1
|
Sun Z, Zhao Y, Liu Y, Chen C, Chen H. Designing a novel paper-based microfluidic disc for rapid and simultaneous determination of multiple nutrient salts in water. Analyst 2024; 149:5563-5571. [PMID: 39465676 DOI: 10.1039/d4an01127a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In the face of worsening water quality and escalating water environmental emergencies, this study developed a paper-based microfluidic disk for rapid, on-site determination of ammonia nitrogen, nitrates, nitrites, and phosphates in water. The method utilizes centrifugal microfluidics and paper-based technology, thus simplifying the operation while eliminating the need for on-site reagent preparation. Experimental results demonstrate that the disk requires only 80 microliters of a water sample and 2 minutes to complete the quantitative analysis of the four nutrients, with a coefficient of variation below 1.72% and spike recoveries ranging from 92% to 113%. The development of the disk provides an effective and rapid, on-site testing tool for water quality analysis.
Collapse
Affiliation(s)
- Zhentao Sun
- School of Precision Instrument and Optoelectronic Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, People's Republic of China
| | - Youquan Zhao
- Medical School of Tianjin University, 92 Weijin Road, Nankai District, Tianjin, People's Republic of China
- School of Precision Instrument and Optoelectronic Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, People's Republic of China
| | - Yameng Liu
- School of Precision Instrument and Optoelectronic Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, People's Republic of China
| | - Chen Chen
- School of Precision Instrument and Optoelectronic Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, People's Republic of China
| | - Hao Chen
- School of Precision Instrument and Optoelectronic Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, People's Republic of China
- Georgia Tech Shenzhen College, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, People's Republic of China
| |
Collapse
|
2
|
Li Z, Liu H, Wang D, Zhang M, Yang Y, Ren TL. Recent advances in microfluidic sensors for nutrients detection in water. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Muñoz-Marín MDC, Magasin JD, Zehr JP. Open ocean and coastal strains of the N2-fixing cyanobacterium UCYN-A have distinct transcriptomes. PLoS One 2023; 18:e0272674. [PMID: 37130101 PMCID: PMC10153697 DOI: 10.1371/journal.pone.0272674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/18/2023] [Indexed: 05/03/2023] Open
Abstract
Decades of research on marine N2 fixation focused on Trichodesmium, which are generally free-living cyanobacteria, but in recent years the endosymbiotic cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) has received increasing attention. However, few studies have shed light on the influence of the host versus the habitat on UCYN-A N2 fixation and overall metabolism. Here we compared transcriptomes from natural populations of UCYN-A from oligotrophic open-ocean versus nutrient-rich coastal waters, using a microarray that targets the full genomes of UCYN-A1 and UCYN-A2 and known genes for UCYN-A3. We found that UCYN-A2, usually regarded as adapted to coastal environments, was transcriptionally very active in the open ocean and appeared to be less impacted by habitat change than UCYN-A1. Moreover, for genes with 24 h periodic expression we observed strong but inverse correlations among UCYN-A1, A2, and A3 to oxygen and chlorophyll, which suggests distinct host-symbiont relationships. Across habitats and sublineages, genes for N2 fixation and energy production had high transcript levels, and, intriguingly, were among the minority of genes that kept the same schedule of diel expression. This might indicate different regulatory mechanisms for genes that are critical to the symbiosis for the exchange of nitrogen for carbon from the host. Our results underscore the importance of N2 fixation in UCYN-A symbioses across habitats, with consequences for community interactions and global biogeochemical cycles.
Collapse
Affiliation(s)
- María Del Carmen Muñoz-Marín
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Jonathan D Magasin
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jonathan P Zehr
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
4
|
Islam MS, Sun J, Zhang G, Chen Z, Zhou H. Environmental influences on sinking rates and distributions of transparent exopolymer particles after a typhoon surge at the Western Pacific. Sci Rep 2021; 11:11377. [PMID: 34059698 PMCID: PMC8166891 DOI: 10.1038/s41598-021-88477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/16/2021] [Indexed: 11/25/2022] Open
Abstract
A multidisciplinary approach was used to investigate the causes of the distributions and sinking rates of transparent exopolymer particles (TEPs) during the period of September–October (2017) in the Western Pacific Ocean (WPO); the study period was closely dated to a northwest typhoon surge. The present study discussed the impact of biogeophysical features on TEPs and their sinking rates (sTEP) at depths of 0–150 m. During the study, the concentration of TEPs was found to be higher in areas adjacent to the Kuroshio current and in the bottom water layer of the Mindanao upwelling zone due to the widespread distribution of cyanobacteria, i.e., Trichodesmium hildebrandti and T. theibauti. The positive significant regressions of TEP concentrations with Chl-a contents in eddy-driven areas (R2 = 0.73, especially at 100 m (R2 = 0.75)) support this hypothesis. However, low TEP concentrations and TEPs were observed at mixed layer depths (MLDs) in the upwelling zone (Mindanao). Conversely, high TEP concentrations and high sTEP were found at the bottom of the downwelling zone (Halmahera). The geophysical directions of eddies may have caused these conditions. In demonstrating these relations, the average interpretation showed the negative linearity of TEP concentrations with TEPs (R2 = 0.41 ~ 0.65) at such eddies. Additionally, regression curves (R2 = 0.78) indicated that atmospheric pressure played a key role in the changes in TEPs throughout the study area. Diatoms and cyanobacteria also curved the TEPs significantly (R2 = 0.5, P < 0.05) at the surface of the WPO. This study also revealed that TEP concentration contributes less to the average particulate organic carbon in this oligotrophic WPO.
Collapse
Affiliation(s)
- M Shahanul Islam
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology University, TEDA, No 29, 13thAvenue, Tianjin, China.,Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, 430074, China. .,Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Guicheng Zhang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhuo Chen
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Hui Zhou
- Key Laboratory of Ocean Circulation and Waves, and Institute of Oceanology, Chinese Academy of Sciences, Qingdao Collaborative Innovation Center of Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
5
|
Dai J, Ye Q, Wu Y, Zhang M, Zhang J. Simulation of Enhanced Growth of Marine Group II Euryarchaeota From the Deep Chlorophyll Maximum of the Western Pacific Ocean: Implication for Upwelling Impact on Microbial Functions in the Photic Zone. Front Microbiol 2020; 11:571199. [PMID: 33013804 PMCID: PMC7516215 DOI: 10.3389/fmicb.2020.571199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
Mesoscale eddies can have a strong impact on regional biogeochemistry and primary productivity. To investigate the effect of the upwelling of seawater by western Pacific eddies on the composition of the active planktonic marine archaeal community composition of the deep chlorophyll maximum (DCM) layer, mesoscale cold-core eddies were simulated in situ by mixing western Pacific DCM layer water with mesopelagic layer (400 m) water. Illumina sequencing of the 16S rRNA gene and 16S rRNA transcripts indicated that the specific heterotrophic Marine Group IIb (MGIIb) taxonomic group of the DCM layer was rapidly stimulated after receiving fresh substrate from 400 m water, which was dominated by uncultured autotrophic Marine Group I (MGI) archaea. Furthermore, niche differentiation of autotrophic ammonia-oxidizing archaea (MGI) was demonstrated by deep sequencing of 16S rRNA, amoA, and accA genes, respectively. Similar distribution patterns of active Marine Group III (MGIII) were observed in the DCM layer with or without vertical mixing, indicating that they are inclined to utilize the substrates already present in the DCM layer. These findings underscore the importance of mesoscale cyclonic eddies in stimulating microbial processes involved in the regional carbon cycle.
Collapse
Affiliation(s)
- Jinlong Dai
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Qi Ye
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Ying Wu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Miao Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Jing Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| |
Collapse
|
6
|
Garcia CA, Hagstrom GI, Larkin AA, Ustick LJ, Levin SA, Lomas MW, Martiny AC. Linking regional shifts in microbial genome adaptation with surface ocean biogeochemistry. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190254. [PMID: 32200740 PMCID: PMC7133529 DOI: 10.1098/rstb.2019.0254] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 01/09/2023] Open
Abstract
Linking 'omics measurements with biogeochemical cycles is a widespread challenge in microbial community ecology. Here, we propose applying genomic adaptation as 'biosensors' for microbial investments to overcome nutrient stress. We then integrate this genomic information with a trait-based model to predict regional shifts in the elemental composition of marine plankton communities. We evaluated this approach using metagenomic and particulate organic matter samples from the Atlantic, Indian and Pacific Oceans. We find that our genome-based trait model significantly improves our prediction of particulate C : P (carbon : phosphorus) across ocean regions. Furthermore, we detect previously unrecognized ocean areas of iron, nitrogen and phosphorus stress. In many ecosystems, it can be very challenging to quantify microbial stress. Thus, a carefully calibrated genomic approach could become a widespread tool for understanding microbial responses to environmental changes and the biogeochemical outcomes. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.
Collapse
Affiliation(s)
- Catherine A. Garcia
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
| | - George I. Hagstrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alyse A. Larkin
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
| | - Lucas J. Ustick
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Simon A. Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michael W. Lomas
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA
| | - Adam C. Martiny
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Shilova IN, Magasin JD, Mills MM, Robidart JC, Turk-Kubo KA, Zehr JP. Phytoplankton transcriptomic and physiological responses to fixed nitrogen in the California current system. PLoS One 2020; 15:e0231771. [PMID: 32310982 PMCID: PMC7170224 DOI: 10.1371/journal.pone.0231771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/31/2020] [Indexed: 11/18/2022] Open
Abstract
Marine phytoplankton are responsible for approximately half of photosynthesis on Earth. However, their ability to drive ocean productivity depends on critical nutrients, especially bioavailable nitrogen (N) which is scarce over vast areas of the ocean. Phytoplankton differ in their preferences for N substrates as well as uptake efficiencies and minimal N requirements relative to other critical nutrients, including iron (Fe) and phosphorus. In this study, we used the MicroTOOLs high-resolution environmental microarray to examine transcriptomic responses of phytoplankton communities in the California Current System (CCS) transition zone to added urea, ammonium, nitrate, and also Fe in the late summer when N depletion is common. Transcript level changes of photosynthetic, carbon fixation, and nutrient stress genes indicated relief of N limitation in many strains of Prochlorococcus, Synechococcus, and eukaryotic phytoplankton. The transcriptomic responses helped explain shifts in physiological and growth responses observed later. All three phytoplankton groups had increased transcript levels of photosynthesis and/or carbon fixation genes in response to all N substrates. However, only Prochlorococcus had decreased transcript levels of N stress genes and grew substantially, specifically after urea and ammonium additions, suggesting that Prochlorococcus outcompeted other community members in these treatments. Diatom transcript levels of carbon fixation genes increased in response to Fe but not to Fe with N which might have favored phytoplankton that were co-limited by N and Fe. Moreover, transcription patterns of closely related strains indicated variability in N utilization, including nitrate utilization by some high-light adapted Prochlorococcus. Finally, up-regulation of urea transporter genes by both Prochlorococcus and Synechococcus in response to filtered deep water suggested a regulatory mechanism other than classic control via the global N regulator NtcA. This study indicated that co-existing phytoplankton strains experience distinct nutrient stresses in the transition zone of the CCS, an understudied region where oligotrophic and coastal communities naturally mix.
Collapse
Affiliation(s)
- Irina N. Shilova
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (INS); (JPZ)
| | - Jonathan D. Magasin
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Matthew M. Mills
- Department of Earth System Science, Stanford University, Stanford, California, United States of America
| | - Julie C. Robidart
- Ocean Technology and Engineering, National Oceanography Centre, Southampton, England, United Kingdom
| | - Kendra A. Turk-Kubo
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jonathan P. Zehr
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (INS); (JPZ)
| |
Collapse
|
8
|
Wang F, Zhu J, Chen L, Zuo Y, Hu X, Yang Y. Autonomous and In Situ Ocean Environmental Monitoring on Optofluidic Platform. MICROMACHINES 2020; 11:E69. [PMID: 31936398 PMCID: PMC7019421 DOI: 10.3390/mi11010069] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 11/17/2022]
Abstract
Determining the distributions and variations of chemical elements in oceans has significant meanings for understanding the biogeochemical cycles, evaluating seawater pollution, and forecasting the occurrence of marine disasters. The primary chemical parameters of ocean monitoring include nutrients, pH, dissolved oxygen (DO), and heavy metals. At present, ocean monitoring mainly relies on laboratory analysis, which is hindered in applications due to its large size, high power consumption, and low representative and time-sensitive detection results. By integrating photonics and microfluidics into one chip, optofluidics brings new opportunities to develop portable microsystems for ocean monitoring. Optofluidic platforms have advantages in respect of size, cost, timeliness, and parallel processing of samples compared with traditional instruments. This review describes the applications of optofluidic platforms on autonomous and in situ ocean environmental monitoring, with an emphasis on their principles, sensing properties, advantages, and disadvantages. Predictably, autonomous and in situ systems based on optofluidic platforms will have important applications in ocean environmental monitoring.
Collapse
Affiliation(s)
- Fang Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (F.W.); (J.Z.); (L.C.); (Y.Z.); (X.H.)
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Jiaomeng Zhu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (F.W.); (J.Z.); (L.C.); (Y.Z.); (X.H.)
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Longfei Chen
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (F.W.); (J.Z.); (L.C.); (Y.Z.); (X.H.)
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yunfeng Zuo
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (F.W.); (J.Z.); (L.C.); (Y.Z.); (X.H.)
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Xuejia Hu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (F.W.); (J.Z.); (L.C.); (Y.Z.); (X.H.)
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yi Yang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (F.W.); (J.Z.); (L.C.); (Y.Z.); (X.H.)
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|