1
|
Lin YC, Nien YH, Chiang KP, Chin CP, Chen WT, Gong GC, Chou WC, Shih CY, Chen KS. The impact of flooding from the Minjiang River on the succession of harmful algal blooms (HABs) caused by diatoms in China's offshore waters. MARINE POLLUTION BULLETIN 2024; 205:116650. [PMID: 38981195 DOI: 10.1016/j.marpolbul.2024.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
This study examines diatom assemblages in the Matsu Archipelago, an area influenced by Minjiang River runoff. It focuses on harmful algal blooms (HABs) that occurred between August 2021 and July 2022. Utilizing 18S rRNA metabarcoding and microscopic analysis, we observed a significant diatom bloom during early summer runoff, peaking at 5 × 105 cells L-1. The research reveals dynamic community changes during the runoff season, with dominant genera including Pseudo-nitzschia, Chaetoceros, and Skeletonema. Skeletonema cell density correlated with NO3 levels, Chaetoceros had a slight PO4 affinity, and Pseudo-nitzschia showed a negative correlation with Skeletonema. Pseudo-nitzschia, which prefers high light and pH conditions, had notably high concentrations in the flood season and in the autumn. In both, it was dominated by potential toxin-producing species - P. multistriata and P. pungens during the flooding, and P. cuspidate in the autumn. These findings highlight the intricate relationship between diatom dynamics and environmental factors, providing essential insights for managing HABs, especially Pseudo-nitzschia species, amidst environmental changes.
Collapse
Affiliation(s)
- Yun-Chi Lin
- General Education Center, National Taiwan Ocean University, Keelung, Taiwan; Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung, Taiwan; Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan.
| | - Ya-Han Nien
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Kuo-Ping Chiang
- Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung, Taiwan; Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| | | | - Wei-Ting Chen
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Gwo-Ching Gong
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Wen-Chen Chou
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chi-Yu Shih
- Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung, Taiwan; Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Kuo-Shu Chen
- Marine Ecology and Conservation Research Center, National Academy of Marine Research, Kaohsiung, Taiwan; Marine Ecology and Conservation Research Center, National Academy of Marine Research, Ocean Affairs Council, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Branscombe L, Harrison EL, Choong ZYD, Swink C, Keys M, Widdicombe C, Wilson WH, Cunliffe M, Helliwell K. Cryptic bacterial pathogens of diatoms peak during senescence of a winter diatom bloom. THE NEW PHYTOLOGIST 2024; 241:1292-1307. [PMID: 38037269 DOI: 10.1111/nph.19441] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023]
Abstract
Diatoms are globally abundant microalgae that form extensive blooms in aquatic ecosystems. Certain bacteria behave antagonistically towards diatoms, killing or inhibiting their growth. Despite their crucial implications to diatom blooms and population health, knowledge of diatom antagonists in the environment is fundamentally lacking. We report systematic characterisation of the diversity and seasonal dynamics of bacterial antagonists of diatoms via plaque assay sampling in the Western English Channel (WEC), where diatoms frequently bloom. Unexpectedly, peaks in detection did not occur during characteristic spring diatom blooms, but coincided with a winter bloom of Coscinodiscus, suggesting that these bacteria likely influence distinct diatom host populations. We isolated multiple bacterial antagonists, spanning 4 classes and 10 bacterial orders. Notably, a diatom attaching Roseobacter Ponticoccus alexandrii was isolated multiple times, indicative of a persistent environmental presence. Moreover, many isolates had no prior reports of antagonistic activity towards diatoms. We verified diatom growth inhibitory effects of eight isolates. In all cases tested, these effects were activated by pre-exposure to diatom organic matter. Discovery of widespread 'cryptic' antagonistic activity indicates that bacterial pathogenicity towards diatoms is more prevalent than previously recognised. Finally, examination of the global biogeography of WEC antagonists revealed co-occurrence patterns with diatom host populations in marine waters globally.
Collapse
Affiliation(s)
- Laura Branscombe
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Ellen L Harrison
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Zhi Yi Daniel Choong
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Courtney Swink
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Matthew Keys
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
| | | | - William H Wilson
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Michael Cunliffe
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Katherine Helliwell
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
3
|
Liu K, Liu S, Cui Z, Zhao Y, Chen N. Rich diversity and active spatial-temporal dynamics of Thalassiosira species revealed by time-series metabarcoding analysis. ISME COMMUNICATIONS 2024; 4:ycad009. [PMID: 38313810 PMCID: PMC10837834 DOI: 10.1093/ismeco/ycad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 02/06/2024]
Abstract
Thalassiosira is a species-rich genus in Bacillariophyta that not only contributes positively as primary producer, but also poses negative impacts on ecosystems by causing harmful algal blooms. Although taxonomical studies have identified a large number of Thalassiosira species, however, the composition of Thalassiosira species and their geographical distribution in marine ecosystems were not well understood due primarily to the lack of resolution of morphology-based approaches used previously in ecological expeditions. In this study, we systematically analyzed the composition and spatial-temporal dynamic distributions of Thalassiosira in the model marine ecosystem Jiaozhou Bay by applying metabarcoding analysis. Through analyzing samples collected monthly from 12 sampling sites, 14 Thalassiosira species were identified, including five species that were not previously reported in Jiaozhou Bay, demonstrating the resolution and effectiveness of metabarcoding analysis in ecological research. Many Thalassiosira species showed prominent temporal preferences in Jiaozhou Bay, with some displaying spring-winter preference represented by Thalassiosira tenera, while others displaying summer-autumn preference represented by Thalassiosira lundiana and Thalassiosira minuscula, indicating that the temperature is an important driving factor in the temporal dynamics. The application of metabarcoding analysis, equipped with appropriate molecular markers with high resolution and high specificity and databases of reference molecular marker sequences for potential all Thalassiosira species, will revolutionize ecological research of Thalassiosira species in Jiaozhou Bay and other marine ecosystems.
Collapse
Affiliation(s)
- Kuiyan Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zongmei Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yongfang Zhao
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
4
|
Setta SP, Lerch S, Jenkins BD, Dyhrman ST, Rynearson TA. Oligotrophic waters of the Northwest Atlantic support taxonomically diverse diatom communities that are distinct from coastal waters. JOURNAL OF PHYCOLOGY 2023; 59:1202-1216. [PMID: 37737069 DOI: 10.1111/jpy.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 09/23/2023]
Abstract
Diatoms are important components of the marine food web and one of the most species-rich groups of phytoplankton. The diversity and composition of diatoms in eutrophic nearshore habitats have been well documented due to the outsized influence of diatoms on coastal ecosystem functioning. In contrast, patterns of both diatom diversity and community composition in offshore oligotrophic regions where diatom biomass is low have been poorly resolved. To compare the diatom diversity and community composition in oligotrophic and eutrophic waters, diatom communities were sampled along a 1,250 km transect from the oligotrophic Sargasso Sea to the coastal waters of the northeast US shelf. Diatom community composition was determined by amplifying and sequencing the 18S rDNA V4 region. Of the 301 amplicon sequence variants (ASVs) identified along the transect, the majority (70%) were sampled exclusively from oligotrophic waters of the Gulf Stream and Sargasso Sea and included the genera Bacteriastrum, Haslea, Hemiaulus, Pseudo-nitzschia, and Nitzschia. Diatom ASV richness did not vary along the transect, indicating that the oligotrophic Sargasso Sea and Gulf Stream are occupied by a diverse diatom community. Although ASV richness was similar between oligotrophic and coastal waters, diatom community composition in these regions differed significantly and was correlated with temperature and phosphate, two environmental variables known to influence diatom metabolism and geographic distribution. In sum, oligotrophic waters of the western North Atlantic harbor diverse diatom assemblages that are distinct from coastal regions, and these open ocean diatoms warrant additional study, as they may play critical roles in oligotrophic ecosystems.
Collapse
Affiliation(s)
- Samantha P Setta
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Sarah Lerch
- College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Bethany D Jenkins
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
- College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Sonya T Dyhrman
- Department of Earth and Environmental Sciences, Columbia University, Palisades, New York, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| |
Collapse
|
5
|
Turk Dermastia T, Vascotto I, Francé J, Stanković D, Mozetič P. Evaluation of the rbcL marker for metabarcoding of marine diatoms and inference of population structure of selected genera. Front Microbiol 2023; 14:1071379. [PMID: 36950161 PMCID: PMC10026700 DOI: 10.3389/fmicb.2023.1071379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Diatoms are one of the most important phytoplankton groups in the world's oceans. There are responsible for up to 40% of the photosynthetic activity in the Ocean, and they play an important role in the silicon and carbon cycles by decoupling carbon from atmospheric interactions through sinking and export. These processes are strongly influenced by the taxonomic composition of diatom assemblages. Traditionally, these have been assessed using microscopy, which in some cases is not reliable or reproducible. Next-generation sequencing enabled us to study diversity in a high-throughput manner and uncover new distribution patterns and diversity. However, phylogenetic markers used for this purpose, such as various 18S rDNA regions, are often insufficient because they cannot distinguish between some taxa. In this work, we demonstrate the performance of the chloroplast-encoded rbcL marker for metabarcoding marine diatoms compared to microscopy and 18S-V9 metabarcoding using a series of monthly samples from the Gulf of Trieste (GoT), northern Adriatic Sea. We demonstrate that rbcL is able to detect more taxa compared to 18S-V9 metabarcoding or microscopy, while the overall structure of the diatom assemblage was comparable to the other two methods with some variations, that were taxon dependent. In total, 6 new genera and 22 new diatom species for the study region were identified. We were able to spot misidentification of genera obtained with microscopy such as Pseudo-nitzschia galaxiae, which was mistaken for Cylindrotheca closterium, as well as genera that were completely overlooked, such as Minidiscus and several genera from the Cymatosiraceae family. Furthermore, on the example of two well-studied genera in the region, namely Chaetoceros and particularly Pseudo-nitzschia, we show how the rbcL method can be used to infer even deeper phylogenetic and ecologically significant differences at the species population level. Despite a very thorough community analysis obtained by rbcL the incompleteness of reference databases was still evident, and we shed light on possible improvements. Our work has further implications for studies dealing with taxa distribution and population structure, as well as carbon and silica flux models and networks.
Collapse
Affiliation(s)
- Timotej Turk Dermastia
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Ivano Vascotto
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Janja Francé
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - David Stanković
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
| | - Patricija Mozetič
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| |
Collapse
|
6
|
Bachy C, Baudoux AC. [Diversity and ecological importance of viruses in the marine environment]. Med Sci (Paris) 2022; 38:1008-1015. [PMID: 36692280 DOI: 10.1051/medsci/2022165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ocean is the largest reservoir of viruses on the planet with estimates of up to several billions per liter. These viruses represent a major driving force not only for the evolution and for structuring the microbial world, but also for the functioning and the balance of marine ecosystems. With the advances in high throughput sequencing techniques, we are beginning to uncover the diversity and the complexity of this marine virosphere. This review synthesizes milestones in the field of marine viral ecology, including the diversity of these fascinating microorganisms, their impact on microbial mortality and cycling of nutrients and energy in the ocean.
Collapse
Affiliation(s)
- Charles Bachy
- Sorbonne Université, CNRS, FR2424, Station biologique de Roscoff, Roscoff, 29680, France
| | - Anne-Claire Baudoux
- Sorbonne université, CNRS, Station biologique de Roscoff, Laboratoire adaptation et diversité en milieu marin, UMR7144, Roscoff, 29680, France
| |
Collapse
|
7
|
Sun X, Wu N, Hörmann G, Faber C, Messyasz B, Qu Y, Fohrer N. Using integrated models to analyze and predict the variance of diatom community composition in an agricultural area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149894. [PMID: 34525756 DOI: 10.1016/j.scitotenv.2021.149894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/31/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
With the growing demand of assessing the ecological status, there is the need to fully understand the relationship between the planktic diversity and the environmental factors. Species richness and Shannon index have been widely used to describe the biodiversity of a community. Besides, we introduced the first ordination value from non-metric multidimensional scaling (NMDS) as a new index to represent the community similarity variance. In this study, we hypothesized that the variation of diatom community in rivers in an agricultural area was influenced by hydro-chemical variables. We collected daily mixed water samples using ISCO auto water samplers for diatoms and for water-chemistry analysis at the outlet of a lowland river for a consecutive year. An integrated modeling was adopted including random forest (RF) to decide the importance of the environmental factors influencing diatoms, generalized linear models (GLMs) combined with 10-folder cross validation to analyze and predict the diatom variation. The hierarchical analysis highlighted antecedent precipitation index (API) as the controlling hydrological variable while water temperature, Si2+ and PO4-P as the main chemical controlling factors in our study area. The generalized linear models performed better prediction for Shannon index (R2 = 0.44) and NMDS (R2 = 0.51) than diatom abundance (R2 = 0.25) and species richness (R2 = 0.25). Our findings confirmed that Shannon index and the NMDS as an index showed good performance in explaining the relationship between stream biota and its environmental factors and in predicting the diatom community development based on the hydro-chemical predictors. Our study showed and highlighted the important hydro-chemical factors in the agricultural rivers, which could contribute to the further understanding of predicting diatom community development and could be implemented in the future water management protocol.
Collapse
Affiliation(s)
- Xiuming Sun
- Department of Hydrology and Water Resources Management, Institute for Natural Resource Conservation, Kiel University, 24118 Kiel, Germany.
| | - Naicheng Wu
- Department of Hydrology and Water Resources Management, Institute for Natural Resource Conservation, Kiel University, 24118 Kiel, Germany; Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China.
| | - Georg Hörmann
- Department of Hydrology and Water Resources Management, Institute for Natural Resource Conservation, Kiel University, 24118 Kiel, Germany
| | - Claas Faber
- Department of Hydrology and Water Resources Management, Institute for Natural Resource Conservation, Kiel University, 24118 Kiel, Germany
| | - Beata Messyasz
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Yueming Qu
- Department of Hydrology and Water Resources Management, Institute for Natural Resource Conservation, Kiel University, 24118 Kiel, Germany; UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
| | - Nicola Fohrer
- Department of Hydrology and Water Resources Management, Institute for Natural Resource Conservation, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
8
|
Liu K, Liu S, Chen Y, Liu F, Zhao Y, Chen N. Complete mitochondrial genome of Thalassiosira profunda (Mediophyceae, Bacillariophyta). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1560-1562. [PMID: 33969218 PMCID: PMC8079070 DOI: 10.1080/23802359.2021.1916409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Thalassiosira is a species-rich genus with about 170 described species, many of which are harmful algal species with significant negative ecological impact. However, genome data of these species remain limited. In this study, the complete mitochondrial genome of Thalassiosira profunda (Hendey) Hasle 1973 was determined for the first time. The circular genome was 40,470 bp in length with GC content of 30.98%. It encodes 63 genes including 36 protein-coding genes (PCGs), 25 tRNA genes, and two rRNA genes. Phylogenetic analysis using concatenated PCGs suggested that T. profunda had a closer evolutionary relationship with Skeletonema marinoi of a different family (Skeletonemataceae) than Thalassiosira pseudonana, suggesting complex evolutionary relationship among species in these two families. Colinearity analysis also revealed fewer genome rearrangements between T. profunda and S. marinoi than that between T. profunda and T. pseudonana. This study suggests that mitochondrial genomes of many more species in the Thalassiosiraceae and Skeletonemataceae families are needed to disentangle the complex evolutionary relationships in the order of Thalassiosirales.
Collapse
Affiliation(s)
- Kuiyan Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,School of Earth and Planetary, University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,School of Earth and Planetary, University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Feng Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yongfang Zhao
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
9
|
Demory D, Weitz JS, Baudoux AC, Touzeau S, Simon N, Rabouille S, Sciandra A, Bernard O. A thermal trade-off between viral production and degradation drives virus-phytoplankton population dynamics. Ecol Lett 2021; 24:1133-1144. [PMID: 33877734 DOI: 10.1111/ele.13722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Marine viruses interact with microbial hosts in dynamic environments shaped by variation in abiotic factors, including temperature. However, the impacts of temperature on viral infection of phytoplankton are not well understood. Here we coupled mathematical modelling with experiments to explore the effect of temperature on virus-phytoplankton interactions. Our model shows the negative consequences of high temperatures on infection and suggests a temperature-dependent threshold between viral production and degradation. Modelling long-term dynamics in environments with different average temperatures revealed the potential for long-term host-virus coexistence, epidemic free or habitat loss states. We generalised our model to variation in global sea surface temperatures corresponding to present and future seas and show that climate change may differentially influence virus-host dynamics depending on the virus-host pair. Temperature-dependent changes in the infectivity of virus particles may lead to shifts in virus-host habitats in warmer oceans, analogous to projected changes in the habitats of macro-, microorganisms and pathogens.
Collapse
Affiliation(s)
- David Demory
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anne-Claire Baudoux
- Sorbonne Université, CNRS, UMR 7144 - Ecology of Marine Plankton, Station Biologique de Roscoff, Roscoff, 29860, France
| | - Suzanne Touzeau
- Université Côte d'Azur, INRIA, INRAE, CNRS, Sorbonne Université, BIOCORE, Sophia Antipolis, 06902, France.,Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Natalie Simon
- Sorbonne Université, CNRS, UMR 7144 - Ecology of Marine Plankton, Station Biologique de Roscoff, Roscoff, 29860, France
| | - Sophie Rabouille
- Sorbonne Université, CNRS, UMR 7621 - Laboratoire d'Océanographie Microbienne, Banyuls-sur-Mer, 66650, France
| | - Antoine Sciandra
- Sorbonne Université, CNRS, UMR 7093 - Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, 06230, France
| | - Olivier Bernard
- Université Côte d'Azur, INRIA, INRAE, CNRS, Sorbonne Université, BIOCORE, Sophia Antipolis, 06902, France
| |
Collapse
|