama City University, Japan.
| |
Collapse
|
13
|
Li L, Huang D, Hu Y, Rudling NM, Canniffe DP, Wang F, Wang Y. Globally distributed Myxococcota with photosynthesis gene clusters illuminate the origin and evolution of a potentially chimeric lifestyle. Nat Commun 2023; 14:6450. [PMID: 37833297 PMCID: PMC10576062 DOI: 10.1038/s41467-023-42193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Photosynthesis is a fundamental biogeochemical process, thought to be restricted to a few bacterial and eukaryotic phyla. However, understanding the origin and evolution of phototrophic organisms can be impeded and biased by the difficulties of cultivation. Here, we analyzed metagenomic datasets and found potential photosynthetic abilities encoded in the genomes of uncultivated bacteria within the phylum Myxococcota. A putative photosynthesis gene cluster encoding a type-II reaction center appears in at least six Myxococcota families from three classes, suggesting vertical inheritance of these genes from an early common ancestor, with multiple independent losses in other lineages. Analysis of metatranscriptomic datasets indicate that the putative myxococcotal photosynthesis genes are actively expressed in various natural environments. Furthermore, heterologous expression of myxococcotal pigment biosynthesis genes in a purple bacterium supports that the genes can drive photosynthetic processes. Given that predatory abilities are thought to be widespread across Myxococcota, our results suggest the intriguing possibility of a chimeric lifestyle (combining predatory and photosynthetic abilities) in members of this phylum.
Collapse
Affiliation(s)
- Liuyang Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Danyue Huang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yaoxun Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nicola M Rudling
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Daniel P Canniffe
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
14
|
Methner A, Kuzyk SB, Petersen J, Bauer S, Brinkmann H, Sichau K, Wanner G, Wolf J, Neumann-Schaal M, Henke P, Tank M, Spröer C, Bunk B, Overmann J. Thiorhodovibrio frisius and Trv. litoralis spp. nov., Two Novel Members from a Clade of Fastidious Purple Sulfur Bacteria That Exhibit Unique Red-Shifted Light-Harvesting Capabilities. Microorganisms 2023; 11:2394. [PMID: 37894052 PMCID: PMC10609205 DOI: 10.3390/microorganisms11102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
In the pursuit of cultivating anaerobic anoxygenic phototrophs with unusual absorbance spectra, a purple sulfur bacterium was isolated from the shoreline of Baltrum, a North Sea island of Germany. It was designated strain 970, due to a predominant light harvesting complex (LH) absorption maximum at 963-966 nm, which represents the furthest infrared-shift documented for such complexes containing bacteriochlorophyll a. A polyphasic approach to bacterial systematics was performed, comparing genomic, biochemical, and physiological properties. Strain 970 is related to Thiorhodovibrio winogradskyi DSM 6702T by 26.5, 81.9, and 98.0% similarity via dDDH, ANI, and 16S rRNA gene comparisons, respectively. The photosynthetic properties of strain 970 were unlike other Thiorhodovibrio spp., which contained typical LH absorbing characteristics of 800-870 nm, as well as a newly discovered absorption band at 908 nm. Strain 970 also had a different photosynthetic operon composition. Upon genomic comparisons with the original Thiorhodovibrio strains DSM 6702T and strain 06511, the latter was found to be divergent, with 25.3, 79.1, and 97.5% similarity via dDDH, ANI, and 16S rRNA gene homology to Trv. winogradskyi, respectively. Strain 06511 (=DSM 116345T) is thereby described as Thiorhodovibrio litoralis sp. nov., and the unique strain 970 (=DSM 111777T) as Thiorhodovibrio frisius sp. nov.
Collapse
Affiliation(s)
- Anika Methner
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Steven B Kuzyk
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Jörn Petersen
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Sabine Bauer
- Former Institution: Paläomikrobiologie, Institut für Chemie und Biologie des Meeres, Universität Oldenburg, Postfach 2503, 26111 Oldenburg, Germany
| | - Henner Brinkmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Katja Sichau
- Bereich Mikrobiologie, Department Biologie I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Gerhard Wanner
- Bereich Mikrobiologie, Department Biologie I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Jacqueline Wolf
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Petra Henke
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Marcus Tank
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Boyke Bunk
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Jörg Overmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- Former Institution: Paläomikrobiologie, Institut für Chemie und Biologie des Meeres, Universität Oldenburg, Postfach 2503, 26111 Oldenburg, Germany
- Bereich Mikrobiologie, Department Biologie I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
15
|
Avontuur JR, Wilken PM, Palmer M, Coetzee MPA, Stępkowski T, Venter SN, Steenkamp ET. Complex evolutionary history of photosynthesis in Bradyrhizobium. Microb Genom 2023; 9:001105. [PMID: 37676703 PMCID: PMC10569730 DOI: 10.1099/mgen.0.001105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Bradyrhizobium comprises a diverse group of bacteria with various lifestyles. Although best known for their nodule-based nitrogen-fixation in symbiosis with legumes, a select group of bradyrhizobia are also capable of photosynthesis. This ability seems to be rare among rhizobia, and its origin and evolution in these bacteria remain a subject of substantial debate. Therefore, our aim here was to investigate the distribution and evolution of photosynthesis in Bradyrhizobium using comparative genomics and representative genomes from closely related taxa in the families Nitrobacteraceae, Methylobacteriaceae, Boseaceae and Paracoccaceae . We identified photosynthesis gene clusters (PGCs) in 25 genomes belonging to three different Bradyrhizobium lineages, notably the so-called Photosynthetic, B. japonicum and B. elkanii supergroups. Also, two different PGC architectures were observed. One of these, PGC1, was present in genomes from the Photosynthetic supergroup and in three genomes from a species in the B. japonicum supergroup. The second cluster, PGC2, was also present in some strains from the B. japonicum supergroup, as well as in those from the B. elkanii supergroup. PGC2 was largely syntenic to the cluster found in Rhodopseudomonas palustris and Tardiphaga . Bayesian ancestral state reconstruction unambiguously showed that the ancestor of Bradyrhizobium lacked a PGC and that it was acquired horizontally by various lineages. Maximum-likelihood phylogenetic analyses of individual photosynthesis genes also suggested multiple acquisitions through horizontal gene transfer, followed by vertical inheritance and gene losses within the different lineages. Overall, our findings add to the existing body of knowledge on Bradyrhizobium ’s evolution and provide a meaningful basis from which to explore how these PGCs and the photosynthesis itself impact the physiology and ecology of these bacteria.
Collapse
Affiliation(s)
- Juanita R. Avontuur
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - P. Markus Wilken
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Marike Palmer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Martin P. A. Coetzee
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tomasz Stępkowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warszawa, Poland
| | - Stephanus N. Venter
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T. Steenkamp
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
16
|
Saati-Santamaría Z. Global Map of Specialized Metabolites Encoded in Prokaryotic Plasmids. Microbiol Spectr 2023; 11:e0152323. [PMID: 37310275 PMCID: PMC10434180 DOI: 10.1128/spectrum.01523-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Plasmids are the main mobile elements responsible for horizontal gene transfer (HGT) in microorganisms. These replicons extend the metabolic spectrum of their host cells by carrying functional genes. However, it is still unknown to what extent plasmids carry biosynthetic gene clusters (BGCs) related to the production of secondary or specialized metabolites (SMs). Here, we analyzed 9,183 microbial plasmids to unveil their potential to produce SMs, finding a large diversity of cryptic BGCs in a few varieties of prokaryotic host taxa. Some of these plasmids harbored 15 or more BGCs, and many others were exclusively dedicated to mobilizing BGCs. We found an occurrence pattern of BGCs within groups of homologous plasmids shared by a common taxon, mainly in host-associated microbes (e.g., Rhizobiales, Enterobacteriaceae members). Our results add to the knowledge of the ecological functions and potential industrial uses of plasmids and shed light on the dynamics and evolution of SMs in prokaryotes. IMPORTANCE Plasmids are mobile DNA elements that can be shared among microbial cells, and they are useful for bringing to fruition some microbial ecological traits. However, it is not known to what extent plasmids harbor genes related to the production of specialized/secondary metabolites (SMs). In microbes, these metabolites are frequently useful for defense purposes, signaling, etc. In addition, these molecules usually have biotechnological and clinical applications. Here, we analyzed the content, dynamics, and evolution of genes related to the production of SMs in >9,000 microbial plasmids. Our results confirm that some plasmids act as a reservoir of SMs. We also found that some families of biosynthetic gene clusters are exclusively present in some groups of plasmids shared among closely related microbes. Host-associated bacteria (e.g., plant and human microbes) harbor the majority of specialized metabolites encoded in plasmids. These results provide new knowledge about microbial ecological traits and might enable the discovery of novel metabolites.
Collapse
Affiliation(s)
- Zaki Saati-Santamaría
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
17
|
Zhu Q, Li F, Shu Q, Feng P, Wang Y, Dai M, Mao T, Sun H, Wei J, Li B. Disruption of peritrophic matrix chitin metabolism and gut immune by chlorantraniliprole results in pathogenic bacterial infection in Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105430. [PMID: 37248008 DOI: 10.1016/j.pestbp.2023.105430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023]
Abstract
Chlorantraniliprole (CAP) is widely used in pest control, and its environmental residues affect the disease resistance of non-target insect silkworms. Studies have demonstrated that changes in gut microbial communities of insects are associated with susceptibility to pathogens. In the present study, we examined the effects of CAP exposure on the immune system and gut microbial community structure of silkworms. The results showed that after 96 h of exposure to low-concentration CAP, the peritrophic matrix (PM) of silkworm larvae was disrupted, and pathogenic bacteria invaded hemolymph. The trehalase activity in the midgut was significantly decreased, while the activities of chitinase, β-N-acetylglucosaminidase, and chitin deacetylase were increased considerably, resulting in decreased chitin content in PM. In addition, exposure to CAP reduced the expressions of key genes in the Toll, IMD, and JAK/STAT pathways, ultimately leading to the downregulation of antimicrobial peptides (AMPs) genes and alterations in the structure of the gut microbial community. Therefore, after infection with the conditional pathogen Enterobacter cloacae (E. cloacae), CAP-exposed individuals exhibited significantly lower body weight and higher mortality. These findings showed that exposure to low-concentration CAP impacted the biological defense system of silkworms, changed the gut microbial community structure, and increased silkworms' susceptibility to bacterial diseases. Collectively, these findings provided a new perspective for the safety evaluation of low-concentration CAP exposure in sericulture.
Collapse
Affiliation(s)
- Qingyu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Qilong Shu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Piao Feng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yuanfei Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Minli Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Tingting Mao
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Haina Sun
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
18
|
Tanabe Y, Yamaguchi H, Yoshida M, Kai A, Okazaki Y. Characterization of a bloom-associated alphaproteobacterial lineage, 'Candidatus Phycosocius': insights into freshwater algal-bacterial interactions. ISME COMMUNICATIONS 2023; 3:20. [PMID: 36906708 PMCID: PMC10008586 DOI: 10.1038/s43705-023-00228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023]
Abstract
Marine bacterial lineages associated with algal blooms, such as the Roseobacter clade, have been well characterized in ecological and genomic contexts, yet such lineages have rarely been explored in freshwater blooms. This study performed phenotypic and genomic analyses of an alphaproteobacterial lineage 'Candidatus Phycosocius' (denoted the CaP clade), one of the few lineages ubiquitously associated with freshwater algal blooms, and described a novel species: 'Ca. Phycosocius spiralis.' Phylogenomic analyses indicated that the CaP clade is a deeply branching lineage in the Caulobacterales. Pangenome analyses revealed characteristic features of the CaP clade: aerobic anoxygenic photosynthesis and essential vitamin B auxotrophy. Genome size varies widely among members of the CaP clade (2.5-3.7 Mb), likely a result of independent genome reductions at each lineage. This includes a loss of tight adherence pilus genes (tad) in 'Ca. P. spiralis' that may reflect its adoption of a unique spiral cell shape and corkscrew-like burrowing activity at the algal surface. Notably, quorum sensing (QS) proteins showed incongruent phylogenies, suggesting that horizontal transfers of QS genes and QS-involved interactions with specific algal partners might drive CaP clade diversification. This study elucidates the ecophysiology and evolution of proteobacteria associated with freshwater algal blooms.
Collapse
Affiliation(s)
- Yuuhiko Tanabe
- Biodiversity Division, National Institute for Environmental Studies, Ibaraki, 305-8506, Japan.
- Algae Biomass and Energy System R&D Center, University of Tsukuba, Ibaraki, 305-8572, Japan.
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, Ibaraki, 305-8506, Japan
| | - Masaki Yoshida
- Algae Biomass and Energy System R&D Center, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Atsushi Kai
- Algae Biomass and Energy System R&D Center, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Yusuke Okazaki
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| |
Collapse
|
19
|
Bracun L, Yamagata A, Christianson BM, Shirouzu M, Liu LN. Cryo-EM structure of a monomeric RC-LH1-PufX supercomplex with high-carotenoid content from Rhodobacter capsulatus. Structure 2023; 31:318-328.e3. [PMID: 36738736 DOI: 10.1016/j.str.2023.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
In purple photosynthetic bacteria, the photochemical reaction center (RC) and light-harvesting complex 1 (LH1) assemble to form monomeric or dimeric RC-LH1 membrane complexes, essential for bacterial photosynthesis. Here, we report a 2.59-Å resolution cryoelectron microscopy (cryo-EM) structure of the RC-LH1 supercomplex from Rhodobacter capsulatus. We show that Rba. capsulatus RC-LH1 complexes are exclusively monomers in which the RC is surrounded by a 15-subunit LH1 ring. Incorporation of a transmembrane polypeptide PufX leads to a large opening within the LH1 ring. Each LH1 subunit associates two carotenoids and two bacteriochlorophylls, which is similar to Rba. sphaeroides RC-LH1 but more than one carotenoid per LH1 in Rba. veldkampii RC-LH1 monomer. Collectively, the unique Rba. capsulatus RC-LH1-PufX represents an intermediate structure between Rba. sphaeroides and Rba. veldkampii RC-LH1-PufX. Comparison of PufX from the three Rhodobacter species indicates the important residues involved in dimerization of RC-LH1.
Collapse
Affiliation(s)
- Laura Bracun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Atsushi Yamagata
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Bern M Christianson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
20
|
Stevenson DS. A New Ecological and Evolutionary Perspective on the Emergence of Oxygenic Photosynthesis. ASTROBIOLOGY 2023; 23:230-237. [PMID: 36413050 DOI: 10.1089/ast.2021.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this hypothesis article, we propose that the timing of the evolution of oxygenic photosynthesis and the diversification of cyanobacteria is firmly tied to the geological evolution of Earth in the Mesoarchean to Neoarchean. Specifically, the diversification of species capable of oxygenic photosynthesis is tied to the growth of subaerial (above sea-level/terrestrial) continental crust, which provided niches for their diversification. Moreover, we suggest that some formerly aerobic bacterial lineages evolved to become anoxygenic photosynthetic as a result of changes in selection following the reintroduction of ferruginous conditions in the oceans at 1.88 GYa. Both conclusions are fully compatible with phylogenetic evidence. The hypothesis carries with it a predictive component-at least for terrestrial organisms-that the development and expansion of photosynthesis species was dependent on the geological evolution of Earth.
Collapse
|
21
|
Suyama T, Kanno N, Matsukura S, Chihara K, Noda N, Hanada S. Transcriptome and Deletion Mutant Analyses Revealed that an RpoH Family Sigma Factor Is Essential for Photosystem Production in Roseateles depolymerans under Carbon Starvation. Microbes Environ 2023; 38. [PMID: 36878600 PMCID: PMC10037100 DOI: 10.1264/jsme2.me22072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Roseateles depolymerans is an obligately aerobic bacterium that produces a photosynthetic apparatus only under the scarcity of carbon substrates. We herein examined changes in the transcriptomes of R. depolymerans cells to clarify the expression of photosynthesis genes and their upstream regulatory factors under carbon starvation. Transcriptomes 0, 1, and 6 h after the depletion of a carbon substrate indicated that transcripts showing the greatest variations (a 500-fold increase [6 h/0 h]) were light-harvesting proteins (PufA and PufB). Moreover, loci with more than 50-fold increases (6 h/0 h) were fully related to the photosynthetic gene cluster. Among 13 sigma factor genes, the transcripts of a sigma 70 family sigma factor related to RpoH (SP70) increased along photosynthesis genes under starvation; therefore, a knockout experiment of SP70 was performed. ΔSP70 mutants were found to lack photosynthetic pigments (carotenoids and bacteriochlo-rophyll a) regardless of carbon starvation. We also examined the effects of heat stress on ΔSP70 mutants, and found that SP70 was also related to heat stress tolerance, similar to other RpoH sigma factors (while heat stress did not trigger photosystem production). The deficient accumulation of photosynthetic pigments and the heat stress tolerance of ΔSP70 mutants were both complemented by the introduction of an intact SP70 gene. Furthermore, the transcription of photosynthetic gene operons (puf, puh, and bch) was markedly reduced in the ΔSP70 mutant. The RpoH homologue SP70 was concluded to be a sigma factor that is essential for the transcription of photosynthetic gene operons in R. depolymerans.
Collapse
Affiliation(s)
- Tetsushi Suyama
- Bio-Analytical Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Nanako Kanno
- Photosynthetic Microbial Consortia Laboratory, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University
| | - Satoko Matsukura
- Bio-Analytical Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Kotaro Chihara
- Bio-Analytical Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
- Department of Life Science and Medical Bioscience, Waseda University
| | - Naohiro Noda
- Bio-Analytical Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
- Department of Life Science and Medical Bioscience, Waseda University
| | - Satoshi Hanada
- Photosynthetic Microbial Consortia Laboratory, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University
| |
Collapse
|
22
|
The Sixth Element: a 102-kb RepABC Plasmid of Xenologous Origin Modulates Chromosomal Gene Expression in Dinoroseobacter shibae. mSystems 2022; 7:e0026422. [PMID: 35920548 PMCID: PMC9426580 DOI: 10.1128/msystems.00264-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The model organism Dinoroseobacter shibae and many other marine Rhodobacterales (Roseobacteraceae, Alphaproteobacteria) are characterized by a multipartite genome organization. Here, we show that the original isolate (Dshi-6) contained six extrachromosomal replicons (ECRs), whereas the strain deposited at the DSMZ (Dshi-5) lacked a 102-kb plasmid. To determine the role of the sixth plasmid, we investigated the genomic and physiological differences between the two strains. Therefore, both genomes were (re)sequenced, and gene expression, growth, and substrate utilization were examined. For comparison, we included additional plasmid-cured strains in the analysis. In the Dshi-6 population, the conjugative 102-kb RepABC-9 plasmid was present in only about 50% of the cells, irrespective of its experimentally validated stability. In the presence of the sixth plasmid, copy number changes of other ECRs, in particular, a decrease of the 86-kb plasmid, were observed. The most conspicuous finding was the strong influence of plasmids on chromosomal gene expression, especially the repression of the CtrA regulon and the activation of the denitrification gene cluster. Expression is inversely controlled by either the presence of the 102-kb plasmid or the absence of the 86-kb plasmid. We identified regulatory genes on both plasmids, i.e., a sigma 70 factor and a quorum sensing synthase, that might be responsible for these major changes. The tremendous effects that were probably even underestimated challenge the current understanding of the relevance of volatile plasmids not only for the original host but also for new recipients after conjugation. IMPORTANCE Plasmids are small DNA molecules that replicate independently of the bacterial chromosome. The common view of the role of plasmids is dominated by the accumulation of resistance genes, which is responsible for the antibiotic crisis in health care and livestock breeding. Beyond rapid adaptations to a changing environment, no general relevance for the host cell’s regulome was attributed to these volatile ECRs. The current study shows for the model organism D. shibae that its chromosomal gene expression is strongly influenced by two plasmids. We provide evidence that the gain or loss of plasmids not only results in minor alterations of the genetic repertoire but also can have tremendous effects on bacterial physiology. The central role of some plasmids in the regulatory network of the host could also explain their persistence despite fitness costs, which has been described as the “plasmid paradox.”
Collapse
|
23
|
Bacterial Community Assembly, Succession, and Metabolic Function during Outdoor Cultivation of Microchloropsis salina. mSphere 2022; 7:e0023122. [PMID: 35730934 PMCID: PMC9429889 DOI: 10.1128/msphere.00231-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Outdoor cultivation of microalgae has promising potential for renewable bioenergy, but there is a knowledge gap on the structure and function of the algal microbiome that coinhabits these ecosystems. Here, we describe the assembly mechanisms, taxonomic structure, and metabolic potential of bacteria associated with Microchloropsis salina cultivated outdoors. Open mesocosms were inoculated with algal cultures that were either free of bacteria or coincubated with one of two different strains of alga-associated bacteria and were sampled across five time points taken over multiple harvesting rounds of a 40-day experiment. Using quantitative analyses of metagenome-assembled genomes (MAGs), we tracked bacterial community compositional abundance and taxon-specific functional capacity involved in algal-bacterial interactions. One of the inoculated bacteria (Alteromonas sp.) persisted and dispersed across mesocosms, whereas the other inoculated strain (Phaeobacter gallaeciensis) disappeared by day 17 while a taxonomically similar but functionally distinct Phaeobacter strain became established. The inoculated strains were less abundant than 6 numerically dominant newly recruited taxa with functional capacities for mutualistic or saprophytic lifestyles, suggesting a generalist approach to persistence. This includes a highly abundant unclassified Rhodobacteraceae species that fluctuated between 25% and 77% of the total community. Overall, we did not find evidence for priority effects exerted by the distinct inoculum conditions; all mesocosms converged with similar microbial community compositions by the end of the experiment. Instead, we infer that the 15 total populations were retained due to host selection, as they showed high metabolic potential for algal-bacterial interactions such as recycling alga-produced carbon and nitrogen and production of vitamins and secondary metabolites associated with algal growth and senescence, including B vitamins, tropodithietic acid, and roseobacticides. IMPORTANCE Bacteria proliferate in nutrient-rich aquatic environments, including engineered algal biofuel systems, where they remineralize photosynthates, exchange secondary metabolites with algae, and can influence system output of biomass or oil. Despite this, knowledge on the microbial ecology of algal cultivation systems is lacking, and the subject is worthy of investigation. Here, we used metagenomics to characterize the metabolic capacities of the predominant bacteria associated with the biofuel-relevant microalga Microchloropsis salina and to predict testable metabolic interactions between algae and manipulated communities of bacteria. We identified a previously undescribed and uncultivated organism that dominated the community. Collectively, the microbial community may interact with the alga in cultivation via exchange of secondary metabolites which could affect algal success, which we demonstrate as a possible outcome from controlled experiments with metabolically analogous isolates. These findings address the scalability of lab-based algal-bacterial interactions through to cultivation systems and more broadly provide a framework for empirical testing of genome-based metabolic predictions.
Collapse
|
24
|
Affiliation(s)
- Alvaro San Millan
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain.
| |
Collapse
|
25
|
Muramatsu S, Hirose S, Iino T, Ohkuma M, Hanada S, Haruta S. Neotabrizicola shimadae gen. nov., sp. nov., an aerobic anoxygenic phototrophic bacterium harbouring photosynthetic genes in the family Rhodobacteraceae, isolated from a terrestrial hot spring. Antonie van Leeuwenhoek 2022; 115:731-740. [PMID: 35380297 DOI: 10.1007/s10482-022-01728-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 03/06/2022] [Indexed: 11/27/2022]
Abstract
A bacteriochlorophyll-containing bacterium, designated as strain N10T, was isolated from a terrestrial hot spring in Nagano Prefecture, Japan. Gram-stain-negative, oxidase- and catalase-positive and ovoid to rod-shaped cells showed the features of aerobic anoxygenic phototrophic bacteria, i.e., strain N10T synthesised bacteriochlorophylls under aerobic conditions and could not grow anaerobically even under illumination. Genome analysis found genes for bacteriochlorophyll and carotenoid biosynthesis, light-harvesting complexes and type-2 photosynthetic reaction centre in the chromosome. Phylogenetic analyses based on the 16S rRNA gene sequence and 92 core proteins revealed that strain N10T was located in a distinct lineage near the type species of the genera Tabrizicola and Xinfangfangia and some species in the genus Rhodobacter (e.g., Rhodobacter blasticus). Strain N10T shared < 97.1% 16S rRNA gene sequence identity with those species in the family Rhodobacteraceae. The digital DNA-DNA hybridisation, average nucleotide identity and average amino acid identity values with the relatives, Tabrizicola aquatica RCRI19T (an aerobic anoxygenic phototrophic bacterium), Xinfangfangia soli ZQBWT and R. blasticus ATCC 33485T were 19.9-20.7%, 78.2-79.1% and 69.1-70.1%, respectively. Based on the phenotypic features, major fatty acid and polar lipid compositions, genome sequence and phylogenetic position, a novel genus and species are proposed for strain N10T, to be named Neotabrizicola shimadae (= JCM 34381T = DSM 112087T). Strain N10T which is phylogenetically located among aerobic anoxygenic phototrophic bacteria (Tabrizicola), bacteriochlorophyll-deficient bacteria (Xinfangfangia) and anaerobic anoxygenic phototrophic bacteria (Rhodobacter) has great potential to promote studies on the evolution of photosynthesis in Rhodobacteraceae.
Collapse
Affiliation(s)
- So Muramatsu
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Setsuko Hirose
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Takao Iino
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Satoshi Hanada
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-0856, Japan
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
26
|
Tomasch J, Ringel V, Wang H, Freese HM, Bartling P, Brinkmann H, Vollmers J, Jarek M, Wagner-Döbler I, Petersen J. Fatal affairs - conjugational transfer of a dinoflagellate-killing plasmid between marine Rhodobacterales. Microb Genom 2022; 8:000787. [PMID: 35254236 PMCID: PMC9176285 DOI: 10.1099/mgen.0.000787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The roseobacter group of marine bacteria is characterized by a mosaic distribution of ecologically important phenotypes. These are often encoded on mobile extrachromosomal replicons. So far, conjugation had only been experimentally proven between the two model organisms Phaeobacter inhibens and Dinoroseobacter shibae. Here, we show that two large natural RepABC-type plasmids from D. shibae can be transferred into representatives of all known major Rhodobacterales lineages. Complete genome sequencing of the newly established Phaeobacter inhibens transconjugants confirmed their genomic integrity. The conjugated plasmids were stably maintained as single copy number replicons in the genuine as well as the new host. Co-cultivation of Phaeobacter inhibens and the transconjugants with the dinoflagellate Prorocentrum minimum demonstrated that Phaeobacter inhibens is a probiotic strain that improves the yield and stability of the dinoflagellate culture. The transconjugant carrying the 191 kb plasmid, but not the 126 kb sister plasmid, killed the dinoflagellate in co-culture.
Collapse
Affiliation(s)
- Jürgen Tomasch
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Science – Centre Algatech, Třeboň, Czech Republic
- *Correspondence: Jürgen Tomasch,
| | - Victoria Ringel
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hui Wang
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Heike M. Freese
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Pascal Bartling
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Present address: Schülke & Mayr GmbH, Norderstedt, Germany
| | - Henner Brinkmann
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - John Vollmers
- Institute for Biological Interfaces 5: Biotechnology and Microbial Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michael Jarek
- Group Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Jörn Petersen
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- *Correspondence: Jörn Petersen,
| |
Collapse
|
27
|
Cevallos MA, Degli Esposti M. New Alphaproteobacteria Thrive in the Depths of the Ocean with Oxygen Gradient. Microorganisms 2022; 10:455. [PMID: 35208909 PMCID: PMC8879329 DOI: 10.3390/microorganisms10020455] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
We survey here the Alphaproteobacteria, a large class encompassing physiologically diverse bacteria which are divided in several orders established since 2007. Currently, there is considerable uncertainty regarding the classification of an increasing number of marine metagenome-assembled genomes (MAGs) that remain poorly defined in their taxonomic position within Alphaproteobacteria. The traditional classification of NCBI taxonomy is increasingly complemented by the Genome Taxonomy Database (GTDB), but the two taxonomies differ considerably in the classification of several Alphaproteobacteria, especially from ocean metagenomes. We analyzed the classification of Alphaproteobacteria lineages that are most common in marine environments, using integrated approaches of phylogenomics and functional profiling of metabolic features that define their aerobic metabolism. Using protein markers such as NuoL, the largest membrane subunit of complex I, we have identified new clades of Alphaproteobacteria that are specific to marine niches with steep oxygen gradients (oxycline). These bacteria have relatives among MAGs found in anoxic strata of Lake Tanganyika and together define a lineage that is distinct from either Rhodospirillales or Sneathiellales. We characterized in particular the new 'oxycline' clade. Our analysis of Alphaproteobacteria also reveals new clues regarding the ancestry of mitochondria, which likely evolved in oxycline marine environments.
Collapse
Affiliation(s)
| | - Mauro Degli Esposti
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico;
| |
Collapse
|
28
|
Mujakić I, Piwosz K, Koblížek M. Phylum Gemmatimonadota and Its Role in the Environment. Microorganisms 2022; 10:microorganisms10010151. [PMID: 35056600 PMCID: PMC8779627 DOI: 10.3390/microorganisms10010151] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Bacteria are an important part of every ecosystem that they inhabit on Earth. Environmental microbiologists usually focus on a few dominant bacterial groups, neglecting less abundant ones, which collectively make up most of the microbial diversity. One of such less-studied phyla is Gemmatimonadota. Currently, the phylum contains only six cultured species. However, data from culture-independent studies indicate that members of Gemmatimonadota are common in diverse habitats. They are abundant in soils, where they seem to be frequently associated with plants and the rhizosphere. Moreover, Gemmatimonadota were found in aquatic environments, such as freshwaters, wastewater treatment plants, biofilms, and sediments. An important discovery was the identification of purple bacterial reaction centers and anoxygenic photosynthesis in this phylum, genes for which were likely acquired via horizontal gene transfer. So far, the capacity for anoxygenic photosynthesis has been described for two cultured species: Gemmatimonas phototrophica and Gemmatimonas groenlandica. Moreover, analyses of metagenome-assembled genomes indicate that it is also common in uncultured lineages of Gemmatimonadota. This review summarizes the current knowledge about this understudied bacterial phylum with an emphasis on its environmental distribution.
Collapse
Affiliation(s)
- Izabela Mujakić
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Kasia Piwosz
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland
| | - Michal Koblížek
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
- Correspondence:
| |
Collapse
|
29
|
Røder HL, Trivedi U, Russel J, Kragh KN, Herschend J, Thalsø-Madsen I, Tolker-Nielsen T, Bjarnsholt T, Burmølle M, Madsen JS. Biofilms can act as plasmid reserves in the absence of plasmid specific selection. NPJ Biofilms Microbiomes 2021; 7:78. [PMID: 34620879 PMCID: PMC8497521 DOI: 10.1038/s41522-021-00249-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Plasmids facilitate rapid bacterial adaptation by shuttling a wide variety of beneficial traits across microbial communities. However, under non-selective conditions, maintaining a plasmid can be costly to the host cell. Nonetheless, plasmids are ubiquitous in nature where bacteria adopt their dominant mode of life - biofilms. Here, we demonstrate that biofilms can act as spatiotemporal reserves for plasmids, allowing them to persist even under non-selective conditions. However, under these conditions, spatial stratification of plasmid-carrying cells may promote the dispersal of cells without plasmids, and biofilms may thus act as plasmid sinks.
Collapse
Affiliation(s)
- Henriette Lyng Røder
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Urvish Trivedi
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Nørskov Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jakob Herschend
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Thalsø-Madsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Jonas Stenløkke Madsen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
30
|
Kloub L, Gosselin S, Fullmer M, Graf J, Gogarten JP, Bansal MS. Systematic Detection of Large-Scale Multigene Horizontal Transfer in Prokaryotes. Mol Biol Evol 2021; 38:2639-2659. [PMID: 33565580 PMCID: PMC8136488 DOI: 10.1093/molbev/msab043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Horizontal gene transfer (HGT) is central to prokaryotic evolution. However, little is known about the “scale” of individual HGT events. In this work, we introduce the first computational framework to help answer the following fundamental question: How often does more than one gene get horizontally transferred in a single HGT event? Our method, called HoMer, uses phylogenetic reconciliation to infer single-gene HGT events across a given set of species/strains, employs several techniques to account for inference error and uncertainty, combines that information with gene order information from extant genomes, and uses statistical analysis to identify candidate horizontal multigene transfers (HMGTs) in both extant and ancestral species/strains. HoMer is highly scalable and can be easily used to infer HMGTs across hundreds of genomes. We apply HoMer to a genome-scale data set of over 22,000 gene families from 103 Aeromonas genomes and identify a large number of plausible HMGTs of various scales at both small and large phylogenetic distances. Analysis of these HMGTs reveals interesting relationships between gene function, phylogenetic distance, and frequency of multigene transfer. Among other insights, we find that 1) the observed relative frequency of HMGT increases as divergence between genomes increases, 2) HMGTs often have conserved gene functions, and 3) rare genes are frequently acquired through HMGT. We also analyze in detail HMGTs involving the zonula occludens toxin and type III secretion systems. By enabling the systematic inference of HMGTs on a large scale, HoMer will facilitate a more accurate and more complete understanding of HGT and microbial evolution.
Collapse
Affiliation(s)
- Lina Kloub
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Sean Gosselin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Matthew Fullmer
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.,Bioinformatics Institute, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.,The Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.,The Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Mukul S Bansal
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA.,The Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
31
|
Chernomor O, Peters L, Schneidewind J, Loeschcke A, Knieps-Grünhagen E, Schmitz F, von Lieres E, Kutta RJ, Svensson V, Jaeger KE, Drepper T, von Haeseler A, Krauss U. Complex Evolution of Light-Dependent Protochlorophyllide Oxidoreductases in Aerobic Anoxygenic Phototrophs: Origin, Phylogeny, and Function. Mol Biol Evol 2021; 38:819-837. [PMID: 32931580 PMCID: PMC7947762 DOI: 10.1093/molbev/msaa234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Light-dependent protochlorophyllide oxidoreductase (LPOR) and dark-operative protochlorophyllide oxidoreductase are evolutionary and structurally distinct enzymes that are essential for the synthesis of (bacterio)chlorophyll, the primary pigment needed for both anoxygenic and oxygenic photosynthesis. In contrast to the long-held hypothesis that LPORs are only present in oxygenic phototrophs, we recently identified a functional LPOR in the aerobic anoxygenic phototrophic bacterium (AAPB) Dinoroseobacter shibae and attributed its presence to a single horizontal gene transfer event from cyanobacteria. Here, we provide evidence for the more widespread presence of genuine LPOR enzymes in AAPBs. An exhaustive bioinformatics search identified 36 putative LPORs outside of oxygenic phototrophic bacteria (cyanobacteria) with the majority being AAPBs. Using in vitro and in vivo assays, we show that the large majority of the tested AAPB enzymes are genuine LPORs. Solution structural analyses, performed for two of the AAPB LPORs, revealed a globally conserved structure when compared with a well-characterized cyanobacterial LPOR. Phylogenetic analyses suggest that LPORs were transferred not only from cyanobacteria but also subsequently between proteobacteria and from proteobacteria to Gemmatimonadetes. Our study thus provides another interesting example for the complex evolutionary processes that govern the evolution of bacteria, involving multiple horizontal gene transfer events that likely occurred at different time points and involved different donors.
Collapse
Affiliation(s)
- Olga Chernomor
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Lena Peters
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Judith Schneidewind
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Anita Loeschcke
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Esther Knieps-Grünhagen
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Fabian Schmitz
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Eric von Lieres
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Roger Jan Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Regensburg, Germany
| | - Vera Svensson
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Thomas Drepper
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Medical University of Vienna, Vienna, Austria
- Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
32
|
Mootapally C, Mahajan MS, Nathani NM. Sediment Plasmidome of the Gulfs of Kathiawar Peninsula and Arabian Sea: Insights Gained from Metagenomics Data. MICROBIAL ECOLOGY 2021; 81:540-548. [PMID: 32909073 DOI: 10.1007/s00248-020-01587-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Plasmidomes have become the research area of interest for ecologists exploring bacteria rich ecosystems. Marine environments are among such niche that host a huge number of microbes and have a complex environment which pose the need to study these bacterial indicators of horizontal gene transfer events for survival and stability. The plasmid content of the metagenomics data from 8 sediment samples of the Gulfs of Kathiawar and an open Arabian Sea sample was screened. The reads corresponding to hits against the plasmid database were assembled and studied for diversity using Kraken and functional content using MG-RAST. The sequences were also checked for resistome and virulence factors. The replicon hosts were overall dominated by Proteobacteria, Firmicutes, and Actinobacteria while red algae specific to the Kutch samples. The genes encoded were dominant in the flagella motility and type VI secretion systems. Overall, results from the study confirmed that the plasmids encoded traits for metal, antibiotic, and phage resistance along with virulence systems, and these would be conferring benefit to the hosts. The study throws insights into the environmental role of the plasmidome in adaptation of the microbes in the studied sites to the environmental stresses.
Collapse
Affiliation(s)
- Chandrashekar Mootapally
- Department of Marine Science, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, 364001, India
- Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, Gujarat, 382011, India
| | | | - Neelam M Nathani
- Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, Gujarat, 382011, India.
- Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, 364001, India.
| |
Collapse
|
33
|
Ward LM, Shih PM. Granick revisited: Synthesizing evolutionary and ecological evidence for the late origin of bacteriochlorophyll via ghost lineages and horizontal gene transfer. PLoS One 2021; 16:e0239248. [PMID: 33507911 PMCID: PMC7842958 DOI: 10.1371/journal.pone.0239248] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/29/2020] [Indexed: 11/19/2022] Open
Abstract
Photosynthesis-both oxygenic and more ancient anoxygenic forms-has fueled the bulk of primary productivity on Earth since it first evolved more than 3.4 billion years ago. However, the early evolutionary history of photosynthesis has been challenging to interpret due to the sparse, scattered distribution of metabolic pathways associated with photosynthesis, long timescales of evolution, and poor sampling of the true environmental diversity of photosynthetic bacteria. Here, we reconsider longstanding hypotheses for the evolutionary history of phototrophy by leveraging recent advances in metagenomic sequencing and phylogenetics to analyze relationships among phototrophic organisms and components of their photosynthesis pathways, including reaction centers and individual proteins and complexes involved in the multi-step synthesis of (bacterio)-chlorophyll pigments. We demonstrate that components of the photosynthetic apparatus have undergone extensive, independent histories of horizontal gene transfer. This suggests an evolutionary mode by which modular components of phototrophy are exchanged between diverse taxa in a piecemeal process that has led to biochemical innovation. We hypothesize that the evolution of extant anoxygenic photosynthetic bacteria has been spurred by ecological competition and restricted niches following the evolution of oxygenic Cyanobacteria and the accumulation of O2 in the atmosphere, leading to the relatively late evolution of bacteriochlorophyll pigments and the radiation of diverse crown group anoxygenic phototrophs. This hypothesis expands on the classic "Granick hypothesis" for the stepwise evolution of biochemical pathways, synthesizing recent expansion in our understanding of the diversity of phototrophic organisms as well as their evolving ecological context through Earth history.
Collapse
Affiliation(s)
- Lewis M. Ward
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Patrick M. Shih
- Department of Plant Biology, University of California, Davis, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California, United States of America
- Genome Center, University of California, Davis, California, United States of America
| |
Collapse
|
34
|
Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat Rev Microbiol 2021; 19:347-359. [PMID: 33469168 DOI: 10.1038/s41579-020-00497-1] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 12/27/2022]
Abstract
Plasmids have a key role in bacterial ecology and evolution because they mobilize accessory genes by horizontal gene transfer. However, recent studies have revealed that the evolutionary impact of plasmids goes above and beyond their being mere gene delivery platforms. Plasmids are usually kept at multiple copies per cell, producing islands of polyploidy in the bacterial genome. As a consequence, the evolution of plasmid-encoded genes is governed by a set of rules different from those affecting chromosomal genes, and these rules are shaped by unusual concepts in bacterial genetics, such as genetic dominance, heteroplasmy or segregational drift. In this Review, we discuss recent advances that underscore the importance of plasmids in bacterial ecology and evolution beyond horizontal gene transfer. We focus on new evidence that suggests that plasmids might accelerate bacterial evolution, mainly by promoting the evolution of plasmid-encoded genes, but also by enhancing the adaptation of their host chromosome. Finally, we integrate the most relevant theoretical and empirical studies providing a global understanding of the forces that govern plasmid-mediated evolution in bacteria.
Collapse
|
35
|
Birmes L, Freese HM, Petersen J. RepC_soli: a novel promiscuous plasmid type of Rhodobacteraceae mediates horizontal transfer of antibiotic resistances in the ocean. Environ Microbiol 2021; 23:5395-5411. [PMID: 33393148 DOI: 10.1111/1462-2920.15380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022]
Abstract
Alphaproteobacteria are typically characterized by a multipartite genome organization with a chromosome, stable chromids and accessory plasmids. Extrachromosomal elements determine the lifestyle of roseobacters and their horizontal transfer was previously correlated with rapid adaptations to novel ecological niches. We characterized the distribution and biology of a novel Rhodobacteraceae-specific plasmid type that was designated RepC_soli according to its diagnostic solitary replicase. This low copy number replicon exhibits an exceptional stability, which is likely ensured by non-canonical separate parA and parB partitioning genes. RepC_soli plasmids occur frequently in the surface-associated marine genus Phaeobacter and comparative genome analyses revealed the emergence of four compatibility groups. The universal presence of conserved type IV secretion systems in RepC_soli plasmids is indicative of their recurrent mobilization, a prediction that was experimentally validated by conjugation of the 57 kb Phaeobacter inhibens P72 plasmid (pP72_e) over genus borders. RepC_soli plasmids harbour a diverse collection of beneficial genes including transporters for heavy metal detoxification, prokaryotic defence systems and a conspicuous abundance of antibiotic resistance genes. The pP72_e-encoded efflux pump FloR conferred an about 50-fold increase of resistance against chloramphenicol. Its specific occurrence in Phaeobacter likely reflects a genetic footprint of (former) antimicrobial use in marine aquaculture.
Collapse
Affiliation(s)
- Lukas Birmes
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Inhoffenstraße 7 B, D-38124, Germany
| | - Heike M Freese
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Inhoffenstraße 7 B, D-38124, Germany
| | - Jörn Petersen
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Inhoffenstraße 7 B, D-38124, Germany
| |
Collapse
|
36
|
Abstract
Over the course of evolution for billions of years, bacteria that are capable of light-driven energy production have occupied every corner of surface Earth where sunlight can reach. Only two general biological systems have evolved in bacteria to be capable of net energy conservation via light harvesting: one is based on the pigment of (bacterio-)chlorophyll and the other is based on proton-pumping rhodopsin. There is emerging genomic evidence that these two rather different systems can coexist in a single bacterium to take advantage of their contrasting characteristics in the number of genes involved, biosynthesis cost, ease of expression control, and efficiency of energy production and thus enhance the capability of exploiting solar energy. Our data provide the first clear-cut evidence that such dual phototrophy potentially exists in glacial bacteria. Further public genome mining suggests this understudied dual phototrophic mechanism is possibly more common than our data alone suggested. Conserving additional energy from sunlight through bacteriochlorophyll (BChl)-based reaction center or proton-pumping rhodopsin is a highly successful life strategy in environmental bacteria. BChl and rhodopsin-based systems display contrasting characteristics in the size of coding operon, cost of biosynthesis, ease of expression control, and efficiency of energy production. This raises an intriguing question of whether a single bacterium has evolved the ability to perform these two types of phototrophy complementarily according to energy needs and environmental conditions. Here, we report four Tardiphaga sp. strains (Alphaproteobacteria) of monophyletic origin isolated from a high Arctic glacier in northeast Greenland (81.566° N, 16.363° W) that are at different evolutionary stages concerning phototrophy. Their >99.8% identical genomes contain footprints of horizontal operon transfer (HOT) of the complete gene clusters encoding BChl- and xanthorhodopsin (XR)-based dual phototrophy. Two strains possess only a complete XR operon, while the other two strains have both a photosynthesis gene cluster and an XR operon in their genomes. All XR operons are heavily surrounded by mobile genetic elements and are located close to a tRNA gene, strongly signaling that a HOT event of the XR operon has occurred recently. Mining public genome databases and our high Arctic glacial and soil metagenomes revealed that phylogenetically diverse bacteria have the metabolic potential of performing BChl- and rhodopsin-based dual phototrophy. Our data provide new insights on how bacteria cope with the harsh and energy-deficient environment in surface glacier, possibly by maximizing the capability of exploiting solar energy.
Collapse
|
37
|
Hammerschmidt K, Landan G, Domingues Kümmel Tria F, Alcorta J, Dagan T. The Order of Trait Emergence in the Evolution of Cyanobacterial Multicellularity. Genome Biol Evol 2020; 13:5999801. [PMID: 33231627 PMCID: PMC7937182 DOI: 10.1093/gbe/evaa249] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 01/31/2023] Open
Abstract
The transition from unicellular to multicellular organisms is one of the most significant events in the history of life. Key to this process is the emergence of Darwinian individuality at the higher level: Groups must become single entities capable of reproduction for selection to shape their evolution. Evolutionary transitions in individuality are characterized by cooperation between the lower level entities and by division of labor. Theory suggests that division of labor may drive the transition to multicellularity by eliminating the trade off between two incompatible processes that cannot be performed simultaneously in one cell. Here, we examine the evolution of the most ancient multicellular transition known today, that of cyanobacteria, where we reconstruct the sequence of ecological and phenotypic trait evolution. Our results show that the prime driver of multicellularity in cyanobacteria was the expansion in metabolic capacity offered by nitrogen fixation, which was accompanied by the emergence of the filamentous morphology and succeeded by a reproductive life cycle. This was followed by the progression of multicellularity into higher complexity in the form of differentiated cells and patterned multicellularity.
Collapse
Affiliation(s)
- Katrin Hammerschmidt
- Genomic Microbiology Group, Institute of Microbiology, Kiel University, Germany,Corresponding author: E-mail:
| | - Giddy Landan
- Genomic Microbiology Group, Institute of Microbiology, Kiel University, Germany
| | | | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
| | - Tal Dagan
- Genomic Microbiology Group, Institute of Microbiology, Kiel University, Germany
| |
Collapse
|
38
|
Li L, Liu Z, Zhang M, Meng D, Liu X, Wang P, Li X, Jiang Z, Zhong S, Jiang C, Yin H. Insights into the Metabolism and Evolution of the Genus Acidiphilium, a Typical Acidophile in Acid Mine Drainage. mSystems 2020; 5:e00867-20. [PMID: 33203689 PMCID: PMC7677001 DOI: 10.1128/msystems.00867-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 01/05/2023] Open
Abstract
Here, we report three new Acidiphilium genomes, reclassified existing Acidiphilium species, and performed the first comparative genomic analysis on Acidiphilium in an attempt to address the metabolic potential, ecological functions, and evolutionary history of the genus Acidiphilium In the genomes of Acidiphilium, we found an abundant repertoire of horizontally transferred genes (HTGs) contributing to environmental adaption and metabolic expansion, including genes conferring photosynthesis (puf, puh), CO2 assimilation (rbc), capacity for methane metabolism (mmo, mdh, frm), nitrogen source utilization (nar, cyn, hmp), sulfur compound utilization (sox, psr, sqr), and multiple metal and osmotic stress resistance capacities (czc, cop, ect). Additionally, the predicted donors of horizontal gene transfer were present in a cooccurrence network of Acidiphilium Genome-scale positive selection analysis revealed that 15 genes contained adaptive mutations, most of which were multifunctional and played critical roles in the survival of extreme conditions. We proposed that Acidiphilium originated in mild conditions and adapted to extreme environments such as acidic mineral sites after the acquisition of many essential functions.IMPORTANCE Extremophiles, organisms that thrive in extreme environments, are key models for research on biological adaption. They can provide hints for the origin and evolution of life, as well as improve the understanding of biogeochemical cycling of elements. Extremely acidophilic bacteria such as Acidiphilium are widespread in acid mine drainage (AMD) systems, but the metabolic potential, ecological functions, and evolutionary history of this genus are still ambiguous. Here, we sequenced the genomes of three new Acidiphilium strains and performed comparative genomic analysis on this extremely acidophilic bacterial genus. We found in the genomes of Acidiphilium an abundant repertoire of horizontally transferred genes (HTGs) contributing to environmental adaption and metabolic ability expansion, as indicated by phylogenetic reconstruction and gene context comparison. This study has advanced our understanding of microbial evolution and biogeochemical cycling in extreme niches.
Collapse
Affiliation(s)
- Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Pei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiutong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuiping Zhong
- College of Zijin Mining, Fuzhou University, Fuzhou, China
- National Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores, Shanghang, China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
39
|
Hollensteiner J, Schneider D, Poehlein A, Daniel R. Complete Genome of Roseobacter ponti DSM 106830T. Genome Biol Evol 2020; 12:1013-1018. [PMID: 32658259 DOI: 10.1093/gbe/evaa114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2020] [Indexed: 12/28/2022] Open
Abstract
Members of the Roseobacter group are known for their different ecologically relevant metabolic traits and high abundance in many marine environments. This includes traits like carbon monoxide oxidation, sulfur oxidation, nitrogen oxidation, DMSP demethylation, denitrification, and production of bioactive compounds. Nevertheless, their role in the marine biogeochemical cycles remains to be elucidated. Roseobacter ponti DSM 106830T, also designated strain MM-7T (=KCTC 52469T =NBRC 112431T), is a novel type strain of the Roseobacter group, which was proposed as new Roseobacter species. It was isolated from seawater of the Yellow Sea in South Korea. We report the complete genome sequence of R. ponti DSM 106830T, which belongs to the family Rhodobacteraceae. The genome of R. ponti DSM 106830T comprises a single circular chromosome (3,861,689 bp) with a GC content of 60.52% and an additional circular plasmid (p1) of 100,942 bp with a GC content of 61.51%. The genome encodes 3,812 putative genes, including 3 rRNA, 42 tRNA, 1 tmRNA, and 3 ncRNA. The genome information was used to perform a phylogenetic analysis, which confirmed that the strain represents a new species. Moreover, the genome sequence enabled the investigation of the metabolic capabilities and versatility of R. ponti DSM 106830T. Finally, it provided insight into the high niche adaptation potential of Roseobacter group members.
Collapse
Affiliation(s)
- Jacqueline Hollensteiner
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Germany
| |
Collapse
|
40
|
Kumar D, Gaurav K, PK S, A. S, Uppada J, Ch. S, Ch.V. R. Gimesia chilikensis sp. nov., a haloalkali-tolerant planctomycete isolated from Chilika lagoon and emended description of the genus Gimesia. Int J Syst Evol Microbiol 2020; 70:3647-3655. [DOI: 10.1099/ijsem.0.004211] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, non-motile, salt- and alkali-tolerant, pear to oval shaped, rosette-forming, white coloured, bacterium, designated as strain JC646T, was isolated from a sediment sample collected from Chilika lagoon, India. Strain JC646T reproduced through budding, grew well at up to pH 9.0 and tolerated up to 7 % NaCl. Strain JC 646T utilized α-d-glucose, fumarate, lactose, sucrose, fructose, d-galactose, mannose, maltose and d-xylose as carbon sources. Peptone, l-isoleucine, l-serine, l-lysine, l-glutamic acid, l-aspartic acid, dl-threonine and l-glycine were used by the strain as nitrogen sources for growth. The respiratory quinone was MK6. Major fatty acids were C16 : 1 ω7c/C16 : 1 ω6c and C16 : 0. The polar lipids of strain JC646T comprised phosphatidyl-dimethylethanolamine, phosphatidylcholine, diphosphatidylglycerol, an unidentified amino lipid and two unidentified lipids. Strain JC646T had highest (97.3 %) 16S rRNA gene sequence identity to the only species of the genus
Gimesia
,
Gimesia maris
DSM 8797T. The genome of strain JC646T was 7.64 Mbp with a DNA G+C content of 53.2 mol%. For the resolution of the phylogenetic congruence of the novel strain, the phylogeny was also reconstructed with the sequences of 92 housekeeping genes. Based on phylogenetic analyses, digital DNA–DNA hybridization (19.0 %), genome average nucleotide identity (74.5 %) and average amino acid identity/percentageof conserved proteins (77 %) results, chemotaxonomic characteristics, and differential physiological properties, strain JC646T is recognized as representing a new species of the genus
Gimesia
, for which we propose the name Gimesia chilikensis sp. nov. The type strain is JC646T (=KCTC 72175T=NBRC 113881T).
Collapse
Affiliation(s)
- Dhanesh Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Kumar Gaurav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Sreya PK
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Shabbir A.
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Jagadeeshwari Uppada
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, JNT University Hyderabad, Kukatpally, Hyderabad-500085, India
| | - Sasikala Ch.
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, JNT University Hyderabad, Kukatpally, Hyderabad-500085, India
| | - Ramana Ch.V.
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| |
Collapse
|
41
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
42
|
Adaptation to Photooxidative Stress: Common and Special Strategies of the Alphaproteobacteria Rhodobacter sphaeroides and Rhodobacter capsulatus. Microorganisms 2020; 8:microorganisms8020283. [PMID: 32093084 PMCID: PMC7074977 DOI: 10.3390/microorganisms8020283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022] Open
Abstract
Photosynthetic bacteria have to deal with the risk of photooxidative stress that occurs in presence of light and oxygen due to the photosensitizing activity of (bacterio-) chlorophylls. Facultative phototrophs of the genus Rhodobacter adapt the formation of photosynthetic complexes to oxygen and light conditions, but cannot completely avoid this stress if environmental conditions suddenly change. R. capsulatus has a stronger pigmentation and faster switches to phototrophic growth than R. sphaeroides. However, its photooxidative stress response has not been investigated. Here, we compare both species by transcriptomics and proteomics, revealing that proteins involved in oxidation-reduction processes, DNA, and protein damage repair play pivotal roles. These functions are likely universal to many phototrophs. Furthermore, the alternative sigma factors RpoE and RpoHII are induced in both species, even though the genetic localization of the rpoE gene, the RpoE protein itself, and probably its regulon, are different. Despite sharing the same habitats, our findings also suggest individual strategies. The crtIB-tspO operon, encoding proteins for biosynthesis of carotenoid precursors and a regulator of photosynthesis, and cbiX, encoding a putative ferrochelatase, are induced in R. capsulatus. This specific response might support adaptation by maintaining high carotenoid-to-bacteriochlorophyll ratios and preventing the accumulation of porphyrin-derived photosensitizers.
Collapse
|
43
|
Imhoff JF, Rahn T, Künzel S, Neulinger SC. Phylogeny of Anoxygenic Photosynthesis Based on Sequences of Photosynthetic Reaction Center Proteins and a Key Enzyme in Bacteriochlorophyll Biosynthesis, the Chlorophyllide Reductase. Microorganisms 2019; 7:E576. [PMID: 31752268 PMCID: PMC6920907 DOI: 10.3390/microorganisms7110576] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022] Open
Abstract
Photosynthesis is a key process for the establishment and maintenance of life on earth, and it is manifested in several major lineages of the prokaryote tree of life. The evolution of photosynthesis in anoxygenic photosynthetic bacteria is of major interest as these have the most ancient roots of photosynthetic systems. The phylogenetic relations between anoxygenic phototrophic bacteria were compared on the basis of sequences of key proteins of the type-II photosynthetic reaction center, including PufLM and PufH (PuhA), and a key enzyme of bacteriochlorophyll biosynthesis, the light-independent chlorophyllide reductase BchXYZ. The latter was common to all anoxygenic phototrophic bacteria, including those with a type-I and those with a type-II photosynthetic reaction center. The phylogenetic considerations included cultured phototrophic bacteria from several phyla, including Proteobacteria (138 species), Chloroflexi (five species), Chlorobi (six species), as well as Heliobacterium modesticaldum (Firmicutes), Chloracidobacterium acidophilum (Acidobacteria), and Gemmatimonas phototrophica (Gemmatimonadetes). Whenever available, type strains were studied. Phylogenetic relationships based on a photosynthesis tree (PS tree, including sequences of PufHLM-BchXYZ) were compared with those of 16S rRNA gene sequences (RNS tree). Despite some significant differences, large parts were congruent between the 16S rRNA phylogeny and photosynthesis proteins. The phylogenetic relations demonstrated that bacteriochlorophyll biosynthesis had evolved in ancestors of phototrophic green bacteria much earlier as compared to phototrophic purple bacteria and that multiple events independently formed different lineages of aerobic phototrophic purple bacteria, many of which have very ancient roots. The Rhodobacterales clearly represented the youngest group, which was separated from other Proteobacteria by a large evolutionary gap.
Collapse
Affiliation(s)
| | - Tanja Rahn
- GEOMAR Helmholtz Centre for Ocean Research, 24105 Kiel, Germany;
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biologie, 24306 Plön, Germany;
| | | |
Collapse
|
44
|
Suresh G, Lodha TD, Indu B, Sasikala C, Ramana CV. Taxogenomics Resolves Conflict in the Genus Rhodobacter: A Two and Half Decades Pending Thought to Reclassify the Genus Rhodobacter. Front Microbiol 2019; 10:2480. [PMID: 31736915 PMCID: PMC6834548 DOI: 10.3389/fmicb.2019.02480] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/15/2019] [Indexed: 11/17/2022] Open
Abstract
The genus Rhodobacter is taxonomically well studied, and some members are model organisms. However, this genus is comprised of a heterogeneous group of members. 16S rRNA gene-based phylogeny of the genus Rhodobacter indicates a motley assemblage of anoxygenic phototrophic bacteria (genus Rhodobacter) with interspersing members of other genera (chemotrophs) making the genus polyphyletic. Taxogenomics was performed to resolve the taxonomic conflicts of the genus Rhodobacter using twelve type strains. The phylogenomic analysis showed that Rhodobacter spp. can be grouped into four monophyletic clusters with interspersing chemotrophs. Genomic indices (ANI and dDDH) confirmed that all the current species are well defined, except Rhodobacter megalophilus. The average amino acid identity values between the monophyletic clusters of Rhodobacter members, as well as with the chemotrophic genera, are less than 80% whereas the percentage of conserved proteins values were below 70%, which has been observed among several genera related to Rhodobacter. The pan-genome analysis has shown that there are only 1239 core genes shared between the 12 species of the genus Rhodobacter. The polyphasic taxonomic analysis supports the phylogenomic and genomic studies in distinguishing the four Rhodobacter clusters. Each cluster is comprised of one to seven species according to the current Rhodobacter taxonomy. Therefore, to address this taxonomic discrepancy we propose to reclassify the members of the genus Rhodobacter into three new genera, Luteovulum gen. nov., Phaeovulum gen. nov. and Fuscovulum gen. nov., and provide an emended description of the genus Rhodobacter sensu stricto. Also, we propose reclassification of Rhodobacter megalophilus as a sub-species of Rhodobacter sphaeroides.
Collapse
Affiliation(s)
- G. Suresh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Tushar D. Lodha
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - B. Indu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Ch. Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India
| | - Ch. V. Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
45
|
García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T, Kyrpides NC, Hahnke RL, Göker M. Analysis of 1,000 Type-Strain Genomes Improves Taxonomic Classification of Bacteroidetes. Front Microbiol 2019; 10:2083. [PMID: 31608019 PMCID: PMC6767994 DOI: 10.3389/fmicb.2019.02083] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
Abstract
Although considerable progress has been made in recent years regarding the classification of bacteria assigned to the phylum Bacteroidetes, there remains a need to further clarify taxonomic relationships within a diverse assemblage that includes organisms of clinical, piscicultural, and ecological importance. Bacteroidetes classification has proved to be difficult, not least when taxonomic decisions rested heavily on interpretation of poorly resolved 16S rRNA gene trees and a limited number of phenotypic features. Here, draft genome sequences of a greatly enlarged collection of genomes of more than 1,000 Bacteroidetes and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa proposed long ago such as Bacteroides, Cytophaga, and Flavobacterium but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which can be considered valuable taxonomic markers. We detected many incongruities when comparing the results of the present study with existing classifications, which appear to be caused by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. The few significant incongruities found between 16S rRNA gene and whole genome trees underline the pitfalls inherent in phylogenies based upon single gene sequences and the impediment in using ordinary bootstrapping in phylogenomic studies, particularly when combined with too narrow gene selections. While a significant degree of phylogenetic conservation was detected in all phenotypic characters investigated, the overall fit to the tree varied considerably, which is one of the probable causes of misclassifications in the past, much like the use of plesiomorphic character states as diagnostic features.
Collapse
Affiliation(s)
- Marina García-López
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jan P. Meier-Kolthoff
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Richard L. Hahnke
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Markus Göker
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
46
|
Abstract
Horizontal gene transfer (HGT) is the movement of genetic material between organisms other than by reproduction, which plays an important role in bacterial evolution. Often, mobile genetic elements such as plasmids are involved in HGT. In this study, we present phylogenetic, biogeographic, and functional analyses of a previously unrecognized plasmid that is found with 100% sequence identity in multiple distinct bacterial genera obtained from geographically separated locations. This is the only known instance where actual nucleotide identity and not only high synteny has been described for plasmids in environmental organisms. Furthermore, we provide experimental evidence for the potential of this plasmid to be transmitted across bacterial orders, thereby increasing our understanding of evolution and microbial niche adaptation in the environment. Horizontal gene transfer (HGT) plays an important role in bacterial evolution and serves as a driving force for bacterial diversity and versatility. HGT events often involve mobile genetic elements like plasmids, which can promote their own dissemination by associating with adaptive traits in the gene pool of the so-called mobilome. Novel traits that evolve through HGT can therefore lead to the exploitation of new ecological niches, prompting an adaptive radiation of bacterial species. In this study, we present phylogenetic, biogeographic, and functional analyses of a previously unrecognized RepL-type plasmid found in diverse members of the marine Roseobacter group across the globe. Noteworthy, 100% identical plasmids were detected in phylogenetically and geographically distant bacteria, revealing a so-far overlooked, but environmentally highly relevant vector for HGT. The genomic and functional characterization of this plasmid showed a completely conserved backbone dedicated to replication, stability, and mobilization as well as an interchangeable gene cassette with highly diverse, but recurring motifs. The majority of the latter appear to be involved in mechanisms coping with toxins and/or pollutants in the marine environment. Furthermore, we provide experimental evidence that the plasmid has the potential to be transmitted across bacterial orders, thereby increasing our understanding of evolution and microbial niche adaptation in the environment.
Collapse
|
47
|
Characteristics and Evolutionary Analysis of Photosynthetic Gene Clusters on Extrachromosomal Replicons: from Streamlined Plasmids to Chromids. mSystems 2019; 4:4/5/e00358-19. [PMID: 31506262 PMCID: PMC6739100 DOI: 10.1128/msystems.00358-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aerobic anoxygenic photoheterotrophic bacteria (AAPB) represent a bacteriochlorophyll a-containing functional group. Substantial evidence indicates that highly conserved photosynthetic gene clusters (PGCs) of AAPB can be transferred between species, genera, and even phyla. Furthermore, analysis of recently discovered PGCs carried by extrachromosomal replicons (exPGCs) suggests that extrachromosomal replicons (ECRs) play an important role in the transfer of PGCs. In this study, 13 Roseobacter clade genomes from seven genera that harbored exPGCs were used to analyze the characteristics and evolution of PGCs. The identification of plasmid-like and chromid-like ECRs among PGC-containing ECRs revealed two different functions: the spread of PGCs among strains and the maintenance of PGCs within genomes. Phylogenetic analyses indicated two independent origins of exPGCs, corresponding to PufC-containing and PufX-containing puf operons. Furthermore, the two different types of operons were observed within different strains of the same Tateyamaria and Jannaschia genera. The PufC-containing and PufX-containing operons were also differentially carried by chromosomes and ECRs in the strains, respectively, which provided clear evidence for ECR-mediated PGC transfer. Multiple recombination events of exPGCs were also observed, wherein the majority of exPGCs were inserted by replication modules at the same genomic positions. However, the exPGCs of the Jannaschia strains comprised superoperons without evidence of insertion and therefore likely represent an initial evolutionary stage where the PGC was translocated from chromosomes to ECRs without further combinations. Finally, a scenario of PGC gain and loss is proposed that specifically focuses on ECR-mediated exPGC transfer to explain the evolution and patchy distribution of AAPB within the Roseobacter clade.IMPORTANCE The evolution of photosynthesis was a significant event during the diversification of biological life. Aerobic anoxygenic photoheterotrophic bacteria (AAPB) share physiological characteristics with chemoheterotrophs and represent an important group associated with bacteriochlorophyll-dependent phototrophy in the environment. Here, characterization and evolutionary analyses were conducted for 13 bacterial strains that contained photosynthetic gene clusters (PGCs) carried by extrachromosomal replicons (ECRs) to shed light on the evolution of chlorophototrophy in bacteria. This report advances our understanding of the importance of ECRs in the transfer of PGCs within marine photoheterotrophic bacteria.
Collapse
|
48
|
Demoulin CF, Lara YJ, Cornet L, François C, Baurain D, Wilmotte A, Javaux EJ. Cyanobacteria evolution: Insight from the fossil record. Free Radic Biol Med 2019; 140:206-223. [PMID: 31078731 PMCID: PMC6880289 DOI: 10.1016/j.freeradbiomed.2019.05.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/13/2019] [Accepted: 05/05/2019] [Indexed: 11/07/2022]
Abstract
Cyanobacteria played an important role in the evolution of Early Earth and the biosphere. They are responsible for the oxygenation of the atmosphere and oceans since the Great Oxidation Event around 2.4 Ga, debatably earlier. They are also major primary producers in past and present oceans, and the ancestors of the chloroplast. Nevertheless, the identification of cyanobacteria in the early fossil record remains ambiguous because the morphological criteria commonly used are not always reliable for microfossil interpretation. Recently, new biosignatures specific to cyanobacteria were proposed. Here, we review the classic and new cyanobacterial biosignatures. We also assess the reliability of the previously described cyanobacteria fossil record and the challenges of molecular approaches on modern cyanobacteria. Finally, we suggest possible new calibration points for molecular clocks, and strategies to improve our understanding of the timing and pattern of the evolution of cyanobacteria and oxygenic photosynthesis.
Collapse
Affiliation(s)
- Catherine F Demoulin
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium.
| | - Yannick J Lara
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium
| | - Luc Cornet
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium; Eukaryotic Phylogenomics, InBioS-PhytoSYSTEMS, University of Liège, Liège, Belgium
| | - Camille François
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium
| | - Denis Baurain
- Eukaryotic Phylogenomics, InBioS-PhytoSYSTEMS, University of Liège, Liège, Belgium
| | - Annick Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBioS-CIP, Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Emmanuelle J Javaux
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium
| |
Collapse
|
49
|
Kopejtka K, Lin Y, Jakubovičová M, Koblížek M, Tomasch J. Clustered Core- and Pan-Genome Content on Rhodobacteraceae Chromosomes. Genome Biol Evol 2019; 11:2208-2217. [PMID: 31273387 PMCID: PMC6699656 DOI: 10.1093/gbe/evz138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2019] [Indexed: 12/18/2022] Open
Abstract
In Bacteria, chromosome replication starts at a single origin of replication and proceeds on both replichores. Due to its asymmetric nature, replication influences chromosome structure and gene organization, mutation rate, and expression. To date, little is known about the distribution of highly conserved genes over the bacterial chromosome. Here, we used a set of 101 fully sequenced Rhodobacteraceae representatives to analyze the relationship between conservation of genes within this family and their distance from the origin of replication. Twenty-two of the analyzed species had core genes clustered significantly closer to the origin of replication with representatives of the genus Celeribacter being the most apparent example. Interestingly, there were also eight species with the opposite organization. In particular, Rhodobaca barguzinensis and Loktanella vestfoldensis showed a significant increase of core genes with distance from the origin of replication. The uneven distribution of low-conserved regions is in particular pronounced for genomes in which the halves of one replichore differ in their conserved gene content. Phage integration and horizontal gene transfer partially explain the scattered nature of Rhodobacteraceae genomes. Our findings lay the foundation for a better understanding of bacterial genome evolution and the role of replication therein.
Collapse
Affiliation(s)
- Karel Kopejtka
- Laboratory of Anoxygenic Phototrophs, Center Algatech, Institute of Microbiology CAS, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Yan Lin
- Department of Physics, School of Science, Tianjin University, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Markéta Jakubovičová
- Faculty of Information Technology, Czech Technical University in Prague, Czech Republic
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Center Algatech, Institute of Microbiology CAS, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jürgen Tomasch
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
50
|
Ward LM, Cardona T, Holland-Moritz H. Evolutionary Implications of Anoxygenic Phototrophy in the Bacterial Phylum Candidatus Eremiobacterota (WPS-2). Front Microbiol 2019; 10:1658. [PMID: 31396180 PMCID: PMC6664022 DOI: 10.3389/fmicb.2019.01658] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022] Open
Abstract
Genome-resolved environmental metagenomic sequencing has uncovered substantial previously unrecognized microbial diversity relevant for understanding the ecology and evolution of the biosphere, providing a more nuanced view of the distribution and ecological significance of traits including phototrophy across diverse niches. Recently, the capacity for bacteriochlorophyll-based anoxygenic photosynthesis has been proposed in the uncultured bacterial WPS-2 phylum (recently proposed as Candidatus Eremiobacterota) that are in close association with boreal moss. Here, we use phylogenomic analysis to investigate the diversity and evolution of phototrophic WPS-2. We demonstrate that phototrophic WPS-2 show significant genetic and metabolic divergence from other phototrophic and non-phototrophic lineages. The genomes of these organisms encode a new family of anoxygenic Type II photochemical reaction centers and other phototrophy-related proteins that are both phylogenetically and structurally distinct from those found in previously described phototrophs. We propose the name Candidatus Baltobacterales for the order-level aerobic WPS-2 clade which contains phototrophic lineages, from the Greek for "bog" or "swamp," in reference to the typical habitat of phototrophic members of this clade.
Collapse
Affiliation(s)
- Lewis M. Ward
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Hannah Holland-Moritz
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|