1
|
Przybylska MS, Violle C, Vile D, Scheepens JF, Munoz F, Tenllado Á, Vinyeta M, Le Roux X, Vasseur F. Can plants build their niche through modulation of soil microbial activities linked with nitrogen cycling? A test with Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 243:620-635. [PMID: 38812269 DOI: 10.1111/nph.19870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024]
Abstract
In natural systems, different plant species have been shown to modulate specific nitrogen (N) cycling processes so as to meet their N demand, thereby potentially influencing their own niche. This phenomenon might go beyond plant interactions with symbiotic microorganisms and affect the much less explored plant interactions with free-living microorganisms involved in soil N cycling, such as nitrifiers and denitrifiers. Here, we investigated variability in the modulation of soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively), and their ratio (NEA : DEA), across 193 Arabidopsis thaliana accessions. We studied the genetic and environmental determinants of such plant-soil interactions, and effects on plant biomass production in the next generation. We found that NEA, DEA, and NEA : DEA varied c. 30-, 15- and 60-fold, respectively, among A. thaliana genotypes and were related to genes linked with stress response, flowering, and nitrate nutrition, as well as to soil parameters at the geographic origin of the analysed genotypes. Moreover, plant-mediated N cycling activities correlated with the aboveground biomass of next-generation plants in home vs away nonautoclaved soil, suggesting a transgenerational impact of soil biotic conditioning on plant performance. Altogether, these findings suggest that nutrient-based plant niche construction may be much more widespread than previously thought.
Collapse
Affiliation(s)
- Maria Stefania Przybylska
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34293, Montpellier, France
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, F-34060, Montpellier, France
- Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34293, Montpellier, France
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, F-34060, Montpellier, France
| | - J F Scheepens
- Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - François Munoz
- LiPhy, Université Grenoble-Alpes, 38041, Grenoble, France
| | - Álvaro Tenllado
- LEM - Microbial Ecology Centre, INRAE (UMR 1418), CNRS (UMR 5557), University Lyon 1, University of Lyon, VetAgroSup, 69622, Villeurbanne, France
| | - Mariona Vinyeta
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34293, Montpellier, France
| | - Xavier Le Roux
- LEM - Microbial Ecology Centre, INRAE (UMR 1418), CNRS (UMR 5557), University Lyon 1, University of Lyon, VetAgroSup, 69622, Villeurbanne, France
| | - François Vasseur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34293, Montpellier, France
| |
Collapse
|
2
|
Zhang X, Li H, Li B, Song K, Sha Y, Liu Y, Dong S, Wang D, Yang L. Microbial Community Shifts in Tea Plant Rhizosphere under Seawater Stress: Enrichment of Beneficial Taxa. Microorganisms 2024; 12:1287. [PMID: 39065056 PMCID: PMC11279268 DOI: 10.3390/microorganisms12071287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Seawater intrusion has a significant impact on the irrigation quality of agricultural water, thereby posing a threat to plant growth and development. We hypothesized that the rhizosphere of tea plants harbors beneficial microorganisms, which may improve the tolerance of tea plants to seawater stress. This study utilized 16s and ITS techniques to analyze microbial community shifts in the tea plant rhizosphere and non-rhizosphere under seawater stress conditions. The findings suggest that seawater stress leads to a reduction in microbial diversity, although the rhizosphere microbial diversity in stressed soils showed a relatively higher level. Moreover, the rhizosphere of the tea plant under seawater stress exhibited an enrichment of plant growth-promoting rhizobacteria alongside a higher presence of pathogenic fungi. Network analysis revealed that seawater stress resulted in the construction of a more complex and stable rhizosphere microbial network compared to normal conditions. Predictions of bacterial potential functions highlighted a greater diversity of functional groups, enhancing resource utilization efficiency. In general, the rhizosphere microorganisms of tea plants are jointly selected by seawater and the host. The microorganisms closely related to the rhizosphere of tea plants are retained and, at the same time, attract beneficial microorganisms that may alleviate stress. These findings provide new insights into plant responses to saline stress and have significant implications for leveraging vegetation to enhance the resilience of coastal saline soils and contribute to economic progress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China (K.S.); (Y.L.)
| |
Collapse
|
3
|
Ruan Z, Chen K, Cao W, Meng L, Yang B, Xu M, Xing Y, Li P, Freilich S, Chen C, Gao Y, Jiang J, Xu X. Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling. Nat Commun 2024; 15:4694. [PMID: 38824157 PMCID: PMC11144243 DOI: 10.1038/s41467-024-49098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Engineering natural microbiomes for biotechnological applications remains challenging, as metabolic interactions within microbiomes are largely unknown, and practical principles and tools for microbiome engineering are still lacking. Here, we present a combinatory top-down and bottom-up framework to engineer natural microbiomes for the construction of function-enhanced synthetic microbiomes. We show that application of herbicide and herbicide-degrader inoculation drives a convergent succession of different natural microbiomes toward functional microbiomes (e.g., enhanced bioremediation of herbicide-contaminated soils). We develop a metabolic modeling pipeline, SuperCC, that can be used to document metabolic interactions within microbiomes and to simulate the performances of different microbiomes. Using SuperCC, we construct bioremediation-enhanced synthetic microbiomes based on 18 keystone species identified from natural microbiomes. Our results highlight the importance of metabolic interactions in shaping microbiome functions and provide practical guidance for engineering natural microbiomes.
Collapse
Affiliation(s)
- Zhepu Ruan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Kai Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Weimiao Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Lei Meng
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Bingang Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Mengjun Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Youwen Xing
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Pengfa Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Chen Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Yanzheng Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| | - Xihui Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| |
Collapse
|
4
|
Ma H, Liu J, Mo L, Arias-Giraldo LM, Xiang M, Liu X. Wild plant species with broader precipitation niches exhibit stronger host selection in rhizosphere microbiome assembly. ISME COMMUNICATIONS 2024; 4:ycad015. [PMID: 38439944 PMCID: PMC10910850 DOI: 10.1093/ismeco/ycad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 03/06/2024]
Abstract
Plants actively recruit microbes from the soil, forming species-specific root microbiomes. However, their relationship with plant adaptations to temperature and precipitation remains unclear. Here we examined the host-selected and conserved microbiomes of 13 native plant species in the Xilingol steppe, Inner Mongolia, a semi-arid region in China. By calculating the global precipitation and temperature niches of these plants, considering plant phylogenetic distances, and analyzing functional traits, we found that these factors significantly influenced the rhizosphere microbiome assembly. We further quantified the strength of host selection and observed that plants with wider precipitation niches exhibited greater host selection strength in their rhizosphere microbiome assembly and higher rhizosphere bacterial diversity. In general, the rhizosphere microbiome showed a stronger link to plant precipitation niches than temperature niches. Haliangium exhibited consistent responsiveness to host characteristics. Our findings offer novel insights into host selection effects and the ecological determinants of wild plant rhizosphere microbiome assembly, with implications for steering root microbiomes of wild plants and understanding plant-microbiome evolution.
Collapse
Affiliation(s)
- Haikun Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinming Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lidong Mo
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, Zurich 8092, Switzerland
| | - Luisa M Arias-Giraldo
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, PB 6708, The Netherlands
| | - Meichun Xiang
- State Key Laboratory of Mycology, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Mycology, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, China
| |
Collapse
|
5
|
Tang J, Han Y, Pei L, Gu W, Qiu R, Wang S, Ma Q, Gan Y, Tang M. Comparative analysis of the rhizosphere microbiome and medicinally active ingredients of Atractylodes lancea from different geographical origins. Open Life Sci 2023; 18:20220769. [PMID: 38027226 PMCID: PMC10668115 DOI: 10.1515/biol-2022-0769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
This study aimed to explore the important role of the rhizosphere microbiome in the quality of Atractylodes lancea (Thunb.) DC. (A. lancea). The rhizosphere microbial community of A. lancea at two sampling sites was studied using metagenomic technology. The results of α-diversity analysis showed that the rhizosphere microbial richness and diversity were higher in the Maoshan area. The higher abundance of core microorganisms of the rhizosphere, especially Penicillium and Streptomyces, in the Maoshan area compared with those in the Yingshan area might be an important factor affecting the yield of A. lancea. Redundancy analysis illustrated that the available phosphorus had a significant effect on the rhizosphere microbial community structure of A. lancea. We also showed that the plant-microbe and microbe-microbe interactions were closer in the Maoshan area than in the Yingshan area, and Streptomyces were the main contributors to the potential functional difference between the two regions. A. lancea in the Maoshan area had a high content of atractylodin and atractylon, which might be related to the enhanced abundance of Streptomyces, Candidatus-Solibacter, and Frankia. Taken together, this study provided theoretical insights into the interaction between medicinal plants and the rhizosphere microbiome and provides a valuable reference for studying beneficial microbes of A. lancea.
Collapse
Affiliation(s)
- Junjie Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| | - Yun Han
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215002, China
| | - Lingfeng Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| | - Wei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization,
Nanjing, 210023, China
| | - Rongli Qiu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| | - Sheng Wang
- State Key Laboratory of Dao-di Herbs, Beijng, 100700, China
| | - Qihan Ma
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215002, China
| | - Yifu Gan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| | - Min Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| |
Collapse
|
6
|
Hartman K, Schmid MW, Bodenhausen N, Bender SF, Valzano-Held AY, Schlaeppi K, van der Heijden MGA. A symbiotic footprint in the plant root microbiome. ENVIRONMENTAL MICROBIOME 2023; 18:65. [PMID: 37525294 PMCID: PMC10391997 DOI: 10.1186/s40793-023-00521-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND A major aim in plant microbiome research is determining the drivers of plant-associated microbial communities. While soil characteristics and host plant identity present key drivers of root microbiome composition, it is still unresolved whether the presence or absence of important plant root symbionts also determines overall microbiome composition. Arbuscular mycorrhizal fungi (AMF) and N-fixing rhizobia bacteria are widespread, beneficial root symbionts that significantly enhance plant nutrition, plant health, and root structure. Thus, we hypothesized that symbiont types define the root microbiome structure. RESULTS We grew 17 plant species from five families differing in their symbiotic associations (no symbioses, AMF only, rhizobia only, or AMF and rhizobia) in a greenhouse and used bacterial and fungal amplicon sequencing to characterize their root microbiomes. Although plant phylogeny and species identity were the most important factors determining root microbiome composition, we discovered that the type of symbioses also presented a significant driver of diversity and community composition. We found consistent responses of bacterial phyla, including members of the Acidobacteria, Chlamydiae, Firmicutes, and Verrucomicrobia, to the presence or absence of AMF and rhizobia and identified communities of OTUs specifically enriched in the different symbiotic groups. A total of 80, 75 and 57 bacterial OTUs were specific for plant species without symbiosis, plant species forming associations with AMF or plant species associating with both AMF and rhizobia, respectively. Similarly, 9, 14 and 4 fungal OTUs were specific for these plant symbiont groups. Importantly, these generic symbiosis footprints in microbial community composition were also apparent in absence of the primary symbionts. CONCLUSION Our results reveal that symbiotic associations of the host plant leaves an imprint on the wider root microbiome - which we term the symbiotype. These findings suggest the existence of a fundamental assembly principle of root microbiomes, dependent on the symbiotic associations of the host plant.
Collapse
Affiliation(s)
- Kyle Hartman
- Department of Agroecology and Environment, Plant Soil Interactions, Reckenholzstrasse 191, Agroscope, Zürich, 8046, Switzerland
| | | | - Natacha Bodenhausen
- Department of Agroecology and Environment, Plant Soil Interactions, Reckenholzstrasse 191, Agroscope, Zürich, 8046, Switzerland
- Department of Soil Sciences, Research Institute of Organic Agriculture FiBL, Frick, 5070, Switzerland
| | - S Franz Bender
- Department of Agroecology and Environment, Plant Soil Interactions, Reckenholzstrasse 191, Agroscope, Zürich, 8046, Switzerland
| | - Alain Y Valzano-Held
- Department of Agroecology and Environment, Plant Soil Interactions, Reckenholzstrasse 191, Agroscope, Zürich, 8046, Switzerland
| | - Klaus Schlaeppi
- Department of Agroecology and Environment, Plant Soil Interactions, Reckenholzstrasse 191, Agroscope, Zürich, 8046, Switzerland.
- Plant Microbe Interactions, Department of Environmental Sciences, University of Basel, Basel, 4056, Switzerland.
- Institute of Plant Sciences, Faculty of Science, University of Bern, Bern, 3013, Switzerland.
| | - Marcel G A van der Heijden
- Department of Agroecology and Environment, Plant Soil Interactions, Reckenholzstrasse 191, Agroscope, Zürich, 8046, Switzerland.
- Department of Plant and Microbial Biology, University of Zürich, Zürich, 8008, Switzerland.
| |
Collapse
|
7
|
Hesen V, Boele Y, Bakx-Schotman T, van Beersum F, Raaijmakers C, Scheres B, Willemsen V, van der Putten WH. Pioneer Arabidopsis thaliana spans the succession gradient revealing a diverse root-associated microbiome. ENVIRONMENTAL MICROBIOME 2023; 18:62. [PMID: 37468998 DOI: 10.1186/s40793-023-00511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Soil microbiomes are increasingly acknowledged to affect plant functioning. Research in molecular model species Arabidopsis thaliana has given detailed insights of such plant-microbiome interactions. However, the circumstances under which natural A. thaliana plants have been studied so far might represent only a subset of A. thaliana's full ecological context and potential biotic diversity of its root-associated microbiome. RESULTS We collected A. thaliana root-associated soils from a secondary succession gradient covering 40 years of land abandonment. All field sites were situated on the same parent soil material and in the same climatic region. By sequencing the bacterial and fungal communities and soil abiotic analysis we discovered differences in both the biotic and abiotic composition of the root-associated soil of A. thaliana and these differences are in accordance with the successional class of the field sites. As the studied sites all have been under (former) agricultural use, and a climatic cline is absent, we were able to reveal a more complete variety of ecological contexts A. thaliana can appear and sustain in. CONCLUSIONS Our findings lead to the conclusion that although A. thaliana is considered a pioneer plant species and previously almost exclusively studied in early succession and disturbed sites, plants can successfully establish in soils which have experienced years of ecological development. Thereby, A. thaliana can be exposed to a much wider variation in soil ecological context than is currently presumed. This knowledge opens up new opportunities to enhance our understanding of causal plant-microbiome interactions as A. thaliana cannot only grow in contrasting soil biotic and abiotic conditions along a latitudinal gradient, but also when those conditions vary along a secondary succession gradient. Future research could give insights in important plant factors to grow in more ecologically complex later-secondary succession soils, which is an impending direction of our current agricultural systems.
Collapse
Affiliation(s)
- Vera Hesen
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands.
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6700 AB, the Netherlands.
| | - Yvet Boele
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Tanja Bakx-Schotman
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6700 AB, the Netherlands
| | - Femke van Beersum
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6700 AB, the Netherlands
- Plant Ecology and Nature Conservation Group, Wageningen University, Droevendaalsesteeg 3a, Wageningen, 6708 PB, the Netherlands
| | - Ciska Raaijmakers
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6700 AB, the Netherlands
| | - Ben Scheres
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
- Department of Biotechnology, Rijk Zwaan Breeding B.V., Eerste Kruisweg 9, Fijnaart, 4793 RS, the Netherlands
| | - Viola Willemsen
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands.
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6700 AB, the Netherlands.
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands.
| |
Collapse
|
8
|
Yu F, Luo W, Xie W, Li Y, Liu Y, Ye X, Peng T, Wang H, Huang T, Hu Z. The effects of long-term hexabromocyclododecanes contamination on microbial communities in the microcosms. CHEMOSPHERE 2023; 325:138412. [PMID: 36925001 DOI: 10.1016/j.chemosphere.2023.138412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/21/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The adaptation of microbial community to the long-term contamination of hexabromocyclododecanes (HBCDs) has not been well studied. Our previous study found that the HBCDs contamination in the microcosms constructed of sediments from two different mangrove forests in 8 months resulted in serious acidification (pH2-3). This study reanalyzed previous sequencing data and compared them with data after 20 months to investigate the adaptive properties of microbial communities in the stress of HBCDs and acidification. It hypothesized that the reassembly was based on the fitness of taxa. The results indicated that eukaryotes and fungi might have better adaptive capacity to these deteriorated habitats. Eukaryotic taxa Eufallia and Syncystis, and fungal taxa Wickerhamomyces were only detected after 20 months of contamination. Moreover, eukaryotic taxa Caloneis and Nitzschia, and fungal taxa Talaromyces were dominant in most of microbial communities (14.467-95.941%). The functional compositions were sediment-dependent and more divergent than community reassemblies. Network and co-occurrence analysis suggested that acidophiles such as Acidisoma and Acidiphilium were gaining more positive relations in the long-term stress. The acidophilic taxa and genes involved in resistance to the acidification and toxicity of HBCDs were enriched, for example, bacteria Acidisoma and Acidiphilium, archaea Thermogymnomonas, and eukaryotes Nitzschia, and genes kdpC, odc1, polA, gst, and sod-2. These genes involved in oxidative stress response, energy metabolism, DNA damage repair, potassium transportation, and decarboxylation. It suggested that the microbial communities might cope with the stress from HBCDs and acidification via multiple pathways. The present research shed light on the evolution of microbial communities under the long-term stress of HBCDs contamination and acidification.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Wei Xie
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Yuyang Li
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Yongjin Liu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Xueying Ye
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China.
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong Province, China.
| |
Collapse
|
9
|
Poupin MJ, Ledger T, Roselló-Móra R, González B. The Arabidopsis holobiont: a (re)source of insights to understand the amazing world of plant-microbe interactions. ENVIRONMENTAL MICROBIOME 2023; 18:9. [PMID: 36803555 PMCID: PMC9938593 DOI: 10.1186/s40793-023-00466-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
As holobiont, a plant is intrinsically connected to its microbiomes. However, some characteristics of these microbiomes, such as their taxonomic composition, biological and evolutionary role, and especially the drivers that shape them, are not entirely elucidated. Reports on the microbiota of Arabidopsis thaliana first appeared more than ten years ago. However, there is still a lack of a comprehensive understanding of the vast amount of information that has been generated using this holobiont. The main goal of this review was to perform an in-depth, exhaustive, and systematic analysis of the literature regarding the Arabidopsis-microbiome interaction. A core microbiota was identified as composed of a few bacterial and non-bacterial taxa. The soil (and, to a lesser degree, air) were detected as primary microorganism sources. From the plant perspective, the species, ecotype, circadian cycle, developmental stage, environmental responses, and the exudation of metabolites were crucial factors shaping the plant-microbe interaction. From the microbial perspective, the microbe-microbe interactions, the type of microorganisms belonging to the microbiota (i.e., beneficial or detrimental), and the microbial metabolic responses were also key drivers. The underlying mechanisms are just beginning to be unveiled, but relevant future research needs were identified. Thus, this review provides valuable information and novel analyses that will shed light to deepen our understanding of this plant holobiont and its interaction with the environment.
Collapse
Affiliation(s)
- M J Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - T Ledger
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - R Roselló-Móra
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Illes Balears, Majorca, Spain
| | - B González
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile.
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile.
| |
Collapse
|
10
|
Huang F, Zhu C, Huang M, Song X, Peng A. The root enrichment of bacteria is consistent across different stress-resistant plant species. PeerJ 2023; 11:e14683. [PMID: 36684671 PMCID: PMC9854377 DOI: 10.7717/peerj.14683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
Bacteria, inhabiting around and in plant roots, confer many beneficial traits to promote plant growth and health. The secretion of root exudates modulates the nutritional state of the rhizosphere and root area, further selecting specific bacteria taxa and shaping the bacteria communities. Many studies of the rhizosphere effects have demonstrated that selection by the plant rhizosphere consistently enriches a set of bacteria taxa, and this is conserved across different plant species. Root selection effects are considered to be stronger than the rhizosphere selection effects, yet studies are limited. Here, we focus on the root selection effects across a group of 11 stress-resistant plant species. We found that the root selection consistently reduced the alpha diversity (represented by total number of observed species, Shannon's diversity, and phylogenetic diversity) and altered the structure and composition of bacteria communities. Furthermore, root selection tended to enrich for clusters of bacteria genera including Pantoea, Akkermansia, Blautia, Acinetobacter, Burkholderia-Paraburkholderia, Novosphingobium, Massilia, Pseudomonas, Chryseobacterium, and Stenotrophomonas. Our study offers some basic knowledge for understanding the microbial ecology of the plant root, and suggests that several bacteria genera are of interest for future studies.
Collapse
Affiliation(s)
- Feng Huang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, Guangdong, China
| | - Congyi Zhu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA) & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Minli Huang
- Lichuan Bureau of Natural Resources, Fuzhou, Jiangxi, China
| | - Xiaobing Song
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, Guangdong, China
| | - Aitian Peng
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Yu F, Luo W, Xie W, Li Y, Meng S, Kan J, Ye X, Peng T, Wang H, Huang T, Hu Z. Community reassemblies of eukaryotes, prokaryotes, and viruses in the hexabromocyclododecanes-contaminated microcosms. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129159. [PMID: 35643009 DOI: 10.1016/j.jhazmat.2022.129159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The microbial community in seriously contaminated environment were not well known. This research investigated the community reassemblies in microcosms made of two distinct mangrove sediments amended with high levels of hexabromocyclododecanes (HBCDs). After eight months of contamination, the transformation of HBCDs yielded various lower brominated products and resulted in acidification (pH ~2). Therefore, the degraders and dehalogenase homologous genes involved in transformation of HBCDs only presented in low abundance to avoid further deterioration of the habitats. Moreover, in these deteriorated habitats, 1344 bacterial, 969 archaeal, 599 eukaryotic (excluded fungi), 187 fungal OTUs, and 10 viral genera, were reduced compared with controls. Specifically, in two groups of microcosms, Zetaproteobacteria, Deinococcus-Thermus, Spirochaetes, Bacteroidetes, Euryarchaeota, and Ascomycota, were positively responding taxa to HBCDs. Caloneis (Bacillariophyta) and Ascomycota turned to the dominant eukaryotic and fungal taxa. Most of predominant taxa were related to the contamination of brominated flame retardants (BFRs). Microbial communities were reassembled in divergent and sediment-dependent manner. The long-term contamination of HBCDs leaded to the change of relations between many taxa, included some of the environmental viruses and their known hosts. This research highlight the importance of monitoring the ecological effects around plants producing or processing halogenated compounds.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Wei Xie
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Yuyang Li
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Shanshan Meng
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Jie Kan
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Xueying Ye
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, PR China.
| |
Collapse
|
12
|
Schmitz L, Yan Z, Schneijderberg M, de Roij M, Pijnenburg R, Zheng Q, Franken C, Dechesne A, Trindade LM, van Velzen R, Bisseling T, Geurts R, Cheng X. Synthetic bacterial community derived from a desert rhizosphere confers salt stress resilience to tomato in the presence of a soil microbiome. THE ISME JOURNAL 2022; 16:1907-1920. [PMID: 35444261 PMCID: PMC9296610 DOI: 10.1038/s41396-022-01238-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023]
Abstract
The root bacterial microbiome is important for the general health of the plant. Additionally, it can enhance tolerance to abiotic stresses, exemplified by plant species found in extreme ecological niches like deserts. These complex microbe-plant interactions can be simplified by constructing synthetic bacterial communities or SynComs from the root microbiome. Furthermore, SynComs can be applied as biocontrol agents to protect crops against abiotic stresses such as high salinity. However, there is little knowledge on the design of a SynCom that offers a consistent protection against salt stress for plants growing in a natural and, therefore, non-sterile soil which is more realistic to an agricultural setting. Here we show that a SynCom of five bacterial strains, originating from the root of the desert plant Indigofera argentea, protected tomato plants growing in a non-sterile substrate against a high salt stress. This phenotype correlated with the differential expression of salt stress related genes and ion accumulation in tomato. Quantification of the SynCom strains indicated a low penetrance into the natural soil used as the non-sterile substrate. Our results demonstrate how a desert microbiome could be engineered into a simplified SynCom that protected tomato plants growing in a natural soil against an abiotic stress.
Collapse
Affiliation(s)
- Lucas Schmitz
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Zhichun Yan
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Martinus Schneijderberg
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Martijn de Roij
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Rick Pijnenburg
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Qi Zheng
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Carolien Franken
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Annemarie Dechesne
- Laboratory of Plant Breeding, Plant Sciences Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Luisa M Trindade
- Laboratory of Plant Breeding, Plant Sciences Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Robin van Velzen
- Biosystematics, Plant Sciences Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Rene Geurts
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| | - Xu Cheng
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands. .,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
13
|
Kherfi-Nacer A, Yan Z, Bouherama A, Schmitz L, Amrane SO, Franken C, Schneijderberg M, Cheng X, Amrani S, Geurts R, Bisseling T. High Salt Levels Reduced Dissimilarities in Root-Associated Microbiomes of Two Barley Genotypes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:592-603. [PMID: 35316093 DOI: 10.1094/mpmi-12-21-0294-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plants harbor in and at their roots bacterial microbiomes that contribute to their health and fitness. The microbiome composition is controlled by the environment and plant genotype. Previously, it was shown that the plant genotype-dependent dissimilarity of root microbiome composition of different species becomes smaller under drought stress. However, it remains unknown whether this reduced plant genotype-dependent effect is a specific response to drought stress or a more generic response to abiotic stress. To test this, we studied the effect of salt stress on two distinct barley (Hordeum vulgare L.) genotypes: the reference cultivar Golden Promise and the Algerian landrace AB. As inoculum, we used soil from salinized and degraded farmland on which barley was cultivated. Controlled laboratory experiments showed that plants inoculated with this soil displayed growth stimulation under high salt stress (200 mM) in a plant genotype-independent manner, whereas the landrace AB also showed significant growth stimulation at low salt concentrations. Subsequent analysis of the root microbiomes revealed a reduced dissimilarity of the bacterial communities of the two barley genotypes in response to high salt, especially in the endophytic compartment. High salt level did not reduce α-diversity (richness) in the endophytic compartment of both plant genotypes but was associated with an increased number of shared strains that respond positively to high salt. Among these, Pseudomonas spp. were most abundant. These findings suggest that the plant genotype-dependent microbiome composition is altered generically by abiotic stress.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Asma Kherfi-Nacer
- Laboratory of Biology and Physiology of Organisms (LBPO), Biological Sciences Faculty, Houari Boumediène Sciences and Technology University (USTHB), BP 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Science Group, Wageningen University and Research (WUR), Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Zhichun Yan
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Science Group, Wageningen University and Research (WUR), Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Amina Bouherama
- Laboratory of Biology and Physiology of Organisms (LBPO), Biological Sciences Faculty, Houari Boumediène Sciences and Technology University (USTHB), BP 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria
- Sciences Faculty, Yahia Farès University, Médéa 26000, Algeria
| | - Lucas Schmitz
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Science Group, Wageningen University and Research (WUR), Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Saadia Ouled Amrane
- Laboratory of Biology and Physiology of Organisms (LBPO), Biological Sciences Faculty, Houari Boumediène Sciences and Technology University (USTHB), BP 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria
- Research Experimental Field Station, Belbachir, El-Meniaa, Ghardaïa 47001, Algeria
| | - Carolien Franken
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Science Group, Wageningen University and Research (WUR), Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Martinus Schneijderberg
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Science Group, Wageningen University and Research (WUR), Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Xu Cheng
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Science Group, Wageningen University and Research (WUR), Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Said Amrani
- Laboratory of Biology and Physiology of Organisms (LBPO), Biological Sciences Faculty, Houari Boumediène Sciences and Technology University (USTHB), BP 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria
| | - Rene Geurts
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Science Group, Wageningen University and Research (WUR), Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Science Group, Wageningen University and Research (WUR), Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
14
|
Zhu AM, Wu Q, Liu HL, Sun HL, Han GD. Isolation of rhizosheath and analysis of microbial community structure around roots of Stipa grandis. Sci Rep 2022; 12:2707. [PMID: 35177730 PMCID: PMC8854629 DOI: 10.1038/s41598-022-06708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
Root zone microbial structure is particularly complex in plants with rhizosheaths, and greater understanding of the rhizosheath may play an important role in the future development of sustainable agricultural practices. However, one important reason to focus study on rhizosheath microbial structure is that there is no definite method for rhizosheath separation. The aim of this study was to explore rhizosheath isolation methods and the diversity characteristics of microorganisms around the rhizosphere. In this study, we isolated the rhizosheath of Stipa grandis, a dominant species in desert steppe, and the microorganisms in the roots, root epidermis, rhizosheath and rhizosphere soil were extracted and sequenced by 16S rRNA and ITS. The alpha diversity index of bacteria in Stipa grandis rhizosphere soil was the greatest, followed by rhizosheath, and the alpha diversity index of endophytic bacteria in root system was the smallest. The alpha diversity index of fungi in the rhizosheath and rhizosphere soil were significantly higher than that in the root epidermis and root system. There were significant differences in bacterial community structure between the root epidermis, endophytic bacteria, rhizosheath and rhizosphere soil. Unlike bacterial community structure, the community structure of fungi in the root epidermis was similar that of endophytic fungi, but significantly different from those in rhizosheath and rhizosphere soil. This study demonstrated a feasible method for separating plant rhizosheath and root epidermis. We suggest that the root epidermis can act as the interface between the host plant root and the external soil environment. We will have to re-examine the biological and ecological significance of rhizosheath and microorganisms in rhizosheath, as well as the mechanism explaining the close relationship of the rhizosheath and the plant root epidermis. This study provides theoretical and technical guidance for the isolation of the plant rhizosheath and the study of microorganisms in plant rhizosheath.
Collapse
Affiliation(s)
- Ai-Min Zhu
- College of Grassland, Resources and Environment, Key Laboratory of Grassland Resources of the Ministry of Education of China, Key Laboratory of Forage Cultivation, Processing and Higher Efficient Utilization of the Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Key Laboratory of Grassland Management and Utilization, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Qian Wu
- College of Grassland, Resources and Environment, Key Laboratory of Grassland Resources of the Ministry of Education of China, Key Laboratory of Forage Cultivation, Processing and Higher Efficient Utilization of the Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Key Laboratory of Grassland Management and Utilization, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Hai-Li Liu
- College of Grassland, Resources and Environment, Key Laboratory of Grassland Resources of the Ministry of Education of China, Key Laboratory of Forage Cultivation, Processing and Higher Efficient Utilization of the Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Key Laboratory of Grassland Management and Utilization, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Hai-Lian Sun
- Research Base of the Academy of Agriculture and Animal Husbandry of Inner Mongolia, Hohhot, 010031, China
| | - Guo-Dong Han
- College of Grassland, Resources and Environment, Key Laboratory of Grassland Resources of the Ministry of Education of China, Key Laboratory of Forage Cultivation, Processing and Higher Efficient Utilization of the Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Key Laboratory of Grassland Management and Utilization, Inner Mongolia Agricultural University, Hohhot, 010019, China.
| |
Collapse
|
15
|
Bhattacharyya C, Imchen M, Mukherjee T, Haldar S, Mondal S, Mukherji S, Haldar A, Kumavath R, Ghosh A. Rhizosphere impact bacterial community structure in the tea (Camellia sinensis (L.) O. Kuntze.) estates of Darjeeling, India. Environ Microbiol 2021; 24:2716-2731. [PMID: 34913573 DOI: 10.1111/1462-2920.15874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Abstract
India contributes 28% of the world's tea production, and the Darjeeling tea of India is a world-famous tea variety known for its unique quality, flavor, and aroma. This study analyzed the spatial distribution of bacterial communities in the tea rhizosphere of six different tea estates at different altitudes. The organic carbon, total nitrogen, and available phosphate were higher in the rhizosphere soils than the bulk soils, irrespective of the sites. Alpha and beta diversities were significantly (p<0.05) higher in the bulk soil than in the rhizosphere. Among the identified phyla, the predominant ones were Proteobacteria, Actinobacteria, and Acidobacteria. At the genus level, only 4 out of 23 predominant genera (>1% relative abundance) could be classified viz. Candidatus Solibacter (5.36±0.36%), Rhodoplanes (4.87±0.3%), Candidatus Koribacter (2.3±0.67%), Prevotella (1.49±0.26%). The rhizosphere effect was prominent evident from the significant depletion of more ASVs (n=39) compared to enrichment (n=11). The functional genes also exhibit a similar trend with the enrichment of N2 fixation genes, disease suppression, and Acetoine synthesis. Our study reports that the rhizobiome of tea is highly selective by reducing the alpha and beta diversity while enriching the significant functional genes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chandrima Bhattacharyya
- Department of Biochemistry, Bose Institute, P1/12 C.I.T, Scheme VIIM, Kolkata, 700054, West Bengal, India
| | - Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya P.O, Kasaragod, Kerala, 671316, India
| | - Triparna Mukherjee
- Department of Biochemistry, Bose Institute, P1/12 C.I.T, Scheme VIIM, Kolkata, 700054, West Bengal, India
| | - Shyamalina Haldar
- Department of Biochemistry, Asutosh College, University, of Calcutta, Kolkata, 700026, India
| | - Sangita Mondal
- Department of Biochemistry, Bose Institute, P1/12 C.I.T, Scheme VIIM, Kolkata, 700054, West Bengal, India
| | - Shayantan Mukherji
- Department of Biochemistry, Bose Institute, P1/12 C.I.T, Scheme VIIM, Kolkata, 700054, West Bengal, India
| | - Anwesha Haldar
- Department of Geography, East Calcutta Girls' College, under West Bengal State University, Lake Town, Kolkata, 700089, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya P.O, Kasaragod, Kerala, 671316, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, P1/12 C.I.T, Scheme VIIM, Kolkata, 700054, West Bengal, India
| |
Collapse
|
16
|
Zhou Y, Yao Q, Zhu H. Soil Organic Carbon Attenuates the Influence of Plants on Root-Associated Bacterial Community. Front Microbiol 2020; 11:594890. [PMID: 33240249 PMCID: PMC7680919 DOI: 10.3389/fmicb.2020.594890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/22/2020] [Indexed: 01/18/2023] Open
Abstract
Plant-derived carbon (PDC) released by roots has a strong effect on root-associated bacterial community, which is critical for plant fitness in natural environments. However, the freshly exuded PDC can be diluted by the ancient soil-derived carbon (SDC) at a short distance from root apices. Thus, the rhizosphere C pools are normally dominated by SDC rather than PDC. Yet, how PDC and SDC interact to regulate root-associated bacterial community is largely unknown. In this study, a grass species and a legume species were planted in two contrasting matrixes, quartz sand and soil, to assess the role of PDC and SDC in regulating root-associated bacterial community, and to explore whether SDC affects the influence of PDC on bacterial community in soil. Our results indicated that the legume plant showed significantly positive priming effect on soil organic matter decomposition but the grass plant did not. PDC significantly shaped bacterial community in sand culture as indicated by PCR-DGGE and high-throughput sequencing of bacterial 16S rRNA gene. Intriguingly, we found that dissimilarity of bacterial communities associated with two plant species and the percentage of specific OTUs in quartz sand were significantly higher than those in soil. Moreover, several biomarkers enriched by plants in quartz sand turned to be general taxa in soil, which indicated that SDC attenuated the regulation of bacterial community by PDC. Taken together, these results suggest that SDC interacted with PDC and the root-associated microbial community, thus acted as soil buffering component of biological process contributing to soil resilience. The importance of PDC in structuring rhizosphere bacterial community needs to be reconsidered in the context of wider contribution of other C pool, such as SDC.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qing Yao
- College of Horticulture, South China Agricultural University, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, Guangdong Engineering Research Center for Grass Science, Guangzhou, China
| | - Honghui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
17
|
Barra Caracciolo A, Grenni P, Garbini GL, Rolando L, Campanale C, Aimola G, Fernandez-Lopez M, Fernandez-Gonzalez AJ, Villadas PJ, Ancona V. Characterization of the Belowground Microbial Community in a Poplar-Phytoremediation Strategy of a Multi-Contaminated Soil. Front Microbiol 2020; 11:2073. [PMID: 32983051 PMCID: PMC7477336 DOI: 10.3389/fmicb.2020.02073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/06/2020] [Indexed: 11/25/2022] Open
Abstract
Due to their widespread use in industrial applications in recent decades, Polychlorobiphenyls (PCBs) and heavy metals (HMs) are the most common soil contaminants worldwide, posing a risk for both ecosystems and human health. In this study, a poplar-assisted bioremediation strategy has been applied for more than 4 years to a historically contaminated area (PCBs and HMs) in Southern Italy using the Monviso poplar clone. This clone was effective in promoting a decrease in all contaminants and an increase in soil quality in terms of organic carbon and microbial abundance. Moreover, a significant shift in the structure and predicted function of the belowground microbial community was also observed when analyzing both DNA and cDNA sequencing data. In fact, an increase in bacterial genera belonging to Proteobacteria able to degrade PCBs and resist HMs was observed. Moreover, the functional profiling of the microbial community predicted by PICRUSt2 made it possible to identify several genes associated with PCB transformation (e.g., bphAa, bphAb, bphB, bphC), response to HM oxidative stress (e.g., catalase, superoxide reductase, peroxidase) and HM uptake and expulsion (e.g., ABC transporters). This work demonstrated the effectiveness of the poplar clone Monviso in stimulating the natural belowground microbial community to remove contaminants and improve the overall soil quality. It is a practical example of a nature based solution involving synergic interactions between plants and the belowground microbial community.
Collapse
Affiliation(s)
| | - Paola Grenni
- National Research Council, Water Research Institute, Montelibretti (Rome), Italy
| | - Gian Luigi Garbini
- National Research Council, Water Research Institute, Montelibretti (Rome), Italy
| | - Ludovica Rolando
- National Research Council, Water Research Institute, Montelibretti (Rome), Italy.,Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | | | - Giorgia Aimola
- National Research Council, Water Research Institute, Bari, Italy
| | - Manuel Fernandez-Lopez
- Consejo Superior de Investigaciones Científicas (CSIC), Zaidin Experimental Station, Granada, Spain
| | | | - Pablo José Villadas
- Consejo Superior de Investigaciones Científicas (CSIC), Zaidin Experimental Station, Granada, Spain
| | - Valeria Ancona
- National Research Council, Water Research Institute, Bari, Italy
| |
Collapse
|