1
|
Backman T, Burbano HA, Karasov TL. Tradeoffs and constraints on the evolution of tailocins. Trends Microbiol 2024; 32:1084-1095. [PMID: 39504934 DOI: 10.1016/j.tim.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 11/08/2024]
Abstract
Phage tail-like bacteriocins (tailocins) are protein complexes produced by bacteria with the potential to kill their neighbors. Widespread throughout Gram-negative bacteria, tailocins exhibit extreme specificity in their targets, largely killing closely related strains. Despite their presence in diverse bacteria, the impact of these competitive weapons on the surrounding microbiota is largely unknown. Recent studies revealed the rapid evolution and genetic diversity of tailocins in microbial communities and suggest that there are constraints on the evolution of specificity and resistance. Given the precision of their targeted killing and the ease of engineering new specificities, understanding the evolution and ecological impact of tailocins may enable the design of promising candidates for novel targeted antibiotics.
Collapse
Affiliation(s)
- Talia Backman
- School of Biological Sciences, University of Utah 257S 1400E, Salt Lake City, UT 84112, USA.
| | - Hernán A Burbano
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution, and Environment, University College London, London, UK.
| | - Talia L Karasov
- School of Biological Sciences, University of Utah 257S 1400E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Backman T, Latorre SM, Symeonidi E, Muszyński A, Bleak E, Eads L, Martinez-Koury PI, Som S, Hawks A, Gloss AD, Belnap DM, Manuel AM, Deutschbauer AM, Bergelson J, Azadi P, Burbano HA, Karasov TL. A phage tail-like bacteriocin suppresses competitors in metapopulations of pathogenic bacteria. Science 2024; 384:eado0713. [PMID: 38870284 PMCID: PMC11404688 DOI: 10.1126/science.ado0713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/24/2024] [Indexed: 06/15/2024]
Abstract
Bacteria can repurpose their own bacteriophage viruses (phage) to kill competing bacteria. Phage-derived elements are frequently strain specific in their killing activity, although there is limited evidence that this specificity drives bacterial population dynamics. Here, we identified intact phage and their derived elements in a metapopulation of wild plant-associated Pseudomonas genomes. We discovered that the most abundant viral cluster encodes a phage remnant resembling a phage tail called a tailocin, which bacteria have co-opted to kill bacterial competitors. Each pathogenic Pseudomonas strain carries one of a few distinct tailocin variants that target the variable polysaccharides in the outer membrane of co-occurring pathogenic Pseudomonas strains. Analysis of herbarium samples from the past 170 years revealed that the same tailocin and bacterial receptor variants have persisted in Pseudomonas populations. These results suggest that tailocin genetic diversity can be mined to develop targeted "tailocin cocktails" for microbial control.
Collapse
Affiliation(s)
- Talia Backman
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Sergio M Latorre
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Efthymia Symeonidi
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ella Bleak
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Lauren Eads
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Sarita Som
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Aubrey Hawks
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Andrew D Gloss
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - David M Belnap
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Allison M Manuel
- Mass Spectrometry and Proteomics Core, The University of Utah, Salt Lake City, UT 84112, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joy Bergelson
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Hernán A Burbano
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Talia L Karasov
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Backman T, Latorre SM, Symeonidi E, Muszyński A, Bleak E, Eads L, Martinez-Koury PI, Som S, Hawks A, Gloss AD, Belnap DM, Manuel AM, Deutschbauer AM, Bergelson J, Azadi P, Burbano HA, Karasov TL. A weaponized phage suppresses competitors in historical and modern metapopulations of pathogenic bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.17.536465. [PMID: 38352526 PMCID: PMC10862724 DOI: 10.1101/2023.04.17.536465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Bacteriophages, the viruses of bacteria, are proposed to drive bacterial population dynamics, yet direct evidence of their impact on natural populations is limited. Here we identified viral sequences in a metapopulation of wild plant-associated Pseudomonas spp. genomes. We discovered that the most abundant viral cluster does not encode an intact phage but instead encodes a tailocin - a phage-derived element that bacteria use to kill competitors for interbacterial warfare. Each pathogenic Pseudomonas sp. strain carries one of a few distinct tailocin variants, which target variable polysaccharides in the outer membrane of co-occurring pathogenic strains. Analysis of historic herbarium samples from the last 170 years revealed that the same tailocin and receptor variants have persisted in the Pseudomonas populations for at least two centuries, suggesting the continued use of a defined set of tailocin haplotypes and receptors. These results indicate that tailocin genetic diversity can be mined to develop targeted "tailocin cocktails" for microbial control. One-Sentence Summary Bacterial pathogens in a host-associated metapopulation use a repurposed prophage to kill their competitors.
Collapse
|
4
|
Stice SP, Jan HH, Chen HC, Nwosu L, Shin GY, Weaver S, Coutinho T, Kvitko BH, Baltrus DA. Pantailocins: phage-derived bacteriocins from Pantoea ananatis and Pantoea stewartii subsp. indologenes. Appl Environ Microbiol 2023; 89:e0092923. [PMID: 37982620 PMCID: PMC10870728 DOI: 10.1128/aem.00929-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/15/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Phage-derived bacteriocins (tailocins) are ribosomally synthesized structures produced by bacteria in order to provide advantages against competing strains under natural conditions. Tailocins are highly specific in their target range and have proven to be effective for the prevention and/or treatment of bacterial diseases under clinical and agricultural settings. We describe the discovery and characterization of a new tailocin locus encoded within genomes of Pantoea ananatis and Pantoea stewartii subsp. indologenes, which may enable the development of tailocins as preventative treatments against phytopathogenic infection by these species.
Collapse
Affiliation(s)
- Shaun P. Stice
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Hsiao-Hsuan Jan
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Hsiao-Chun Chen
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Linda Nwosu
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Gi Yoon Shin
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Savannah Weaver
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Teresa Coutinho
- The Plant Center, University of Georgia, Athens, Georgia, USA
| | - Brian H. Kvitko
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, South Africa
| | - David A. Baltrus
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
Heiman CM, Vacheron J, Keel C. Evolutionary and ecological role of extracellular contractile injection systems: from threat to weapon. Front Microbiol 2023; 14:1264877. [PMID: 37886057 PMCID: PMC10598620 DOI: 10.3389/fmicb.2023.1264877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Contractile injection systems (CISs) are phage tail-related structures that are encoded in many bacterial genomes. These devices encompass the cell-based type VI secretion systems (T6SSs) as well as extracellular CISs (eCISs). The eCISs comprise the R-tailocins produced by various bacterial species as well as related phage tail-like structures such as the antifeeding prophages (Afps) of Serratia entomophila, the Photorhabdus virulence cassettes (PVCs), and the metamorphosis-associated contractile structures (MACs) of Pseudoalteromonas luteoviolacea. These contractile structures are released into the extracellular environment upon suicidal lysis of the producer cell and play important roles in bacterial ecology and evolution. In this review, we specifically portray the eCISs with a focus on the R-tailocins, sketch the history of their discovery and provide insights into their evolution within the bacterial host, their structures and how they are assembled and released. We then highlight ecological and evolutionary roles of eCISs and conceptualize how they can influence and shape bacterial communities. Finally, we point to their potential for biotechnological applications in medicine and agriculture.
Collapse
Affiliation(s)
- Clara Margot Heiman
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
6
|
Weaver SL, Zhu L, Ravishankar S, Clark M, Baltrus DA. Interspecies killing activity of Pseudomonas syringae tailocins. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36342839 DOI: 10.1099/mic.0.001258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tailocins are ribosomally synthesized bacteriocins, encoded by bacterial genomes, but originally derived from bacteriophage tails. As with both bacteriocins and phage, tailocins are largely thought to be species-specific with killing activity often assumed to be directed against closely related strains. Previous investigations into interactions between tailocin host range and sensitivity across phylogenetically diverse isolates of the phytopathogen Pseudomonas syringae have demonstrated that many strains possess intraspecific tailocin activity and that this activity is highly precise and specific against subsets of strains. However, here we demonstrate that at least one strain of P. syringae, USA011R, defies both expectations and current overarching dogma because tailocins from this strain possess broad killing activity against other agriculturally significant phytopathogens such as Erwinia amylovora and Xanthomonas perforans as well as against the clinical human pathogen Salmonella enterica serovar Choleraesuis. Moreover, we show that the full spectrum of this interspecific killing activity is not conserved across closely related strains with data suggesting that even if tailocins can target different species, they do so with different efficiencies. Our results reported herein highlight the potential for and phenotypic divergence of interspecific killing activity of P. syringae tailocins and establish a platform for further investigations into the evolution of tailocin host range and strain specificity.
Collapse
Affiliation(s)
- Savannah L Weaver
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.,School of Plant Sciences, University of Arizona, Tucson AZ, USA
| | - Libin Zhu
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA
| | - Sadhana Ravishankar
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA
| | - Meara Clark
- School of Plant Sciences, University of Arizona, Tucson AZ, USA
| | - David A Baltrus
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.,School of Plant Sciences, University of Arizona, Tucson AZ, USA.,School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA
| |
Collapse
|
7
|
Baltrus DA, Clark M, Hockett KL, Mollico M, Smith C, Weaver S. Prophylactic Application of Tailocins Prevents Infection by Pseudomonas syringae. PHYTOPATHOLOGY 2022; 112:561-566. [PMID: 34320833 DOI: 10.1094/phyto-06-21-0269-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tailocins are phage-derived bacteriocins that demonstrate great potential as agricultural antimicrobials given their high killing efficiency and their precise strain-specific targeting ability. Our group has categorized and characterized tailocins produced by and tailocin sensitivities of the phytopathogen Pseudomonas syringae, and here we extend these experiments to test whether prophylactic tailocin application can prevent infection of Nicotiana benthamiana by P. syringae pv. syringae B728a. Specifically, we demonstrate that multiple strains can produce tailocins that prevent infection by strain B728a and engineer a deletion mutant to prove that tailocin targeting is responsible for this protective effect. Lastly, we provide evidence that heritable resistance mutations do not explain the minority of cases in which tailocins fail to prevent infection. Our results extend previous reports of prophylactic use of tailocins against phytopathogens, and establish a model system with which to test and optimize tailocin application for prophylactic treatment to prevent phytopathogen infection.
Collapse
Affiliation(s)
- David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721
| | - Meara Clark
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721
| | - Kevin L Hockett
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, State College, PA 16801
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16801
| | - Madison Mollico
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721
| | - Caitlin Smith
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721
| | - Savannah Weaver
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
8
|
Carim S, Azadeh AL, Kazakov AE, Price MN, Walian PJ, Lui LM, Nielsen TN, Chakraborty R, Deutschbauer AM, Mutalik VK, Arkin AP. Systematic discovery of pseudomonad genetic factors involved in sensitivity to tailocins. THE ISME JOURNAL 2021; 15:2289-2305. [PMID: 33649553 PMCID: PMC8319346 DOI: 10.1038/s41396-021-00921-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Tailocins are bactericidal protein complexes produced by a wide variety of bacteria that kill closely related strains and may play a role in microbial community structure. Thanks to their high specificity, tailocins have been proposed as precision antibacterial agents for therapeutic applications. Compared to tailed phages, with whom they share an evolutionary and morphological relationship, bacterially produced tailocins kill their host upon production but producing strains display resistance to self-intoxication. Though lipopolysaccharide (LPS) has been shown to act as a receptor for tailocins, the breadth of factors involved in tailocin sensitivity, and the mechanisms behind resistance to self-intoxication, remain unclear. Here, we employed genome-wide screens in four non-model pseudomonads to identify mutants with altered fitness in the presence of tailocins produced by closely related pseudomonads. Our mutant screens identified O-antigen composition and display as most important in defining sensitivity to our tailocins. In addition, the screens suggest LPS thinning as a mechanism by which resistant strains can become more sensitive to tailocins. We validate many of these novel findings, and extend these observations of tailocin sensitivity to 130 genome-sequenced pseudomonads. This work offers insights into tailocin-bacteria interactions, informing the potential use of tailocins in microbiome manipulation and antibacterial therapy.
Collapse
Affiliation(s)
- Sean Carim
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Ashley L Azadeh
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Alexey E Kazakov
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Morgan N Price
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peter J Walian
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lauren M Lui
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Romy Chakraborty
- Climate and Ecosystem Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam M Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vivek K Mutalik
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Adam P Arkin
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Bioengineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
9
|
Jayaraman J, Jones WT, Harvey D, Hemara LM, McCann HC, Yoon M, Warring SL, Fineran PC, Mesarich CH, Templeton MD. Variation at the common polysaccharide antigen locus drives lipopolysaccharide diversity within the Pseudomonas syringae species complex. Environ Microbiol 2020; 22:5356-5372. [PMID: 32985740 PMCID: PMC7820976 DOI: 10.1111/1462-2920.15250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
The common polysaccharide antigen (CPA) of the lipopolysaccharide (LPS) from Pseudomonas syringae is highly variable, but the genetic basis for this is poorly understood. We have characterized the CPA locus from P. syringae pv. actinidiae (Psa). This locus has genes for l- and d-rhamnose biosynthesis and an operon coding for ABC transporter subunits, a bifunctional glycosyltransferase and an o-methyltransferase. This operon is predicted to have a role in the transport, elongation and termination of the CPA oligosaccharide and is referred to as the TET operon. Two alleles of the TET operon were present in different biovars (BV) of Psa and lineages of the closely related pathovar P. syringae pv. actinidifoliorum. This allelic variation was reflected in the electrophoretic properties of purified LPS from the different isolates. Gene knockout of the TET operon allele from BV1 and replacement with that from BV3, demonstrated the link between the genetic locus and the biochemical properties of the LPS molecules in Psa. Sequence analysis of the TET operon from a range of P. syringae and P. viridiflava isolates displayed a phylogenetic history incongruent with core gene phylogeny but correlates with previously reported tailocin sensitivity, suggesting a functional relationship between LPS structure and tailocin susceptibility.
Collapse
Affiliation(s)
- Jay Jayaraman
- Bioprotection TechnologiesThe New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
- Bioprotection Centre for Research ExcellenceNew Zealand
| | - William T. Jones
- Bioprotection TechnologiesThe New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Dawn Harvey
- Bioprotection TechnologiesThe New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Lauren M. Hemara
- Bioprotection TechnologiesThe New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
- Bioprotection Centre for Research ExcellenceNew Zealand
- School of Biological SciencesUniversity of AucklandNew Zealand
| | - Honour C. McCann
- Institute of Advanced StudiesMassey UniversityAucklandNew Zealand
| | - Minsoo Yoon
- Bioprotection TechnologiesThe New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
| | - Suzanne L. Warring
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Peter C. Fineran
- Bioprotection Centre for Research ExcellenceNew Zealand
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Carl H. Mesarich
- Bioprotection Centre for Research ExcellenceNew Zealand
- School of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
| | - Matthew D. Templeton
- Bioprotection TechnologiesThe New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
- Bioprotection Centre for Research ExcellenceNew Zealand
- School of Biological SciencesUniversity of AucklandNew Zealand
| |
Collapse
|
10
|
Rooney WM, Chai R, Milner JJ, Walker D. Bacteriocins Targeting Gram-Negative Phytopathogenic Bacteria: Plantibiotics of the Future. Front Microbiol 2020; 11:575981. [PMID: 33042091 PMCID: PMC7530242 DOI: 10.3389/fmicb.2020.575981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Gram-negative phytopathogenic bacteria are a significant threat to food crops. These microbial invaders are responsible for a plethora of plant diseases and can be responsible for devastating losses in crops such as tomatoes, peppers, potatoes, olives, and rice. Current disease management strategies to mitigate yield losses involve the application of chemicals which are often harmful to both human health and the environment. Bacteriocins are small proteinaceous antibiotics produced by bacteria to kill closely related bacteria and thereby establish dominance within a niche. They potentially represent a safer alternative to chemicals when used in the field. Bacteriocins typically show a high degree of selectivity toward their targets with no off-target effects. This review outlines the current state of research on bacteriocins active against Gram-negative phytopathogenic bacteria. Furthermore, we will examine the feasibility of weaponizing bacteriocins for use as a treatment for bacterial plant diseases.
Collapse
Affiliation(s)
- William M. Rooney
- Plant Science Group, School of Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ray Chai
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Joel J. Milner
- Plant Science Group, School of Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Daniel Walker
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
11
|
Kandel PP, Baltrus DA, Hockett KL. Pseudomonas Can Survive Tailocin Killing via Persistence-Like and Heterogenous Resistance Mechanisms. J Bacteriol 2020; 202:e00142-20. [PMID: 32312747 PMCID: PMC7283598 DOI: 10.1128/jb.00142-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Phage tail-like bacteriocins (tailocins) are bacterially produced protein toxins that mediate competitive interactions between cocolonizing bacteria. Both theoretical and experimental research has shown there are intransitive interactions between bacteriocin-producing, bacteriocin-sensitive, and bacteriocin-resistant populations, whereby producers outcompete sensitive cells, sensitive cells outcompete resistant cells, and resistant cells outcompete producers. These so-called rock-paper-scissors dynamics explain how all three populations occupy the same environment, without one driving the others extinct. Using Pseudomonas syringae as a model, we demonstrate that otherwise sensitive cells survive bacteriocin exposure through a physiological mechanism. This mechanism allows cells to survive bacteriocin killing without acquiring resistance. We show that a significant fraction of the target cells that survive a lethal dose of tailocin did not exhibit any detectable increase in survival during a subsequent exposure. Tailocin persister cells were more prevalent in stationary- rather than log-phase cultures. Of the fraction of cells that gained detectable resistance, there was a range from complete (insensitive) to incomplete (partially sensitive) resistance. By using genomic sequencing and genetic engineering, we showed that a mutation in a hypothetical gene containing 8 to 10 transmembrane domains causes tailocin high persistence and that genes of various glycosyltransferases cause incomplete and complete tailocin resistance. Importantly, of the several classes of mutations, only those causing complete tailocin resistance compromised host fitness. This result indicates that bacteria likely utilize persistence to survive bacteriocin-mediated killing without suffering the costs associated with resistance. This research provides important insight into how bacteria can escape the trap of fitness trade-offs associated with gaining de novo tailocin resistance.IMPORTANCE Bacteriocins are bacterially produced protein toxins that are proposed as antibiotic alternatives. However, a deeper understanding of the responses of target bacteria to bacteriocin exposure is lacking. Here, we show that target cells of Pseudomonas syringae survive lethal bacteriocin exposure through both physiological persistence and genetic resistance mechanisms. Cells that are not growing rapidly rely primarily on persistence, whereas those growing rapidly are more likely to survive via resistance. We identified various mutations in lipopolysaccharide biogenesis-related regions involved in tailocin persistence and resistance. By assessing host fitness of various classes of mutants, we showed that persistence and subtle resistance are mechanisms P. syringae uses to survive competition and preserve host fitness. These results have important implications for developing bacteriocins as alternative therapeutic agents.
Collapse
Affiliation(s)
- Prem P Kandel
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Kevin L Hockett
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
12
|
Engineering of receptor-binding proteins in bacteriophages and phage tail-like bacteriocins. Biochem Soc Trans 2019; 47:449-460. [PMID: 30783013 DOI: 10.1042/bst20180172] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 12/23/2022]
Abstract
Bacteriophages and phage tail-like bacteriocins (PTLBs) rely on receptor-binding proteins (RBPs) located in tail fibers or spikes for an initial and specific interaction with susceptible bacteria. Bacteriophages kill bacteria through a lytic, replicative cycle, whereas PTLBs kill the target through membrane depolarization in a single hit mechanism. Extensive efforts in the engineering of RBPs of both phages and PTLBs have been undertaken to obtain a greater understanding of the structural organization of RBPs. In addition, a major goal of engineering RBPs of phages and PTLBs is the production of antibacterials with a customized spectrum. Swapping of the RBP of phages and PTLBs results in a shift in activity spectrum in accordance with the spectrum of the new RBP. The engineering of strictly virulent phages with new RBPs required significant technical advances in the past decades, whereas the engineering of RBPs of PTLBs relied on the traditional molecular techniques used for the manipulation of bacteria and was thus relatively straightforward. While phages and PTLBs share their potential for specificity tuning, specific features of phages such as their lytic killing mechanism, their self-replicative nature and thus different pharmacokinetics and their potential to co-evolve are clear differentiators compared with PTLBs in terms of their antibacterial use.
Collapse
|