1
|
Hu C, Chen X, Wei W, Wallace D, Liu J, Zhang Y, Zhang L, Xu D, Batt J, Xiao X, Shi Q, Zheng Q, Ma R, Luo T, Jiao N, Zhang R. To kill or to piggyback: Switching of viral lysis-lysogeny strategies depending on host dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 959:178233. [PMID: 39721538 DOI: 10.1016/j.scitotenv.2024.178233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Viruses wield significant influence over microbial communities and ecosystem function in marine environments. However, the selection of viral life strategies and their impacts on microbial communities remains enigmatic. In this study, we utilized a large-scale macrocosm, established using water samples from a marine coastal region, to enable community-level investigation. Through a prolonged incubation experiment, we aimed to clarify the ramifications of lytic and lysogenic viral activities on microbial community dynamics. We observed a continuous succession in bacterial abundance, growth rate, and community diversity, tightly linked with time series switching between viral lysis and lysogeny. Elevated lytic viral production notably fostered greater bacterial diversity, whereas increased lysogenic viral production corresponded to bacterial communities characterized by heightened abundance and growth rate but reduced diversity. Moreover, discernible shifts in bacterial community compositions, associated with different abundant bacterial taxa, were synchronized with pronounced transitions between viral lysis and lysogeny. Notably, the switch from lysogeny to lysis facilitated the proliferation of initially rare bacterial populations. Our findings suggest that the Kill-the-Winner and Piggyback-the-Winner hypotheses, both elucidating dynamic patterns in virus-host interactions, can synergistically demonstrate the pivotal role of viruses in regulating microbial communities via the lysis-lysogeny switch in marine environments.
Collapse
Affiliation(s)
- Chen Hu
- Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Wei Wei
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Douglas Wallace
- Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China; Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jihua Liu
- Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Lianbao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - John Batt
- Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China; Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xilin Xiao
- Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Qiang Shi
- Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China; Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Ruijie Ma
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen 518055, PR China
| | - Tingwei Luo
- Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China.
| | - Rui Zhang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen 518055, PR China.
| |
Collapse
|
2
|
Liu Z, Jiang C, Yin Z, Ibrahim IA, Zhang T, Wen J, Zhou L, Jiang G, Li L, Yang Z, Huang Y, Yang Z, Gu Y, Meng D, Yin H. Ecological features of microbial community linked to stochastic and deterministic assembly processes in acid mine drainage. Appl Environ Microbiol 2024:e0102824. [PMID: 39679708 DOI: 10.1128/aem.01028-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/09/2024] [Indexed: 12/17/2024] Open
Abstract
Ecological processes greatly shape microbial community assembly, but the driving factors remain unclear. Here, we compiled a metagenomic data set of microbial communities from global acid mine drainage (AMD) and explored the ecological features of microbial community linked to stochastic and deterministic processes from the perspective of species niche position, interaction patterns, gene functions, and viral infection. Our results showed that dispersal limitation (DL) (48.5%~93.5%) dominated the assembly of phylogenetic bin in AMD microbial community, followed by homogeneous selection (HoS) (3.1%~39.2%), heterogeneous selection (HeS) (1.4%~22.2%), and drift (DR) (0.2%~2.7%). The dominant process of dispersal limitation was significantly influenced by niche position in temperature (r = -0.518, P = 0.007) and dissolved oxygen (r = 0.471, P = 0.015). Network stability had a significantly negative correlation with the relative importance of dispersal limitation, while it had a positive correlation with selection processes, implying changes in network properties could be mediated by ecological processes. Furthermore, we found that ecological processes were mostly related to the gene functions of energy production and conversion (C), and amino acid transport and metabolism (E). Meanwhile, our results showed that the number of proviruses and viral genes involved in arsenic (As) resistance is negatively associated with the relative importance of ecological drift in phylogenetic bin assembly, implying viral infection might weaken ecological drift. Taken together, these results highlight that ecological processes are associated with ecological features at multiple levels, providing a novel insight into microbial community assembly in extremely acidic environments. IMPORTANCE Unraveling the forces driving community assemblage is a core issue in microbial ecology, but how ecological constraints impose stochasticity and determinism remains unknown. This study presents a comprehensive investigation to uncover the association of ecological processes with species niche position, interaction patterns, microbial metabolisms, and viral infections, which provides novel insights into community assembly in extreme environments.
Collapse
Affiliation(s)
- Zhenghua Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Zhuzhong Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | | | - Teng Zhang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jing Wen
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Lei Zhou
- Hebei Key Laboratory of Highly Efficient Exploitation and Utilization of Radioactive Mineral Resources, Ganchan, China
| | - Guoping Jiang
- Hebei Key Laboratory of Highly Efficient Exploitation and Utilization of Radioactive Mineral Resources, Ganchan, China
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhendong Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ye Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Zhaoyue Yang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yabing Gu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
3
|
Guo X, Luo G, Hou F, Zhou C, Liu X, Lei Z, Niu D, Ran T, Tan Z. A review of bacteriophage and their application in domestic animals in a post-antibiotic era. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174931. [PMID: 39043300 DOI: 10.1016/j.scitotenv.2024.174931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Bacteriophages (phages for short) are the most abundant biological entities on Earth and are natural enemies of bacteria. Genomics and molecular biology have identified subtle and complex relationships among phages, bacteria and their animal hosts. This review covers composition, diversity and factors affecting gut phage, their lifecycle in the body, and interactions with bacteria and hosts. In addition, research regarding phage in poultry, aquaculture and livestock are summarized, and application of phages in antibiotic substitution, phage therapy and food safety are reviewed.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Guowang Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiu Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Dongyan Niu
- Faculty of Veterinary Medicine, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Tao Ran
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
4
|
Woudstra C, Sørensen AN, Sørensen MCH, Brøndsted L. Strategies for developing phages into novel antimicrobial tailocins. Trends Microbiol 2024; 32:996-1006. [PMID: 38580606 DOI: 10.1016/j.tim.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Tailocins are high-molecular-weight bacteriocins produced by bacteria to kill related environmental competitors by binding and puncturing their target. Tailocins are promising alternative antimicrobials, yet the diversity of naturally occurring tailocins is limited. The structural similarities between phage tails and tailocins advocate using phages as scaffolds for developing new tailocins. This article reviews three strategies for producing tailocins: disrupting the capsid-tail junction of phage particles, blocking capsid assembly during phage propagation, and creating headless phage particles synthetically. Particularly appealing is the production of tailocins through synthetic biology using phages with contractile tails as scaffolds to unlock the antimicrobial potential of tailocins.
Collapse
Affiliation(s)
- Cedric Woudstra
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Martine C Holst Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
5
|
Yang Y, Yan J, Olson R, Jiang X. Comprehensive Genomic and Evolutionary Analysis of Biofilm Matrix Clusters and Proteins in the Vibrio Genus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608685. [PMID: 39372729 PMCID: PMC11451748 DOI: 10.1101/2024.08.19.608685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Vibrio cholerae pathogens cause cholera, an acute diarrheal disease resulting in significant morbidity and mortality worldwide. Biofilm formation by V. cholerae enhances its survival in natural ecosystems and facilitates transmission during cholera outbreaks. Critical components of the biofilm matrix are the Vibrio polysaccharide (VPS) produced by the vps-1 and vps-2 gene clusters, and biofilm matrix proteins encoded in the rbm cluster. However, the biofilm matrix clusters and associated matrix proteins in other Vibrio species remain under investigated, and their evolutionary patterns are largely unknown. In this study, we systematically annotated the biofilm matrix clusters across 6,121 Vibrio genomes, revealing their distribution, diversity, and evolution. We found that biofilm matrix clusters not only exist in V. cholerae but also in phylogenetically distant Vibrio species. Additionally, vps-1 clusters tend to co-locate with rbmABC genes, while vps-2 clusters are often adjacent to rbmDEF genes in various Vibrio species, which helps explain the separation of these clusters by the rbm cluster in well-characterized V. cholerae strains. Evolutionary analysis of RbmC and Bap1 reveals that these two major biofilm matrix proteins are sequentially and structurally related and have undergone domain/modular alterations during their evolution. RbmC genes are more prevalent, while bap1 likely resulted from an ancient duplication event of rbmC and is only present in a major clade of species containing rbmC counterparts. Notably, a novel loop-less Bap1 variant, identified in two subspecies clades of V. cholerae, was found to be associated with altered biofilm formation and the loss of antibiotic efflux pumps and chemotaxis. Another rbm cluster gene, rbmB, involved in biofilm dispersal, was found to share a common ancestor with Vibrio prophage pectin lyase-like tail proteins, indicating its functional and evolutionary linkages to Vibriophage proteins. In summary, our findings establish a foundational understanding of the proteins and gene clusters that contribute to Vibrio biofilm formation from an evolutionary perspective across a broad taxonomic scale. This knowledge paves the way for future strategies aimed at engineering and controlling biofilms through genetic modification.
Collapse
Affiliation(s)
- Yiyan Yang
- Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Rich Olson
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, USA
| | - Xiaofang Jiang
- Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Stiffler AK, Hesketh-Best PJ, Varona NS, Zagame A, Wallace BA, Lapointe BE, Silveira CB. Genomic and induction evidence for bacteriophage contributions to sargassum-bacteria symbioses. MICROBIOME 2024; 12:143. [PMID: 39090708 PMCID: PMC11295528 DOI: 10.1186/s40168-024-01860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Symbioses between primary producers and bacteria are crucial for nutrient exchange that fosters host growth and niche adaptation. Yet, how viruses that infect bacteria (phages) influence these bacteria-eukaryote interactions is still largely unknown. Here, we investigate the role of viruses on the genomic diversity and functional adaptations of bacteria associated with pelagic sargassum. This brown alga has dramatically increased its distribution range in the Atlantic in the past decade and is predicted to continue expanding, imposing severe impacts on coastal ecosystems, economies, and human health. RESULTS We reconstructed 73 bacterial and 3963 viral metagenome-assembled genomes (bMAGs and vMAGs, respectively) from coastal Sargassum natans VIII and surrounding seawater. S. natans VIII bMAGs were enriched in prophages compared to seawater (28% and 0.02%, respectively). Rhodobacterales and Synechococcus bMAGs, abundant members of the S. natans VIII microbiome, were shared between the algae and seawater but were associated with distinct phages in each environment. Genes related to biofilm formation and quorum sensing were enriched in S. natans VIII phages, indicating their potential to influence algal association in their bacterial hosts. In-vitro assays with a bacterial community harvested from sargassum surface biofilms and depleted of free viruses demonstrated that these bacteria are protected from lytic infection by seawater viruses but contain intact and inducible prophages. These bacteria form thicker biofilms when growing on sargassum-supplemented seawater compared to seawater controls, and phage induction using mitomycin C was associated with a significant decrease in biofilm formation. The induced metagenomes were enriched in genomic sequences classified as temperate viruses compared to uninduced controls. CONCLUSIONS Our data shows that prophages contribute to the flexible genomes of S. natans VIII-associated bacteria. These prophages encode genes with symbiotic functions, and their induction decreases biofilm formation, an essential capacity for flexible symbioses between bacteria and the alga. These results indicate that prophage acquisition and induction contribute to genomic and functional diversification during sargassum-bacteria symbioses, with potential implications for algae growth. Video Abstract.
Collapse
Affiliation(s)
| | - Poppy J Hesketh-Best
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Natascha S Varona
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Ashley Zagame
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Bailey A Wallace
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Brian E Lapointe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, 34946, USA
| | - Cynthia B Silveira
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, 33149, USA.
| |
Collapse
|
7
|
Santoriello FJ, Bassler BL. The LuxO-OpaR quorum-sensing cascade differentially controls Vibriophage VP882 lysis-lysogeny decision making in liquid and on surfaces. PLoS Genet 2024; 20:e1011243. [PMID: 39078816 PMCID: PMC11315295 DOI: 10.1371/journal.pgen.1011243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/09/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Quorum sensing (QS) is a process of cell-to-cell communication that bacteria use to synchronize collective behaviors. QS relies on the production, release, and group-wide detection of extracellular signaling molecules called autoinducers. Vibrios use two QS systems: the LuxO-OpaR circuit and the VqmA-VqmR circuit. Both QS circuits control group behaviors including biofilm formation and surface motility. The Vibrio parahaemolyticus temperate phage φVP882 encodes a VqmA homolog (called VqmAφ). When VqmAφ is produced by φVP882 lysogens, it binds to the host-produced autoinducer called DPO and launches the φVP882 lytic cascade. This activity times induction of lysis with high host cell density and presumably promotes maximal phage transmission to new cells. Here, we explore whether, in addition to induction from lysogeny, QS controls the initial establishment of lysogeny by φVP882 in naïve host cells. Using mutagenesis, phage infection assays, and phenotypic analyses, we show that φVP882 connects its initial lysis-lysogeny decision to both host cell density and whether the host resides in liquid or on a surface. Host cells in the low-cell-density QS state primarily undergo lysogenic conversion. The QS regulator LuxO~P promotes φVP882 lysogenic conversion of low-cell-density planktonic host cells. By contrast, the ScrABC surface-sensing system regulates lysogenic conversion of low-cell-density surface-associated host cells. ScrABC controls the abundance of the second messenger molecule cyclic diguanylate, which in turn, modulates motility. The scrABC operon is only expressed when its QS repressor, OpaR, is absent. Thus, at low cell density, QS-dependent derepression of scrABC drives lysogenic conversion in surface-associated host cells. These results demonstrate that φVP882 integrates cues from multiple sensory pathways into its lifestyle decision making upon infection of a new host cell.
Collapse
Affiliation(s)
- Francis J. Santoriello
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
8
|
Al-Faliti M, Wang P, Smith AL, Delgado Vela J. Phage phylogeny, molecular signaling, and auxiliary antimicrobial resistance in aerobic and anaerobic membrane bioreactors. WATER RESEARCH 2024; 256:121620. [PMID: 38677036 DOI: 10.1016/j.watres.2024.121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024]
Abstract
Phage emit communication signals that inform their lytic and lysogenic life cycles. However, little is known regarding the abundance and diversity of the genes associated with phage communication systems in wastewater treatment microbial communities. This study focused on phage communities within two distinct biochemical wastewater environments, specifically aerobic membrane bioreactors (AeMBRs) and anaerobic membrane bioreactors (AnMBRs) exposed to varying antibiotic concentrations. Metagenomic data from the bench-scale systems were analyzed to explore phage phylogeny, life cycles, and genetic capacity for antimicrobial resistance and quorum sensing. Two dominant phage families, Schitoviridae and Peduoviridae, exhibited redox-dependent dynamics. Schitoviridae prevailed in anaerobic conditions, while Peduoviridae dominated in aerobic conditions. Notably, the abundance of lytic and lysogenic proteins varied across conditions, suggesting the coexistence of both life cycles. Furthermore, the presence of antibiotic resistance genes (ARGs) within viral contigs highlighted the potential for phage to transfer ARGs in AeMBRs. Finally, quorum sensing genes in the virome of AeMBRs indicated possible molecular signaling between phage and bacteria. Overall, this study provides insights into the dynamics of viral communities across varied redox conditions in MBRs. These findings shed light on phage life cycles, and auxiliary genetic capacity such as antibiotic resistance and bacterial quorum sensing within wastewater treatment microbial communities.
Collapse
Affiliation(s)
- Mitham Al-Faliti
- Department of Civil and Environmental Engineering, Howard University, Washington, D.C., USA
| | - Phillip Wang
- Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jeseth Delgado Vela
- Department of Civil and Environmental Engineering, Howard University, Washington, D.C., USA.
| |
Collapse
|
9
|
Gucwa K, Wons E, Wisniewska A, Jakalski M, Dubiak Z, Kozlowski LP, Mruk I. Lethal perturbation of an Escherichia coli regulatory network is triggered by a restriction-modification system's regulator and can be mitigated by excision of the cryptic prophage Rac. Nucleic Acids Res 2024; 52:2942-2960. [PMID: 38153127 PMCID: PMC11014345 DOI: 10.1093/nar/gkad1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023] Open
Abstract
Bacterial gene regulatory networks orchestrate responses to environmental challenges. Horizontal gene transfer can bring in genes with regulatory potential, such as new transcription factors (TFs), and this can disrupt existing networks. Serious regulatory perturbations may even result in cell death. Here, we show the impact on Escherichia coli of importing a promiscuous TF that has adventitious transcriptional effects within the cryptic Rac prophage. A cascade of regulatory network perturbations occurred on a global level. The TF, a C regulatory protein, normally controls a Type II restriction-modification system, but in E. coli K-12 interferes with expression of the RacR repressor gene, resulting in de-repression of the normally-silent Rac ydaT gene. YdaT is a prophage-encoded TF with pleiotropic effects on E. coli physiology. In turn, YdaT alters expression of a variety of bacterial regulons normally controlled by the RcsA TF, resulting in deficient lipopolysaccharide biosynthesis and cell division. At the same time, insufficient RacR repressor results in Rac DNA excision, halting Rac gene expression due to loss of the replication-defective Rac prophage. Overall, Rac induction appears to counteract the lethal toxicity of YdaT. We show here that E. coli rewires its regulatory network, so as to minimize the adverse regulatory effects of the imported C TF. This complex set of interactions may reflect the ability of bacteria to protect themselves by having robust mechanisms to maintain their regulatory networks, and/or suggest that regulatory C proteins from mobile operons are under selection to manipulate their host's regulatory networks for their own benefit.
Collapse
Affiliation(s)
- Katarzyna Gucwa
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Ewa Wons
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Aleksandra Wisniewska
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Marcin Jakalski
- 3P-Medicine Laboratory, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Zuzanna Dubiak
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Lukasz Pawel Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| |
Collapse
|
10
|
Roughgarden J. Lytic/Lysogenic Transition as a Life-History Switch. Virus Evol 2024; 10:veae028. [PMID: 38756985 PMCID: PMC11097211 DOI: 10.1093/ve/veae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/15/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
The transition between lytic and lysogenic life cycles is the most important feature of the life-history of temperate viruses. To explain this transition, an optimal life-history model is offered based a discrete-time formulation of phage/bacteria population dynamics that features infection of bacteria by Poisson sampling of virions from the environment. The time step is the viral latency period. In this model, density-dependent viral absorption onto the bacterial surface produces virus/bacteria coexistence and density dependence in bacterial growth is not needed. The formula for the transition between lytic and lysogenic phases is termed the 'fitness switch'. According to the model, the virus switches from lytic to lysogenic when its population grows faster as prophage than as virions produced by lysis of the infected cells, and conversely for the switch from lysogenic to lytic. A prophage that benefits the bacterium it infects automatically incurs lower fitness upon exiting the bacterial genome, resulting in its becoming locked into the bacterial genome in what is termed here as a 'prophage lock'. The fitness switch qualitatively predicts the ecogeographic rule that environmental enrichment leads to microbialization with a concomitant increase in lysogeny, fluctuating environmental conditions promote virus-mediated horizontal gene transfer, and prophage-containing bacteria can integrate into the microbiome of a eukaryotic host forming a functionally integrated tripartite holobiont. These predictions accord more with the 'Piggyback-the-Winner' hypothesis than with the 'Kill-the-Winner' hypothesis in virus ecology.
Collapse
Affiliation(s)
- Joan Roughgarden
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Yu X, Cheng L, Yi X, Li B, Li X, Liu X, Liu Z, Kong X. Gut phageome: challenges in research and impact on human microbiota. Front Microbiol 2024; 15:1379382. [PMID: 38585689 PMCID: PMC10995246 DOI: 10.3389/fmicb.2024.1379382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
The human gut microbiome plays a critical role in maintaining our health. Fluctuations in the diversity and structure of the gut microbiota have been implicated in the pathogenesis of several metabolic and inflammatory conditions. Dietary patterns, medication, smoking, alcohol consumption, and physical activity can all influence the abundance of different types of microbiota in the gut, which in turn can affect the health of individuals. Intestinal phages are an essential component of the gut microbiome, but most studies predominantly focus on the structure and dynamics of gut bacteria while neglecting the role of phages in shaping the gut microbiome. As bacteria-killing viruses, the distribution of bacteriophages in the intestine, their role in influencing the intestinal microbiota, and their mechanisms of action remain elusive. Herein, we present an overview of the current knowledge of gut phages, their lifestyles, identification, and potential impact on the gut microbiota.
Collapse
Affiliation(s)
- Xiao Yu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Cheng
- Department of Clinical Laboratory and Pathology, Hospital of Shanxi People’s Armed Police, Taiyuan, China
| | - Xin Yi
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Bing Li
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xueqin Li
- Department of Pulmonary and Critical Care Medicine, The General Hospital of Jincheng Coal Industry Group, Jincheng, China
| | - Xiang Liu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhihong Liu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaomei Kong
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Vu TN, Clark JR, Jang E, D'Souza R, Nguyen LP, Pinto NA, Yoo S, Abadie R, Maresso AW, Yong D. Appelmans protocol - A directed in vitro evolution enables induction and recombination of prophages with expanded host range. Virus Res 2024; 339:199272. [PMID: 37981215 PMCID: PMC10730860 DOI: 10.1016/j.virusres.2023.199272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
Infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) present significant healthcare challenges due to limited treatment options. Bacteriophage (phage) therapy offers potential as an alternative treatment. However, the high host specificity of phages poses challenges for their therapeutic application. To broaden the phage spectrum, laboratory-based phage training using the Appelmans protocol was employed in this study. As a result, the protocol successfully expanded the host range of a phage cocktail targeting CRAB. Further analysis revealed that the expanded host range phages isolated from the output cocktail were identified as recombinant derivatives originating from prophages induced from encountered bacterial strains. These findings provide valuable genetic insights into the protocol's mechanism when applied to phages infecting A. baumannii strains that have never been investigated before. However, it is noteworthy that the expanded host range phages obtained from this protocol exhibited limited stability, raising concerns about their suitability for therapeutic purposes.
Collapse
Affiliation(s)
- Thao Nguyen Vu
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Justin Ryan Clark
- Tailored Antibacterials and Innovative Laboratories for Phage Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, US
| | - Eris Jang
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea; University of Georgia Terry College of Business, Athens, GA, US
| | - Roshan D'Souza
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Le Phuong Nguyen
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, US
| | - Naina Adren Pinto
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Seongjun Yoo
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Ricardo Abadie
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Anthony William Maresso
- Tailored Antibacterials and Innovative Laboratories for Phage Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, US
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
13
|
Vale FF, Roberts RJ, Kobayashi I, Camargo MC, Rabkin CS. Gene content, phage cycle regulation model and prophage inactivation disclosed by prophage genomics in the Helicobacter pylori Genome Project. Gut Microbes 2024; 16:2379440. [PMID: 39132840 PMCID: PMC11321410 DOI: 10.1080/19490976.2024.2379440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Prophages can have major clinical implications through their ability to change pathogenic bacterial traits. There is limited understanding of the prophage role in ecological, evolutionary, adaptive processes and pathogenicity of Helicobacter pylori, a widespread bacterium causally associated with gastric cancer. Inferring the exact prophage genomic location and completeness requires complete genomes. The international Helicobacter pylori Genome Project (HpGP) dataset comprises 1011 H. pylori complete clinical genomes enriched with epigenetic data. We thoroughly evaluated the H. pylori prophage genomic content in the HpGP dataset. We investigated population evolutionary dynamics through phylogenetic and pangenome analyses. Additionally, we identified genome rearrangements and assessed the impact of prophage presence on bacterial gene disruption and methylome. We found that 29.5% (298) of the HpGP genomes contain prophages, of which only 32.2% (96) were complete, minimizing the burden of prophage carriage. The prevalence of H. pylori prophage sequences was variable by geography and ancestry, but not by disease status of the human host. Prophage insertion occasionally results in gene disruption that can change the global bacterial epigenome. Gene function prediction allowed the development of the first model for lysogenic-lytic cycle regulation in H. pylori. We have disclosed new prophage inactivation mechanisms that appear to occur by genome rearrangement, merger with other mobile elements, and pseudogene accumulation. Our analysis provides a comprehensive framework for H. pylori prophage biological and genomics, offering insights into lysogeny regulation and bacterial adaptation to prophages.
Collapse
Affiliation(s)
- Filipa F. Vale
- BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | | | - Ichizo Kobayashi
- Research Center for Micro-Nano Technology, Hosei University, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Laboratory of Genome Informatics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - M. Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Charles S. Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
14
|
Pei Z, Liu Y, Chen Y, Pan T, Sun X, Wang H, Ross RP, Lu W, Chen W. A universe of human gut-derived bacterial prophages: unveiling the hidden viral players in intestinal microecology. Gut Microbes 2024; 16:2309684. [PMID: 39679618 DOI: 10.1080/19490976.2024.2309684] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 12/17/2024] Open
Abstract
Prophages, which are an existing form of temperate phages that integrate into host genomes, have been found extensively present in diverse bacterial species. The human gut microbiome, characterized by its complexity, dynamism, and interconnectivity among multiple species, remains inadequately understood in terms of the global landscape of bacterial prophages. Here, we analyzed 43,942 human gut-derived bacterial genomes (439 species of 12 phyla) and identified 105,613 prophage regions in ~ 92% of them. 16254 complete prophages were distributed in ~ 24% of bacteria, indicating an extremely uneven prophage distribution across various species within the human gut. Among all identified prophages, ~4% possessed cross-genera (2-20 genera) integration capacity, while ~ 17% displayed broad infection host ranges (targeting 2-35 genera). Functional gene annotation revealed that antibiotic-resistance genes and toxin-related genes were detected in ~ 2.5% and ~ 5.8% of all prophages, respectively. Furthermore, through sequence alignments between our obtained prophages and publicly available human gut phageome contigs, we have observed that ~ 72% of non-redundant prophages are previously unreported genomes, and they illuminate ~ 6.5-9.5% of the individual intestinal "viral dark matter". Our study represents the first comprehensive depiction of human gut-derived prophages, provides a substantial collection of reference sequences for forthcoming human gut phageome-related investigations, and potentially enables better risk assessment of prophage dissemination.
Collapse
Affiliation(s)
- Zhangming Pei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R China
| | - Yufei Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R China
| | - Yutao Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R China
| | - Tong Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R China
| | - Xihao Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R China
| | - R Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R China
| |
Collapse
|
15
|
Dougherty PE, Nielsen TK, Riber L, Lading HH, Forero-Junco LM, Kot W, Raaijmakers JM, Hansen LH. Widespread and largely unknown prophage activity, diversity, and function in two genera of wheat phyllosphere bacteria. THE ISME JOURNAL 2023; 17:2415-2425. [PMID: 37919394 PMCID: PMC10689766 DOI: 10.1038/s41396-023-01547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Environmental bacteria host an enormous number of prophages, but their diversity and natural functions remain largely elusive. Here, we investigate prophage activity and diversity in 63 Erwinia and Pseudomonas strains isolated from flag leaves of wheat grown in a single field. Introducing and validating Virion Induction Profiling Sequencing (VIP-Seq), we identify and quantify the activity of 120 spontaneously induced prophages, discovering that some phyllosphere bacteria produce more than 108 virions/mL in overnight cultures, with significant induction also observed in planta. Sequence analyses and plaque assays reveal E. aphidicola prophages contribute a majority of intraspecies genetic diversity and divide their bacterial hosts into antagonistic factions engaged in widespread microbial warfare, revealing the importance of prophage-mediated microdiversity. When comparing spontaneously active prophages with predicted prophages we also find insertion sequences are strongly correlated with non-active prophages. In conclusion, we discover widespread and largely unknown prophage diversity and function in phyllosphere bacteria.
Collapse
Affiliation(s)
- Peter Erdmann Dougherty
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Tue Kjærgaard Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Helen Helgå Lading
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
16
|
Burian A, Gruber-Dorninger M, Schweichart J, Yasindi A, Bulling M, Jirsa F, Winter C, Muia AW, Schagerl M. Drivers of microbial food-web structure along productivity gradients. Proc Biol Sci 2023; 290:20231531. [PMID: 37876193 PMCID: PMC10598424 DOI: 10.1098/rspb.2023.1531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Ratios between viruses, heterotrophic prokaryotes and chlorophyll a are key indicators of microbial food structure and both virus-prokaryote and prokaryote-chlorophyll ratios have been proposed to decrease with system productivity. However, the mechanisms underlying these responses are still insufficiently resolved and their consistency across aquatic ecosystem types requires critical evaluation. We assessed microbial community ratios in highly productive African soda-lakes and used our data from naturally hypereutrophic systems which are largely underrepresented in literature, to complement earlier across-system meta-analyses. In contrast to marine and freshwater systems, prokaryote-chlorophyll ratios in African soda-lakes did not decrease along productivity gradients. High-resolution time series from two soda-lakes indicated that this lack of response could be driven by a weakened top-down control of heterotrophic prokaryotes. Our analysis of virus-prokaryote relationships, revealed a reduction of virus-prokaryote ratios by high suspended particle concentrations in soda-lakes. This effect, likely driven by the adsorption of free-living viruses, was also found in three out of four additionally analysed marine datasets. However, the decrease of virus-prokaryote ratios previously reported in highly productive marine systems, was neither detectable in soda-lakes nor freshwaters. Hence, our study demonstrates that system-specific analyses can reveal the diversity of mechanisms that structure microbial food-webs and shape their response to productivity increases.
Collapse
Affiliation(s)
- Alfred Burian
- Department of Computational Landscape Ecology, UFZ– Helmholtz Centre for Environmental Research, Leipzig, Germany
- Marine Ecology Department, Lurio University, Nampula, Mozambique
| | | | - Johannes Schweichart
- Biology Centre, University of South Bohemia in České, České Budějovice, Czech Republic
| | - Andrew Yasindi
- Department of Biological Sciences, Egerton University, Njoro, Kenya
| | - Mark Bulling
- Environmental Sustainability Research Centre, University of Derby, Derby, UK
| | - Franz Jirsa
- Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Christian Winter
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | | | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Attrill EL, Łapińska U, Westra ER, Harding SV, Pagliara S. Slow growing bacteria survive bacteriophage in isolation. ISME COMMUNICATIONS 2023; 3:95. [PMID: 37684358 PMCID: PMC10491631 DOI: 10.1038/s43705-023-00299-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
The interactions between bacteria and bacteriophage have important roles in the global ecosystem; in turn changes in environmental parameters affect the interactions between bacteria and phage. However, there is a lack of knowledge on whether clonal bacterial populations harbour different phenotypes that respond to phage in distinct ways and whether the abundance of such phenotypes within bacterial populations is affected by variations in environmental parameters. Here we study the impact of variations in nutrient availability, bacterial growth rate and phage abundance on the interactions between the phage T4 and individual Escherichia coli cells confined in spatial refuges. Surprisingly, we found that fast growing bacteria survive together with all of their clonal kin cells, whereas slow growing bacteria survive in isolation. We also discovered that the number of bacteria that survive in isolation decreases at increasing phage doses possibly due to lysis inhibition in the presence of secondary adsorptions. We further show that these changes in the phenotypic composition of the E. coli population have important consequences on the bacterial and phage population dynamics and should therefore be considered when investigating bacteria-phage interactions in ecological, health or food production settings in structured environments.
Collapse
Affiliation(s)
- Erin L Attrill
- Living Systems Institute and Biosciences, University of Exeter, Exeter, UK
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, UK
| | - Edze R Westra
- Environment and Sustainability Institute and Biosciences, University of Exeter, Penryn, UK
| | - Sarah V Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, UK.
| |
Collapse
|
18
|
Chen X, Hu C, Wei W, Yang Y, Weinbauer MG, Li H, Ren S, Ma R, Huang Y, Luo T, Jiao N, Zhang R. Virus-Host Interactions Drive Contrasting Bacterial Diel Dynamics in the Ocean. RESEARCH (WASHINGTON, D.C.) 2023; 6:0213. [PMID: 37614364 PMCID: PMC10443526 DOI: 10.34133/research.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/05/2023] [Indexed: 08/25/2023]
Abstract
Marine organisms perform a sea of diel rhythmicity. Planktonic diel dynamics have been shown to be driven by light, energy resources, circadian rhythms, and the coordinated coupling of photoautotrophs and heterotrophic bacterioplankton. Here, we explore the diel fluctuation of viral production and decay and their impact on the total and active bacterial community in the coastal and open seawaters of the South China Sea. The results showed that the night-production diel pattern of lytic viral production was concurrent with the lower viral decay at night, contributing to the accumulation of the viral population size during the night for surface waters. The diel variations in bacterial activity, community composition, and diversity were found highly affected by viral dynamics. This was revealed by the finding that bacterial community diversity was positively correlated to lytic viral production in the euphotic zone of the open ocean but was negatively related to lysogenic viral production in the coastal ocean. Such distinct but contrasting correlations suggest that viral life strategies can not only contribute to diversifying bacterial community but also potentially piggyback their host to dominate bacterial community, suggesting the tightly synchronized depth-dependent and habitat-specific diel patterns of virus-host interactions. It further implies that viruses serve as an ecologically important driver of bacterial diel dynamics across the ocean, highlighting the viral roles in bacterial ecological and biogeochemical processes in the ocean.
Collapse
Affiliation(s)
- Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Chen Hu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Wei Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yunlan Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Markus G Weinbauer
- Sorbonne Universités, UPMC, Université Paris 06, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), Villefranche-sur-Mer 06230, France
| | - Hongbo Li
- National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, PR China
| | - Shiying Ren
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Ruijie Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Yibin Huang
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
- NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, WA, USA
| | - Tingwei Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518055, PR China
| |
Collapse
|
19
|
Duddy OP, Silpe JE, Fei C, Bassler BL. Natural silencing of quorum-sensing activity protects Vibrio parahaemolyticus from lysis by an autoinducer-detecting phage. PLoS Genet 2023; 19:e1010809. [PMID: 37523407 PMCID: PMC10426928 DOI: 10.1371/journal.pgen.1010809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/15/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023] Open
Abstract
Quorum sensing (QS) is a chemical communication process that bacteria use to track population density and orchestrate collective behaviors. QS relies on the production, accumulation, and group-wide detection of extracellular signal molecules called autoinducers. Vibriophage 882 (phage VP882), a bacterial virus, encodes a homolog of the Vibrio QS receptor-transcription factor, called VqmA, that monitors the Vibrio QS autoinducer DPO. Phage VqmA binds DPO at high host-cell density and activates transcription of the phage gene qtip. Qtip, an antirepressor, launches the phage lysis program. Phage-encoded VqmA when bound to DPO also manipulates host QS by activating transcription of the host gene vqmR. VqmR is a small RNA that controls downstream QS target genes. Here, we sequence Vibrio parahaemolyticus strain O3:K6 882, the strain from which phage VP882 was initially isolated. The chromosomal region normally encoding vqmR and vqmA harbors a deletion encompassing vqmR and a portion of the vqmA promoter, inactivating that QS system. We discover that V. parahaemolyticus strain O3:K6 882 is also defective in its other QS systems, due to a mutation in luxO, encoding the central QS transcriptional regulator LuxO. Both the vqmR-vqmA and luxO mutations lock V. parahaemolyticus strain O3:K6 882 into the low-cell density QS state. Reparation of the QS defects in V. parahaemolyticus strain O3:K6 882 promotes activation of phage VP882 lytic gene expression and LuxO is primarily responsible for this effect. Phage VP882-infected QS-competent V. parahaemolyticus strain O3:K6 882 cells lyse more rapidly and produce more viral particles than the QS-deficient parent strain. We propose that, in V. parahaemolyticus strain O3:K6 882, constitutive maintenance of the low-cell density QS state suppresses the launch of the phage VP882 lytic cascade, thereby protecting the bacterial host from phage-mediated lysis.
Collapse
Affiliation(s)
- Olivia P. Duddy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Justin E. Silpe
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Chenyi Fei
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
20
|
Mauritzen JJ, Søndberg E, Kalatzis PG, Roager L, Gram L, Svenningsen SL, Middelboe M. Strain-specific quorum-sensing responses determine virulence properties in Vibrio anguillarum. Environ Microbiol 2023; 25:1344-1362. [PMID: 36807464 DOI: 10.1111/1462-2920.16356] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Bacterial populations communicate using quorum-sensing (QS) molecules and switch on QS regulation to engage in coordinated behaviour such as biofilm formation or virulence. The marine fish pathogen Vibrio anguillarum harbours several QS systems, and our understanding of its QS regulation is still fragmentary. Here, we identify the VanT-QS regulon and explore the diversity and trajectory of traits under QS regulation in Vibrio anguillarum through comparative transcriptomics of two wildtype strains and their corresponding mutants artificially locked in QS-on (ΔvanO) or QS-off (ΔvanT) states. Intriguingly, the two wildtype populations showed different QS responses to cell density changes and operated primarily in the QS-on and QS-off spectrum, respectively. Examining 27 V. anguillarum strains revealed that ~11% were QS-negative, and GFP-reporter measurements of nine QS-positive strains revealed a highly strain-specific nature of the QS responses. We showed that QS controls a plethora of genes involved in processes such as central metabolism, biofilm formation, competence, T6SS, and virulence properties in V. anguillarum, with large strain-specific differences. Moreover, we demonstrated that the QS state is an important driver of virulence towards fish larvae in one of two V. anguillarum strains. We speculate that infections by mixed-strain communities spanning diverse QS strategies optimize the infection efficiency of the pathogen.
Collapse
Affiliation(s)
- Jesper Juel Mauritzen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Emilie Søndberg
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Panos G Kalatzis
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Line Roager
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sine Lo Svenningsen
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Mathias Middelboe
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
- Department of Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
21
|
Duddy OP, Silpe JE, Fei C, Bassler BL. Natural Silencing of Quorum-Sensing Activity Protects Vibrio parahaemolyticus from Lysis by an Autoinducer-Detecting Phage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543668. [PMID: 37333398 PMCID: PMC10274711 DOI: 10.1101/2023.06.05.543668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Quorum sensing (QS) is a chemical communication process that bacteria use to track population density and orchestrate collective behaviors. QS relies on the production, accumulation, and group-wide detection of extracellular signal molecules called autoinducers. Vibriophage 882 (phage VP882), a bacterial virus, encodes a homolog of the Vibrio QS receptor-transcription factor, called VqmA, that monitors the Vibrio QS autoinducer DPO. Phage VqmA binds DPO at high host-cell density and activates transcription of the phage gene qtip . Qtip, an antirepressor, launches the phage lysis program. Phage-encoded VqmA when bound to DPO also manipulates host QS by activating transcription of the host gene vqmR . VqmR is a small RNA that controls downstream QS target genes. Here, we sequence Vibrio parahaemolyticus strain O3:K6 882, the strain from which phage VP882 was initially isolated. The chromosomal region normally encoding vqmR and vqmA harbors a deletion encompassing vqmR and a portion of the vqmA promoter, inactivating that QS system. We discover that V. parahaemolyticus strain O3:K6 882 is also defective in its other QS systems, due to a mutation in luxO , encoding the central QS transcriptional regulator LuxO. Both the vqmR-vqmA and luxO mutations lock V. parahaemolyticus strain O3:K6 882 into the low-cell density QS state. Reparation of the QS defects in V. parahaemolyticus strain O3:K6 882 promotes activation of phage VP882 lytic gene expression and LuxO is primarily responsible for this effect. Phage VP882-infected QS-competent V. parahaemolyticus strain O3:K6 882 cells lyse more rapidly and produce more viral particles than the QS-deficient parent strain. We propose that, in V. parahaemolyticus strain O3:K6 882, constitutive maintenance of the low-cell density QS state suppresses the launch of the phage VP882 lytic cascade, thereby protecting the bacterial host from phage-mediated lysis.
Collapse
Affiliation(s)
- Olivia P. Duddy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Justin E. Silpe
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Chenyi Fei
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
22
|
Miller Conrad LC, Perez LJ. A Geneticist Transcribing the Chemical Language of Bacteria. Isr J Chem 2023; 63:e202200079. [PMID: 37469628 PMCID: PMC10353724 DOI: 10.1002/ijch.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 12/05/2022]
Abstract
The study of quorum sensing, bacterial cell-to-cell communication mediated by the production and detection of small molecule signals, has skyrocketed since its discovery in the last third of the 20th century. Building from early investigations of bacterial bioluminescence, the process has been characterized to control a numerous and growing number of group behaviors, including virulence and biofilm formation. Bonnie Bassler has made key contributions to the understanding of quorum sensing, leading interdisciplinary efforts to characterize key signaling pathway components and their respective signaling molecules across a range of gram-negative bacteria. This review highlights her work in the field, with a particular emphasis on the chemical contributions of her work.
Collapse
Affiliation(s)
- Laura C. Miller Conrad
- Department of Chemistry, San José State University, 1 Washington Sq, San Jose, CA 95192, USA
| | - Lark J. Perez
- Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| |
Collapse
|
23
|
Molina-Quiroz RC, Silva-Valenzuela CA. Interactions of Vibrio phages and their hosts in aquatic environments. Curr Opin Microbiol 2023; 74:102308. [PMID: 37062175 DOI: 10.1016/j.mib.2023.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 04/18/2023]
Abstract
Bacteriophages (phages) are viruses that specifically infect bacteria. These viruses were discovered a century ago and have been used as a model system in microbial genetics and molecular biology. In order to survive, bacteria have to quickly adapt to phage challenges in their natural settings. In turn, phages continuously develop/evolve mechanisms for battling host defenses. A deeper understanding of the arms race between bacteria and phages is essential for the rational design of phage-based prophylaxis and therapies to prevent and treat bacterial infections. Vibrio species and their phages (vibriophages) are a suitable model to study these interactions. Phages are highly ubiquitous in aquatic environments and Vibrio are waterborne bacteria that must survive the constant attack by phages for successful transmission to their hosts. Here, we review relevant literature from the past two years to delve into the molecular interactions of Vibrio species and their phages in aquatic niches.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts Medical Center and Tufts University, Boston, MA, USA
| | | |
Collapse
|
24
|
Khani M, Hansen MF, Knøchel S, Rasekh B, Ghasemipanah K, Zamir SM, Nosrati M, Burmølle M. Antifouling potential of enzymes applied to Reverse Osmosis Membranes. Biofilm 2023; 5:100119. [PMID: 37131492 PMCID: PMC10149195 DOI: 10.1016/j.bioflm.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023] Open
Abstract
Many companies in the food industry apply reverse osmosis (RO) membranes to ensure high-quality reuse of water. Biofouling is however, a common, recalcitrant and recurring problem that blocks transport over membranes and decreases the water recovery. Microorganisms adhering to membranes may form biofilm and produce an extracellular matrix, which protects against external stress and ensures continuous attachment. Thus, various agents are tested for their ability to degrade and disperse biofilms. Here, we identified industrially relevant bacterial model communities that form biofilms on RO membranes used for treating process water before reuse. There was a marked difference in the biofilm forming capabilities of bacteria isolated from contaminated RO membranes. One species, Raoultella ornithinolytica, was particularly capable of forming biofilm and was included in most communities. The potential of different enzymes (Trypsin-EDTA, Proteinase K, α-Amylase, β-Mannosidase and Alginate lyase) as biofouling dispersing agents was evaluated at different concentrations (0.05 U/ml and 1.28 U/ml). Among the tested enzymes, β-Mannosidase was the only enzyme able to reduce biofilm formation significantly within 4 h of exposure at 25 °C (0.284 log reduction), and only at the high concentration. Longer exposure duration, however, resulted in significant biofilm reduction by all enzymes tested (0.459-0.717 log reduction) at both low and high concentrations. Using confocal laser scanning microscopy, we quantified the biovolume on RO membranes after treatment with two different enzyme mixtures. The application of proteinase K and β-Mannosidase significantly reduced the amount of attached biomass (43% reduction), and the combination of all five enzymes showed even stronger reducing effect (71% reduction). Overall, this study demonstrates a potential treatment strategy, using matrix-degrading enzymes for biofouled RO membranes in food processing water treatment streams. Future studies on optimization of buffer systems, temperature and other factors could facilitate cleaning operations based on enzymatic treatment extending the lifespan of membranes with a continuous flux.
Collapse
|
25
|
Unveil the Secret of the Bacteria and Phage Arms Race. Int J Mol Sci 2023; 24:ijms24054363. [PMID: 36901793 PMCID: PMC10002423 DOI: 10.3390/ijms24054363] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Bacteria have developed different mechanisms to defend against phages, such as preventing phages from being adsorbed on the surface of host bacteria; through the superinfection exclusion (Sie) block of phage's nucleic acid injection; by restricting modification (R-M) systems, CRISPR-Cas, aborting infection (Abi) and other defense systems to interfere with the replication of phage genes in the host; through the quorum sensing (QS) enhancement of phage's resistant effect. At the same time, phages have also evolved a variety of counter-defense strategies, such as degrading extracellular polymeric substances (EPS) that mask receptors or recognize new receptors, thereby regaining the ability to adsorb host cells; modifying its own genes to prevent the R-M systems from recognizing phage genes or evolving proteins that can inhibit the R-M complex; through the gene mutation itself, building nucleus-like compartments or evolving anti-CRISPR (Acr) proteins to resist CRISPR-Cas systems; and by producing antirepressors or blocking the combination of autoinducers (AIs) and its receptors to suppress the QS. The arms race between bacteria and phages is conducive to the coevolution between bacteria and phages. This review details bacterial anti-phage strategies and anti-defense strategies of phages and will provide basic theoretical support for phage therapy while deeply understanding the interaction mechanism between bacteria and phages.
Collapse
|
26
|
Kalatzis PG, Mauritzen JJ, Winther-Have CS, Michniewski S, Millard A, Tsertou MI, Katharios P, Middelboe M. Staying below the Radar: Unraveling a New Family of Ubiquitous "Cryptic" Non-Tailed Temperate Vibriophages and Implications for Their Bacterial Hosts. Int J Mol Sci 2023; 24:3937. [PMID: 36835353 PMCID: PMC9966536 DOI: 10.3390/ijms24043937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Bacteriophages are the most abundant biological entities in the oceans and play key roles in bacterial activity, diversity and evolution. While extensive research has been conducted on the role of tailed viruses (Class: Caudoviricetes), very little is known about the distribution and functions of the non-tailed viruses (Class: Tectiliviricetes). The recent discovery of the lytic Autolykiviridae family demonstrated the potential importance of this structural lineage, emphasizing the need for further exploration of the role of this group of marine viruses. Here, we report the novel family of temperate phages under the class of Tectiliviricetes, which we propose to name "Asemoviridae" with phage NO16 as a main representative. These phages are widely distributed across geographical regions and isolation sources and found inside the genomes of at least 30 species of Vibrio, in addition to the original V. anguillarum isolation host. Genomic analysis identified dif-like sites, suggesting that NO16 prophages recombine with the bacterial genome based on the XerCD site-specific recombination mechanism. The interactions between the NO16 phage and its V. anguillarum host were linked to cell density and phage-host ratio. High cell density and low phage predation levels were shown to favor the temperate over the lytic lifestyle for NO16 viruses, and their spontaneous induction rate was highly variable between different V. anguillarum lysogenic strains. NO16 prophages coexist with the V. anguillarum host in a mutualistic interaction by rendering fitness properties to the host, such as increased virulence and biofilm formation through lysogenic conversion, likely contributing to their global distribution.
Collapse
Affiliation(s)
- Panos G. Kalatzis
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Elsinore, Denmark
| | - Jesper Juel Mauritzen
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Elsinore, Denmark
| | | | - Slawomir Michniewski
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Maria Ioanna Tsertou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Former American Base of Gournes, 71500 Heraklion, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Former American Base of Gournes, 71500 Heraklion, Greece
| | - Mathias Middelboe
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Elsinore, Denmark
- Department of Biology, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
27
|
Molina-Quiroz RC, Camilli A, Silva-Valenzuela CA. Role of Bacteriophages in the Evolution of Pathogenic Vibrios and Lessons for Phage Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:149-173. [PMID: 36792875 PMCID: PMC10587905 DOI: 10.1007/978-3-031-22997-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Viruses of bacteria, i.e., bacteriophages (or phages for short), were discovered over a century ago and have played a major role as a model system for the establishment of the fields of microbial genetics and molecular biology. Despite the relative simplicity of phages, microbiologists are continually discovering new aspects of their biology including mechanisms for battling host defenses. In turn, novel mechanisms of host defense against phages are being discovered at a rapid clip. A deeper understanding of the arms race between bacteria and phages will continue to reveal novel molecular mechanisms and will be important for the rational design of phage-based prophylaxis and therapies to prevent and treat bacterial infections, respectively. Here we delve into the molecular interactions of Vibrio species and phages.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts Medical Center and Tufts University, Boston, MA, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, MA, USA
| | | |
Collapse
|
28
|
Zhang M, Zhang T, Yu M, Chen YL, Jin M. The Life Cycle Transitions of Temperate Phages: Regulating Factors and Potential Ecological Implications. Viruses 2022; 14:1904. [PMID: 36146712 PMCID: PMC9502458 DOI: 10.3390/v14091904] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Phages are viruses that infect bacteria. They affect various microbe-mediated processes that drive biogeochemical cycling on a global scale. Their influence depends on whether the infection is lysogenic or lytic. Temperate phages have the potential to execute both infection types and thus frequently switch their infection modes in nature, potentially causing substantial impacts on the host-phage community and relevant biogeochemical cycling. Understanding the regulating factors and outcomes of temperate phage life cycle transition is thus fundamental for evaluating their ecological impacts. This review thus systematically summarizes the effects of various factors affecting temperate phage life cycle decisions in both culturable phage-host systems and natural environments. The review further elucidates the ecological implications of the life cycle transition of temperate phages with an emphasis on phage/host fitness, host-phage dynamics, microbe diversity and evolution, and biogeochemical cycles.
Collapse
Affiliation(s)
- Menghui Zhang
- School of Advanced Manufacturing, Fuzhou University, Fuzhou 350000, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Tianyou Zhang
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Meishun Yu
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Min Jin
- School of Advanced Manufacturing, Fuzhou University, Fuzhou 350000, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| |
Collapse
|
29
|
Rossi A, Morlino MS, Gaspari M, Basile A, Kougias P, Treu L, Campanaro S. Analysis of the anaerobic digestion metagenome under environmental stresses stimulating prophage induction. MICROBIOME 2022; 10:125. [PMID: 35965344 PMCID: PMC9377139 DOI: 10.1186/s40168-022-01316-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The viral community has the potential to influence the structure of the microbiome and thus the yield of the anaerobic digestion process. However, the virome composition in anaerobic digestion is still under-investigated. A viral induction experiment was conducted on separate batches undergoing a series of DNA-damaging stresses, in order to coerce temperate viruses to enter the lytic cycle. RESULTS The sequencing of the metagenome revealed a viral community almost entirely composed of tailed bacteriophages of the order Caudovirales. Following a binning procedure 1,092 viral and 120 prokaryotic genomes were reconstructed, 64 of which included an integrated prophage in their sequence. Clustering of coverage profiles revealed the presence of species, both viral and microbial, sharing similar reactions to shocks. A group of viral genomes, which increase under organic overload and decrease under basic pH, uniquely encode the yopX gene, which is involved in the induction of temperate prophages. Moreover, the in-silico functional analysis revealed an enrichment of sialidases in viral genomes. These genes are associated with tail proteins and, as such, are hypothesised to be involved in the interaction with the host. Archaea registered the most pronounced changes in relation to shocks and featured behaviours not shared with other species. Subsequently, data from 123 different samples of the global anaerobic digestion database was used to determine coverage profiles of host and viral genomes on a broader scale. CONCLUSIONS Viruses are key components in anaerobic digestion environments, shaping the microbial guilds which drive the methanogenesis process. In turn, environmental conditions are pivotal in shaping the viral community and the rate of induction of temperate viruses. This study provides an initial insight into the complexity of the anaerobic digestion virome and its relation with the microbial community and the diverse environmental parameters. Video Abstract.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
| | - Maria Silvia Morlino
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
| | - Maria Gaspari
- Department of Hydraulics, Soil Science and Agricultural Engineering, Faculty of Agriculture, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Arianna Basile
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
| | - Panagiotis Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organisation Demeter, Thermi, 57001, Thessaloniki, Greece
| | - Laura Treu
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy.
| | - Stefano Campanaro
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
- CRIBI biotechnology center, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
| |
Collapse
|
30
|
Historical contingencies and phage induction diversify bacterioplankton communities at the microscale. Proc Natl Acad Sci U S A 2022; 119:e2117748119. [PMID: 35862452 PMCID: PMC9335236 DOI: 10.1073/pnas.2117748119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In many natural environments, microorganisms decompose microscale resource patches made of complex organic matter. The growth and collapse of populations on these resource patches unfold within spatial ranges of a few hundred micrometers or less, making such microscale ecosystems hotspots of heterotrophic metabolism. Despite the potential importance of patch-level dynamics for the large-scale functioning of heterotrophic microbial communities, we have not yet been able to delineate the ecological processes that control natural populations at the microscale. Here, we address this challenge by characterizing the natural marine communities that assembled on over 1,000 individual microscale particles of chitin, the most abundant marine polysaccharide. Using low-template shotgun metagenomics and imaging, we find significant variation in microscale community composition despite the similarity in initial species pools across replicates. Chitin-degrading taxa that were rare in seawater established large populations on a subset of particles, resulting in a wide range of predicted chitinolytic abilities and biomass at the level of individual particles. We show, through a mathematical model, that this variability can be attributed to stochastic colonization and historical contingencies affecting the tempo of growth on particles. We find evidence that one biological process leading to such noisy growth across particles is differential predation by temperate bacteriophages of chitin-degrading strains, the keystone members of the community. Thus, initial stochasticity in assembly states on individual particles, amplified through ecological interactions, may have significant consequences for the diversity and functionality of systems of microscale patches.
Collapse
|
31
|
Yan C, Li X, Zhang G, Bi J, Hao H, Hou H. Quorum Sensing (QS)-regulated target predictions of Hafnia alvei H4 based on the joint application of genome and STRING database. Food Res Int 2022; 157:111356. [DOI: 10.1016/j.foodres.2022.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
|
32
|
Sadiq FA, Hansen MF, Burmølle M, Heyndrickx M, Flint S, Lu W, Chen W, Zhang H. Towards understanding mechanisms and functional consequences of bacterial interactions with members of various kingdoms in complex biofilms that abound in nature. FEMS Microbiol Rev 2022; 46:6595875. [PMID: 35640890 DOI: 10.1093/femsre/fuac024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 11/12/2022] Open
Abstract
The microbial world represents a phenomenal diversity of microorganisms from different kingdoms of life which occupy an impressive set of ecological niches. Most, if not all, microorganisms once colonise a surface develop architecturally complex surface-adhered communities which we refer to as biofilms. They are embedded in polymeric structural scaffolds serve as a dynamic milieu for intercellular communication through physical and chemical signalling. Deciphering microbial ecology of biofilms in various natural or engineered settings has revealed co-existence of microorganisms from all domains of life, including Bacteria, Archaea and Eukarya. The coexistence of these dynamic microbes is not arbitrary, as a highly coordinated architectural setup and physiological complexity show ecological interdependence and myriads of underlying interactions. In this review, we describe how species from different kingdoms interact in biofilms and discuss the functional consequences of such interactions. We highlight metabolic advances of collaboration among species from different kingdoms, and advocate that these interactions are of great importance and need to be addressed in future research. Since trans-kingdom biofilms impact diverse contexts, ranging from complicated infections to efficient growth of plants, future knowledge within this field will be beneficial for medical microbiology, biotechnology, and our general understanding of microbial life in nature.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - Mads Frederik Hansen
- Section of Microbiology, Department of Biology, University of Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Denmark
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium.,Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, Private Bag, 11222, Palmerston North, New Zealand
| | - Wenwei Lu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
33
|
Nawel Z, Rima O, Amira B. An overview on Vibrio temperate phages: Integration mechanisms, pathogenicity, and lysogeny regulation. Microb Pathog 2022; 165:105490. [DOI: 10.1016/j.micpath.2022.105490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022]
|
34
|
Mechanisms of interactions between bacteria and bacteriophage mediate by quorum sensing systems. Appl Microbiol Biotechnol 2022; 106:2299-2310. [PMID: 35312824 DOI: 10.1007/s00253-022-11866-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/02/2022]
Abstract
Bacteriophage (phage) and their host bacteria coevolve with each other over time. Quorum sensing (QS) systems play an important role in the interaction between bacteria and phage. In this review paper, we summarized the function of QS systems in bacterial biofilm formation, phage adsorption, lysis-lysogeny conversion of phage, coevolution of bacteria and phage, and information exchanges in phage, which may provide reference to future research on alternative control strategies for antibiotic-resistant and biofilm-forming pathogens by phage. KEY POINTS: • Quorum sensing (QS) systems influence bacteria-phage interaction. • QS systems cause phage adsorption and evolution and lysis-lysogeny conversion. • QS systems participate in biofilm formation and co-evolution with phage of bacteria.
Collapse
|
35
|
Hu J, Ye H, Wang S, Wang J, Han D. Prophage Activation in the Intestine: Insights Into Functions and Possible Applications. Front Microbiol 2021; 12:785634. [PMID: 34966370 PMCID: PMC8710666 DOI: 10.3389/fmicb.2021.785634] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Prophage activation in intestinal environments has been frequently reported to affect host adaptability, pathogen virulence, gut bacterial community composition, and intestinal health. Prophage activation is mostly caused by various stimulators, such as diet, antibiotics, some bacterial metabolites, gastrointestinal transit, inflammatory environment, oxidative stress, and quorum sensing. Moreover, with advancements in biotechnology and the deepening cognition of prophages, prophage activation regulation therapy is currently applied to the treatment of some bacterial intestinal diseases such as Shiga toxin-producing Escherichia coli infection. This review aims to make headway on prophage induction in the intestine, in order to make a better understanding of dynamic changes of prophages, effects of prophage activation on physiological characteristics of bacteria and intestinal health, and subsequently provide guidance on prophage activation regulation therapy.
Collapse
Affiliation(s)
| | | | | | | | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
Nepal R, Houtak G, Shaghayegh G, Bouras G, Shearwin K, Psaltis AJ, Wormald PJ, Vreugde S. Prophages encoding human immune evasion cluster genes are enriched in Staphylococcus aureus isolated from chronic rhinosinusitis patients with nasal polyps. Microb Genom 2021; 7:000726. [PMID: 34907894 PMCID: PMC8767322 DOI: 10.1099/mgen.0.000726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Prophages affect bacterial fitness on multiple levels. These include bacterial infectivity, toxin secretion, virulence regulation, surface modification, immune stimulation and evasion and microbiome competition. Lysogenic conversion arms bacteria with novel accessory functions thereby increasing bacterial fitness, host adaptation and persistence, and antibiotic resistance. These properties allow the bacteria to occupy a niche long term and can contribute to chronic infections and inflammation such as chronic rhinosinusitis (CRS). In this study, we aimed to identify and characterize prophages present in Staphylococcus aureus from patients suffering from CRS in relation to CRS disease phenotype and severity. Prophage regions were identified using PHASTER. Various in silico tools like ResFinder and VF Analyzer were used to detect virulence genes and antibiotic resistance genes respectively. Progressive MAUVE and maximum likelihood were used for multiple sequence alignment and phylogenetics of prophages respectively. Disease severity of CRS patients was measured using computed tomography Lund-Mackay scores. Fifty-eight S. aureus clinical isolates (CIs) were obtained from 28 CRS patients without nasal polyp (CRSsNP) and 30 CRS patients with nasal polyp (CRSwNP). All CIs carried at least one prophage (average=3.6) and prophages contributed up to 7.7 % of the bacterial genome. Phage integrase genes were found in 55/58 (~95 %) S. aureus strains and 97/211 (~46 %) prophages. Prophages belonging to Sa3int integrase group (phiNM3, JS01, phiN315) (39/97, 40%) and Sa2int (phi2958PVL) (14/97, 14%) were the most prevalent prophages and harboured multiple virulence genes such as sak, scn, chp, lukE/D, sea. Intact prophages were more frequently identified in CRSwNP than in CRSsNP (P=0.0021). Intact prophages belonging to the Sa3int group were more frequent in CRSwNP than in CRSsNP (P=0.0008) and intact phiNM3 were exclusively found in CRSwNP patients (P=0.007). Our results expand the knowledge of prophages in S. aureus isolated from CRS patients and their possible role in disease development. These findings provide a platform for future investigations into potential tripartite associations between bacteria-prophage-human immune system, S. aureus evolution and CRS disease pathophysiology.
Collapse
Affiliation(s)
- Roshan Nepal
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Ghais Houtak
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Gohar Shaghayegh
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Keith Shearwin
- School of Biological Sciences, Faculty of Sciences, The University of Adelaide, Adelaide, Australia
| | - Alkis James Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Peter-John Wormald
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| |
Collapse
|
37
|
Makky S, Dawoud A, Safwat A, Abdelsattar AS, Rezk N, El-Shibiny A. The bacteriophage decides own tracks: When they are with or against the bacteria. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100050. [PMID: 34841341 PMCID: PMC8610337 DOI: 10.1016/j.crmicr.2021.100050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages, bacteria-infecting viruses, are considered by many researchers a promising solution for antimicrobial resistance. On the other hand, some phages have shown contribution to bacterial resistance phenomenon by transducing antimicrobial resistance genes to their bacterial hosts. Contradictory consequences of infections are correlated to different phage lifecycles. Out of four known lifecycles, lysogenic and lytic pathways have been riddles since the uncontrolled conversion between them could negatively affect the intended use of phages. However, phages still can be engineered for applications against bacterial and viral infections to ensure high efficiency. This review highlights two main aspects: (1) the different lifecycles as well as the different factors that affect lytic-lysogenic switch are discussed, including the intracellular and molecular factors control this decision. In addition, different models which describe the effect of phages on the ecosystem are compared, besides the approaches to study the switch. (2) An overview on the contribution of the phage in the evolution of the bacteria, instead of eating them, as a consequence of different mode of actions. As well, how phage display has helped in restricting phage cheating and how it could open new gates for immunization and pandemics control will be tacked.
Collapse
Affiliation(s)
- Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - Alyaa Dawoud
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
- Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo, 16482, Egypt
| | - Anan Safwat
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - Abdallah S. Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, October Gardens, 6th of October, Giza, 12578, Egypt
| | - Nouran Rezk
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| |
Collapse
|
38
|
Li N, Zeng Y, Hu B, Zhu T, Svenningsen SL, Middelboe M, Tan D. Interactions between the Prophage 919TP and Its Vibrio cholerae Host: Implications of gmd Mutation for Phage Resistance, Cell Auto-Aggregation, and Motility. Viruses 2021; 13:v13122342. [PMID: 34960610 PMCID: PMC8706939 DOI: 10.3390/v13122342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023] Open
Abstract
Prophage 919TP is widely distributed among Vibrio cholera and is induced to produce free φ919TP phage particles. However, the interactions between prophage φ919TP, the induced phage particle, and its host remain unknown. In particular, phage resistance mechanisms and potential fitness trade-offs, resulting from phage resistance, are unresolved. In this study, we examined a prophage 919TP-deleted variant of V. cholerae and its interaction with a modified lytic variant of the induced prophage (φ919TP cI-). Specifically, the phage-resistant mutant was isolated by challenging a prophage-deleted variant with lytic phage φ919TP cI-. Further, the comparative genomic analysis of wild-type and φ919TP cI--resistant mutant predicted that phage φ919TP cI- selects for phage-resistant mutants harboring a mutation in key steps of lipopolysaccharide (LPS) O-antigen biosynthesis, causing a single-base-pair deletion in gene gmd. Our study showed that the gmd-mediated O-antigen defect can cause pleiotropic phenotypes, e.g., cell autoaggregation and reduced swarming motility, emphasizing the role of phage-driven diversification in V. cholerae. The developed approach assists in the identification of genetic determinants of host specificity and is used to explore the molecular mechanism underlying phage-host interactions. Our findings contribute to the understanding of prophage-facilitated horizontal gene transfer and emphasize the potential for developing new strategies to optimize the use of phages in bacterial pathogen control.
Collapse
Affiliation(s)
- Na Li
- Zhongshan Hospital, Fudan University, Shanghai 200032, China; (N.L.); (B.H.); (T.Z.)
| | - Yigang Zeng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China;
| | - Bijie Hu
- Zhongshan Hospital, Fudan University, Shanghai 200032, China; (N.L.); (B.H.); (T.Z.)
| | - Tongyu Zhu
- Zhongshan Hospital, Fudan University, Shanghai 200032, China; (N.L.); (B.H.); (T.Z.)
| | | | - Mathias Middelboe
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark;
- Correspondence: (M.M.); (D.T.)
| | - Demeng Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China;
- Correspondence: (M.M.); (D.T.)
| |
Collapse
|
39
|
Bruce JB, Lion S, Buckling A, Westra ER, Gandon S. Regulation of prophage induction and lysogenization by phage communication systems. Curr Biol 2021; 31:5046-5051.e7. [PMID: 34562385 PMCID: PMC8612742 DOI: 10.1016/j.cub.2021.08.073] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022]
Abstract
Many viruses cause both lytic infections, where they release viral particles, and dormant infections, where they await future opportunities to reactivate.1 The benefits of each transmission mode depend on the density of susceptible hosts in the environment.2-4 Some viruses infecting bacteria use molecular signaling to respond plastically to changes in host availability.5 These viruses produce a signal during lytic infection and regulate, based on the signal concentration in the environment, the probability with which they switch to causing dormant infections.5,6 We present an analytical framework to examine the adaptive significance of plasticity in viral life-history traits in fluctuating environments. Our model generalizes and extends previous theory7 and predicts that host density fluctuations should select for plasticity in entering lysogeny as well as virus reactivation once signal concentrations decline. Using Bacillus subtilis and its phage phi3T, we experimentally confirm the prediction that phages use signal to make informed decisions over prophage induction. We also demonstrate that lysogens produce signaling molecules and that signal is degraded by hosts in a density-dependent manner. Declining signal concentrations therefore potentially indicate the presence of uninfected hosts and trigger prophage induction. Finally, we find that conflict over the responses of lysogenization and reactivation to signal is resolved through the evolution of different response thresholds for each trait. Collectively, these findings deepen our understanding of the ways viruses use molecular communication to regulate their infection strategies, which can be leveraged to manipulate host and phage population dynamics in natural environments.
Collapse
Affiliation(s)
- John B Bruce
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Exeter, UK.
| | - Sébastien Lion
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Exeter, UK
| | - Edze R Westra
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Exeter, UK.
| | - Sylvain Gandon
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France.
| |
Collapse
|
40
|
Insight in the quorum sensing-driven lifestyle of the non-pathogenic Agrobacterium tumefaciens 6N2 and the interactions with the yeast Meyerozyma guilliermondii. Genomics 2021; 113:4352-4360. [PMID: 34793950 DOI: 10.1016/j.ygeno.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022]
Abstract
Agrobacterium tumefaciens is considered a prominent phytopathogen, though most isolates are nonpathogenic. Agrobacteria can inhabit plant tissues interacting with other microorganisms. Yeasts are likewise part of these communities. We analyzed the quorum sensing (QS) systems of A. tumefaciens strain 6N2, and its relevance for the interaction with the yeast Meyerozyma guilliermondii, both sugarcane endophytes. We show that strain 6N2 is nonpathogenic, produces OHC8-HSL, OHC10-HSL, OC12-HSL and OHC12-HSL as QS signals, and possesses a complex QS architecture, with one truncated, two complete systems, and three additional QS-signal receptors. A proteomic approach showed differences in QS-regulated proteins between pure (64 proteins) and dual (33 proteins) cultures. Seven proteins were consistently regulated by quorum sensing in pure and dual cultures. M. guilliermondii proteins influenced by QS activity were also evaluated. Several up- and down- regulated proteins differed depending on the bacterial QS. These results show the QS regulation in the bacteria-yeast interactions.
Collapse
|
41
|
Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS. Revisiting the rules of life for viruses of microorganisms. Nat Rev Microbiol 2021; 19:501-513. [PMID: 33762712 DOI: 10.1038/s41579-021-00530-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 02/01/2023]
Abstract
Viruses that infect microbial hosts have traditionally been studied in laboratory settings with a focus on either obligate lysis or persistent lysogeny. In the environment, these infection archetypes are part of a continuum that spans antagonistic to beneficial modes. In this Review, we advance a framework to accommodate the context-dependent nature of virus-microorganism interactions in ecological communities by synthesizing knowledge from decades of virology research, eco-evolutionary theory and recent technological advances. We discuss that nuanced outcomes, rather than the extremes of the continuum, are particularly likely in natural communities given variability in abiotic factors, the availability of suboptimal hosts and the relevance of multitrophic partnerships. We revisit the 'rules of life' in terms of how long-term infections shape the fate of viruses and microbial cells, populations and ecosystems.
Collapse
Affiliation(s)
| | | | - Samantha R Coy
- BioSciences Department, Rice University, Houston, TX, USA
| | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA.
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA. .,Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA. .,School of Physics, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
42
|
Abstract
Bacteriophages and bacterial biofilms are widely present in natural environments, a fact that has accelerated the evolution of phages and their bacterial hosts in these particular niches. Phage-host interactions in biofilm communities are rather complex, where phages are not always merely predators but also can establish symbiotic relationships that induce and strengthen biofilms. In this review we provide an overview of the main features affecting phage-biofilm interactions as well as the currently available methods of studying these interactions. In addition, we address the applications of phages for biofilm control in different contexts.
Collapse
Affiliation(s)
- Diana P Pires
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Luís D R Melo
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| |
Collapse
|
43
|
Silveira CB, Luque A, Rohwer F. The landscape of lysogeny across microbial community density, diversity and energetics. Environ Microbiol 2021; 23:4098-4111. [PMID: 34121301 DOI: 10.1111/1462-2920.15640] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
Lysogens are common at high bacterial densities, an observation that contrasts with the prevailing view of lysogeny as a low-density refugium strategy. Here, we review the mechanisms regulating lysogeny in complex communities and show that the additive effects of coinfections, diversity and host energic status yield a bimodal distribution of lysogeny as a function of microbial densities. At high cell densities (above 106 cells ml-1 or g-1 ) and low diversity, coinfections by two or more phages are frequent and excess energy availability stimulates inefficient metabolism. Both mechanisms favour phage integration and characterize the Piggyback-the-Winner dynamic. At low densities (below 105 cells ml-1 or g-1 ), starvation represses lytic genes and extends the time window for lysogenic commitment, resulting in a higher frequency of coinfections that cause integration. This pattern follows the predictions of the refugium hypothesis. At intermediary densities (between 105 and 106 cells ml-1 or g-1 ), encounter rates and efficient energy metabolism favour lysis. This may involve Kill-the-Winner lytic dynamics and induction. Based on these three regimes, we propose a framework wherein phage integration occurs more frequently at both ends of the host density gradient, with distinct underlying molecular mechanisms (coinfections and host metabolism) dominating at each extreme.
Collapse
Affiliation(s)
- Cynthia B Silveira
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33143, USA.,Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
| | - Antoni Luque
- Viral Information Institute, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.,Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.,Computational Science Research Center, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Forest Rohwer
- Viral Information Institute, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.,Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| |
Collapse
|
44
|
Abstract
Bacteriophages are the most diverse and abundant biological entities on the Earth and require host bacteria to replicate. Because of this obligate relationship, in addition to the challenging conditions of surrounding environments, phages must integrate information about extrinsic and intrinsic factors when infecting their host. This integration helps to determine whether the infection becomes lytic or lysogenic, which likely influences phage spreading and long-term survival. Although a variety of environmental and physiological clues are known to modulate lysis-lysogeny decisions, the social interplay among phages and host populations has been overlooked until recently. A growing body of evidence indicates that cell-cell communication in bacteria and, more recently, peptide-based communication among phage-phage populations, affect phage-host interactions by controlling phage lysis-lysogeny decisions and phage counter-defensive strategies in bacteria. Here, we explore and discuss the role of signal molecules as well as quorum sensing and quenching factors that mediate phage-host interactions. Our aim is to provide an overview of population-dependent mechanisms that influence phage replication, and how social communication may affect the dynamics and evolution of microbial communities, including their implications in phage therapy.
Collapse
|
45
|
Affiliation(s)
- Olivia P. Duddy
- Department of Molecular Biology, Princeton University, Princeton, United States of America
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, United States of America
- Howard Hughes Medical Institute, Chevy Chase, United States of America
- * E-mail:
| |
Collapse
|
46
|
Rode DK, Singh PK, Drescher K. Multicellular and unicellular responses of microbial biofilms to stress. Biol Chem 2020; 401:1365-1374. [DOI: 10.1515/hsz-2020-0213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022]
Abstract
AbstractBiofilms are a ubiquitous mode of microbial life and display an increased tolerance to different stresses. Inside biofilms, cells may experience both externally applied stresses and internal stresses that emerge as a result of growth in spatially structured communities. In this review, we discuss the spatial scales of different stresses in the context of biofilms, and if cells in biofilms respond to these stresses as a collection of individual cells, or if there are multicellular properties associated with the response. Understanding the organizational level of stress responses in microbial communities can help to clarify multicellular functions of biofilms.
Collapse
Affiliation(s)
- Daniel K.H. Rode
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, D-35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Karl-von-Frisch-Str. 16, D-35043 Marburg, Germany
| | - Praveen K. Singh
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, D-35043 Marburg, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, D-35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Karl-von-Frisch-Str. 16, D-35043 Marburg, Germany
- SYNMIKRO Center for Synthetic Microbiology, Karl-von-Frisch-Str. 16, D-35043 Marburg, Germany
| |
Collapse
|
47
|
Cazares A, García-Contreras R, Pérez-Velázquez J. Eco-Evolutionary Effects of Bacterial Cooperation on Phage Therapy: An Unknown Risk? Front Microbiol 2020; 11:590294. [PMID: 33281786 PMCID: PMC7688660 DOI: 10.3389/fmicb.2020.590294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/16/2020] [Indexed: 11/21/2022] Open
Abstract
If there is something we have learned from the antibiotic era, it is that indiscriminate use of a therapeutic agent without a clear understanding of its long-term evolutionary impact can have enormous health repercussions. This knowledge is particularly relevant when the therapeutic agents are remarkably adaptable and diverse biological entities capable of a plethora of interactions, most of which remain largely unexplored. Although phage therapy (PT) undoubtedly holds the potential to save lives, its current efficacy in case studies recalls the golden era of antibiotics, when these compounds were highly effective and the possibility of them becoming ineffective seemed remote. Safe PT schemes depend on our understanding of how phages interact with, and evolve in, highly complex environments. Here, we summarize and review emerging evidence in a commonly overlooked theme in PT: bacteria-phage interactions. In particular, we discuss the influence of quorum sensing (QS) on phage susceptibility, the consequent role of phages in modulating bacterial cooperation, and the potential implications of this relationship in PT, including how we can use this knowledge to inform PT strategies. We highlight that the influence of QS on phage susceptibility seems to be widespread but can have contrasting outcomes depending on the bacterial host, underscoring the need to thoroughly characterize this link in various bacterial models. Furthermore, we encourage researchers to exploit competition experiments, experimental evolution, and mathematical modeling to explore this relationship further in relevant infection models. Finally, we emphasize that long-term PT success requires research on phage ecology and evolution to inform the design of optimal therapeutic schemes.
Collapse
Affiliation(s)
- Adrián Cazares
- EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Rodolfo García-Contreras
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Judith Pérez-Velázquez
- Zentrum Mathematik, Technical University of Munich, Garching, Germany
- Technische Hochschule Ingolstadt, Institute of Innovative Mobility, Ingolstadt, Germany
| |
Collapse
|
48
|
Eriksen RS, Mitarai N, Sneppen K. On Phage Adsorption to Bacterial Chains. Biophys J 2020; 119:1896-1904. [PMID: 33069271 PMCID: PMC7677248 DOI: 10.1016/j.bpj.2020.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022] Open
Abstract
Bacteria often arrange themselves in various spatial configurations, which changes how they interact with their surroundings. In this work, we investigate how the structure of the bacterial arrangements influences the adsorption of bacteriophages. We quantify how the adsorption rate scales with the number of bacteria in the arrangement and show that the adsorption rates for microcolonies (increasing with exponent ∼1/3) and bacterial chains (increasing with exponent ∼0.5-0.8) are substantially lower than for well-mixed bacteria (increasing with exponent 1). We further show that, after infection, the spatially clustered arrangements reduce the effective burst size by more than 50% and cause substantial superinfections in a very short time interval after phage lysis.
Collapse
Affiliation(s)
| | - Namiko Mitarai
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kim Sneppen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
49
|
Bernard C, Li Y, Lopez P, Bapteste E. Beyond arbitrium: identification of a second communication system in Bacillus phage phi3T that may regulate host defense mechanisms. ISME JOURNAL 2020; 15:545-549. [PMID: 33028977 PMCID: PMC8027211 DOI: 10.1038/s41396-020-00795-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022]
Abstract
The evolutionary stability of temperate bacteriophages at low abundance of susceptible bacterial hosts lies in the trade-off between the maximization of phage replication, performed by the host-destructive lytic cycle, and the protection of the phage-host collective, enacted by lysogeny. Upon Bacillus infection, Bacillus phages phi3T rely on the “arbitrium” quorum sensing (QS) system to communicate on their population density in order to orchestrate the lysis-to-lysogeny transition. At high phage densities, where there may be limited host cells to infect, lysogeny is induced to preserve chances of phage survival. Here, we report the presence of an additional, host-derived QS system in the phi3T genome, making it the first known virus with two communication systems. Specifically, this additional system, coined “Rapφ-Phrφ”, is predicted to downregulate host defense mechanisms during the viral infection, but only upon stress or high abundance of Bacillus cells and at low density of population of the phi3T phages. Post-lysogenization, Rapφ-Phrφ is also predicted to provide the lysogenized bacteria with an immediate fitness advantage: delaying the costly production of public goods while nonetheless benefiting from the public goods produced by other non-lysogenized Bacillus bacteria. The discovered “Rapφ-Phrφ” QS system hence provides novel mechanistic insights into how phage communication systems could contribute to the phage-host evolutionary stability.
Collapse
Affiliation(s)
- Charles Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Muséum National d'Histoire Naturelle, Campus Jussieu, Bâtiment A, 4eme et. Pièce 429, 75005, Paris, France. .,Unité Molécules de Communication et Adaptation des Micro-organismes (MCAM), CNRS, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005, Paris, France.
| | - Yanyan Li
- Unité Molécules de Communication et Adaptation des Micro-organismes (MCAM), CNRS, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Muséum National d'Histoire Naturelle, Campus Jussieu, Bâtiment A, 4eme et. Pièce 429, 75005, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Muséum National d'Histoire Naturelle, Campus Jussieu, Bâtiment A, 4eme et. Pièce 429, 75005, Paris, France
| |
Collapse
|
50
|
Tuttle MJ, Buchan A. Lysogeny in the oceans: Lessons from cultivated model systems and a reanalysis of its prevalence. Environ Microbiol 2020; 22:4919-4933. [PMID: 32935433 DOI: 10.1111/1462-2920.15233] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
In the oceans, viruses that infect bacteria (phages) influence a variety of microbially mediated processes that drive global biogeochemical cycles. The nature of their influence is dependent upon infection mode, be it lytic or lysogenic. Temperate phages are predicted to be prevalent in marine systems where they are expected to execute both types of infection modes. Understanding the range and outcomes of temperate phage-host interactions is fundamental for evaluating their ecological impact. Here, we (i) review phage-mediated rewiring of host metabolism, with a focus on marine systems, (ii) consider the range and nature of temperate phage-host interactions, and (iii) draw on studies of cultivated model systems to examine the consequences of lysogeny among several dominant marine bacterial lineages. We also readdress the prevalence of lysogeny among marine bacteria by probing a collection of 1239 publicly available bacterial genomes, representing cultured and uncultivated strains, for evidence of complete prophages. Our conservative analysis, anticipated to underestimate true prevalence, predicts 18% of the genomes examined contain at least one prophage, the majority (97%) were found within genomes of cultured isolates. These results highlight the need for cultivation of additional model systems to better capture the diversity of temperate phage-host interactions in the oceans.
Collapse
Affiliation(s)
- Matthew J Tuttle
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|