1
|
Zheng J, Ji J, Chen W, Wang D, Liu C, Zhang Y, Shen H, Cao X, Wu C. The presence of genes encoding carbapenem-hydrolyzing oxacillinase and lack of carbapenem resistance in non-baumannii Acinetobacter misidentified as Acinetobacter baumannii causing bloodstream infections in a tertiary hospital over a 3-year period. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 125:105669. [PMID: 39299538 DOI: 10.1016/j.meegid.2024.105669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE This study aims to analyze the genomic and clinical characteristics of Non-baumannii Acinetobacter strains misidentified as A. baumannii, causing bloodstream infections (BSIs) in our hospital. MATERIALS AND METHODS Whole genome sequencing was performed and average nucleotide identity (ANI) was analyzed. Susceptibility testing was conducted using micro-broth methods. The distribution of antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) was examined using online software tools. The prevalence of virulence factors (VFs) was investigated through nucleotide coding sequence comparisons. Genetic structures of blaOXA genes were analyzed by Gcluster software. Clinical information was collected from electronic medical records for patient characterization. RESULTS ANI analysis identified five strains as Acinetobacter pittii, with the remaining four identified as A. geminorum, A. nosocomialis, A. soli and A. bereziniae. The GC content of all isolates was less than 38.9 % except for A. soli 16,294. All Non-baumannii Acinetobacter strains were relatively susceptible to antibiotics, except for one A. pittii isolate. Nine blaOXA variants were identified in seven isolates, with two isolates co-carrying 2 different types of blaOXA. Twenty-four insertion sequences (ISs) were identified, with ISAba and IS17 being the primary ISs. Five A. pittii isolates shared the same genetic structures around blaOXA. Genes related to adherence, immune modulation, and nutritional/metabolic factors were the most frequent. Few VFs were detected in A. soli 16,294 and A.bereziniae 14,325. CONCLUSIONS The presence of carbapenem hydrolyzing oxacillinase encoding genes did not confer carbapenem resistance, possibly due to the lack of ISs in the blaOXA flanking sequences. Different blaOXA variants within distinct strains shared the same genetic structures, suggesting potential for multidrug resistance development, which warrants our attention.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jingru Ji
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei Chen
- Clinical Research Center, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Danwei Wang
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chang Liu
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yan Zhang
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Han Shen
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Xiaoli Cao
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Chao Wu
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Frantsuzova E, Bogun A, Kopylova O, Vetrova A, Solyanikova I, Streletskii R, Delegan Y. Genomic, Phylogenetic and Physiological Characterization of the PAH-Degrading Strain Gordonia polyisoprenivorans 135. BIOLOGY 2024; 13:339. [PMID: 38785821 PMCID: PMC11117675 DOI: 10.3390/biology13050339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
The strain Gordonia polyisoprenivorans 135 is able to utilize a wide range of aromatic compounds. The aim of this work was to study the features of genetic organization and biotechnological potential of the strain G. polyisoprenivorans 135 as a degrader of aromatic compounds. The study of the genome of the strain 135 and the pangenome of the G. polyisoprenivorans species revealed that some genes, presumably involved in PAH catabolism, are atypical for Gordonia and belong to the pangenome of Actinobacteria. Analyzing the intergenic regions of strain 135 alongside the "panIGRome" of G. polyisoprenivorans showed that some intergenic regions in strain 135 also differ from those located between the same pairs of genes in related strains. The strain G. polyisoprenivorans 135 in our work utilized naphthalene (degradation degree 39.43%) and grew actively on salicylate. At present, this is the only known strain of G. polyisoprenivorans with experimentally confirmed ability to utilize these compounds.
Collapse
Affiliation(s)
- Ekaterina Frantsuzova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| | - Olga Kopylova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
- Pushchino Branch of Federal State Budgetary Educational Institution of Higher Education “Russian Biotechnology University (ROSBIOTECH)”, 142290 Pushchino, Moscow Region, Russia
| | - Anna Vetrova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| | - Inna Solyanikova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
- Regional Microbiological Center, Belgorod State University, 308015 Belgorod, Russia
| | - Rostislav Streletskii
- Laboratory of Ecological Soil Science, Faculty of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| |
Collapse
|
3
|
Dziuba MV, Müller FD, Pósfai M, Schüler D. Exploring the host range for genetic transfer of magnetic organelle biosynthesis. NATURE NANOTECHNOLOGY 2024; 19:115-123. [PMID: 37735601 DOI: 10.1038/s41565-023-01500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/04/2023] [Indexed: 09/23/2023]
Abstract
Magnetosomes produced by magnetotactic bacteria have great potential for application in biotechnology and medicine due to their unique physicochemical properties and high biocompatibility. Attempts to transfer the genes for magnetosome biosynthesis into non-magnetic organisms have had mixed results. Here we report on a systematic study to identify key components needed for magnetosome biosynthesis after gene transfer. We transfer magnetosome genes to 25 proteobacterial hosts, generating seven new magnetosome-producing strains. We characterize the recombinant magnetosomes produced by these strains and demonstrate that denitrification and anaerobic photosynthesis are linked to the ability to synthesize magnetosomes upon the gene transfer. In addition, we show that the number of magnetosomes synthesized by a foreign host negatively correlates with the guanine-cytosine content difference between the host and the gene donor. Our findings have profound implications for the generation of magnetized living cells and the potential for transgenic biogenic magnetic nanoparticle production.
Collapse
Affiliation(s)
- Marina V Dziuba
- Department of Microbiology, Faculty of Biology, Chemistry and Geosciences, University of Bayreuth, Bayreuth, Germany
| | - Frank-Dietrich Müller
- Department of Microbiology, Faculty of Biology, Chemistry and Geosciences, University of Bayreuth, Bayreuth, Germany
| | - Mihály Pósfai
- ELKH-PE Environmental Mineralogy Research Group, Veszprém, Hungary
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary
| | - Dirk Schüler
- Department of Microbiology, Faculty of Biology, Chemistry and Geosciences, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
4
|
Aliperti L, Aptekmann AA, Farfañuk G, Couso LL, Soler-Bistué A, Sánchez IE. r/K selection of GC content in prokaryotes. Environ Microbiol 2023; 25:3255-3268. [PMID: 37813828 DOI: 10.1111/1462-2920.16511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/16/2023] [Indexed: 10/11/2023]
Abstract
The guanine/cytosine (GC) content of prokaryotic genomes is species-specific, taking values from 16% to 77%. This diversity of selection for GC content remains contentious. We analyse the correlations between GC content and a range of phenotypic and genotypic data in thousands of prokaryotes. GC content integrates well with these traits into r/K selection theory when phenotypic plasticity is considered. High GC-content prokaryotes are r-strategists with cheaper descendants thanks to a lower average amino acid metabolic cost, colonize unstable environments thanks to flagella and a bacillus form and are generalists in terms of resource opportunism and their defence mechanisms. Low GC content prokaryotes are K-strategists specialized for stable environments that maintain homeostasis via a high-cost outer cell membrane and endospore formation as a response to nutrient deprivation, and attain a higher nutrient-to-biomass yield. The lower proteome cost of high GC content prokaryotes is driven by the association between GC-rich codons and cheaper amino acids in the genetic code, while the correlation between GC content and genome size may be partly due to functional diversity driven by r/K selection. In all, molecular diversity in the GC content of prokaryotes may be a consequence of ecological r/K selection.
Collapse
Affiliation(s)
- Lucio Aliperti
- Facultad de Ciencias Exactas y Naturales. Laboratorio de Fisiología de Proteínas, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ariel A Aptekmann
- Marine and Coastal Sciences Department, Rutgers University, New Brunswick, New Jersey, USA
| | - Gonzalo Farfañuk
- Facultad de Ciencias Exactas y Naturales. Laboratorio de Fisiología de Proteínas, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana L Couso
- Facultad de Agronomía, Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfonso Soler-Bistué
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, CONICET, Universidad Nacional de San Martín, San Martin, Argentina
| | - Ignacio E Sánchez
- Facultad de Ciencias Exactas y Naturales. Laboratorio de Fisiología de Proteínas, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Levendosky K, Janisch N, Quadri LEN. Comprehensive essentiality analysis of the Mycobacterium kansasii genome by saturation transposon mutagenesis and deep sequencing. mBio 2023; 14:e0057323. [PMID: 37350613 PMCID: PMC10470612 DOI: 10.1128/mbio.00573-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/24/2023] Open
Abstract
Mycobacterium kansasii (Mk) is an opportunistic pathogen that is frequently isolated from urban water systems, posing a health risk to susceptible individuals. Despite its ability to cause tuberculosis-like pulmonary disease, very few studies have probed the genetics of this opportunistic pathogen. Here, we report a comprehensive essentiality analysis of the Mk genome. Deep sequencing of a high-density library of Mk Himar1 transposon mutants revealed that 86.8% of the chromosomal thymine-adenine (TA) dinucleotide target sites were permissive to insertion, leaving 13.2% TA sites unoccupied. Our analysis identified 394 of the 5,350 annotated open reading frames (ORFs) as essential. The majority of these essential ORFs (84.8%) share essential mutual orthologs with Mycobacterium tuberculosis (Mtb). A comparative genomics analysis identified 139 Mk essential ORFs that share essential orthologs in four other species of mycobacteria. Thirteen Mk essential ORFs share orthologs in all four species that were identified as being not essential, while only two Mk essential ORFs are absent in all species compared. We used the essentiality data and a comparative genomics analysis reported here to highlight differences in essentiality between candidate Mtb drug targets and the corresponding Mk orthologs. Our findings suggest that the Mk genome encodes redundant or additional pathways that may confound validation of potential Mtb drugs and drug target candidates against the opportunistic pathogen. Additionally, we identified 57 intergenic regions containing four or more consecutive unoccupied TA sites. A disproportionally large number of these regions were located upstream of pe/ppe genes. Finally, we present an essentiality and orthology analysis of the Mk pRAW-like plasmid, pMK1248. IMPORTANCE Mk is one of the most common nontuberculous mycobacterial pathogens associated with tuberculosis-like pulmonary disease. Drug resistance emergence is a threat to the control of Mk infections, which already requires long-term, multidrug courses. A comprehensive understanding of Mk biology is critical to facilitate the development of new and more efficacious therapeutics against Mk. We combined transposon-based mutagenesis with analysis of insertion site identification data to uncover genes and other genomic regions required for Mk growth. We also compared the gene essentiality data set of Mk to those available for several other mycobacteria. This analysis highlighted key similarities and differences in the biology of Mk compared to these other species. Altogether, the genome-wide essentiality information generated and the results of the cross-species comparative genomics analysis represent valuable resources to assist the process of identifying and prioritizing potential Mk drug target candidates and to guide future studies on Mk biology.
Collapse
Affiliation(s)
- Keith Levendosky
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
| | - Niklas Janisch
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
| | - Luis E. N. Quadri
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
- Biochemistry Program, Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
6
|
Hsu TY, Nzabarushimana E, Wong D, Luo C, Beiko RG, Langille M, Huttenhower C, Nguyen LH, Franzosa EA. Profiling novel lateral gene transfer events in the human microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552500. [PMID: 37609252 PMCID: PMC10441418 DOI: 10.1101/2023.08.08.552500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Lateral gene transfer (LGT) is an important mechanism for genome diversification in microbial populations, including the human microbiome. While prior work has surveyed LGT events in human-associated microbial isolate genomes, the scope and dynamics of novel LGT events arising in personal microbiomes are not well understood, as there are no widely adopted computational methods to detect, quantify, and characterize LGT from complex microbial communities. We addressed this by developing, benchmarking, and experimentally validating a computational method (WAAFLE) to profile novel LGT events from assembled metagenomes. Applying WAAFLE to >2K human metagenomes from diverse body sites, we identified >100K putative high-confidence but previously uncharacterized LGT events (~2 per assembled microbial genome-equivalent). These events were enriched for mobile elements (as expected), as well as restriction-modification and transport functions typically associated with the destruction of foreign DNA. LGT frequency was quantifiably influenced by biogeography, the phylogenetic similarity of the involved taxa, and the ecological abundance of the donor taxon. These forces manifest as LGT networks in which hub species abundant in a community type donate unequally with their close phylogenetic neighbors. Our findings suggest that LGT may be a more ubiquitous process in the human microbiome than previously described. The open-source WAAFLE implementation, documentation, and data from this work are available at http://huttenhower.sph.harvard.edu/waafle.
Collapse
Affiliation(s)
- Tiffany Y Hsu
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Etienne Nzabarushimana
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis Wong
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Chengwei Luo
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert G Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Morgan Langille
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Curtis Huttenhower
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Long H Nguyen
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric A Franzosa
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
7
|
Zhu Y, Wang T, Zhu W, Wei Q. Influence of class 2 integron integrase concentration on gene cassette insertion and excision in vivo. Braz J Microbiol 2023; 54:645-653. [PMID: 36808308 PMCID: PMC10235263 DOI: 10.1007/s42770-023-00926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Integron can capture and express antimicrobial resistance gene cassettes and plays important roles in horizontal gene transfer. The establishment of a complete in vitro reaction system will help to reveal integron integrase mediated site-specific recombination process and regulation mechanism. As an enzymatic reaction, the concentration of integrase is assumed to have a great influence on the reaction rate. To determine the influence of different concentrations of integrase on the reaction rate and to find the best range of enzyme concentration were essential to optimizing the in vitro reaction system. In this study, plasmids with gradient transcription levels of class 2 integron integrase gene intI2 under different promoters were constructed. Among plasmids pI2W16, pINTI2N, pI2W, and pI2NW, intI2 transcription levels ranged from about 0.61-fold to 49.65-fold of that in pINTI2N. And the frequencies of gene cassette sat2 integration and excision catalyzed by IntI2 were positively correlated with the transcription levels of intI2 within this range. Western blotting results indicated high expression of IntI2 partly existed in the form of an inclusion body. When compared with Pc of class 1 integron, the spacer sequence of PintI2 can increase the strength of PcW but decrease the strength of PcS. In conclusion, the frequencies of gene cassette integration and excision were positively correlated with the concentration of IntI2. intI2 driving by PcW with PintI2 spacer sequence can obtain the optimum IntI2 concentration required to achieve the maximum recombination efficiency in vivo in this study.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Tong Wang
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Wenwen Zhu
- Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Quhao Wei
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201499, China.
| |
Collapse
|
8
|
Comprehensive Genomic Characterization of Marine Bacteria Thalassospira spp. Provides Insights into Their Ecological Roles in Aromatic Hydrocarbon-Exposed Environments. Microbiol Spectr 2022; 10:e0314922. [PMID: 36190412 PMCID: PMC9604089 DOI: 10.1128/spectrum.03149-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The marine bacterial genus Thalassospira has often been identified as an abundant member of polycyclic aromatic hydrocarbon (PAH)-exposed microbial communities. However, despite their potential usability for biotechnological applications, functional genes that are conserved in their genomes have barely been investigated. Thus, the goal of this study was to comprehensively examine the functional genes that were potentially responsible for aromatic hydrocarbon biodegradation in the Thalassospira genomes available from databases, including a new isolate of Thalassospira, strain GO-4, isolated from a phenanthrene-enriched marine bacterial consortium. Strain GO-4 was used in this study as a model organism to link the genomic data and their metabolic functions. Strain GO-4 growth assays confirmed that it utilized a common phenanthrene biodegradation intermediate 2-carboxybenzaldehyde (CBA) as the sole source of carbon and energy, but did not utilize phenanthrene. Consistently, strain GO-4 was found to possess homologous genes of phdK, pht, and pca that encode enzymes for biodegradation of CBA, phthalic acid, and protocatechuic acid, respectively. Further comprehensive genomic analyses for 33 Thalassospira genomes from databases showed that a gene cluster that consisted of phdK and pht homologs was conserved in 13 of the 33 strains. pca gene homologs were found in all examined genomes; however, homologs of the known PAH-degrading genes, such as the pah, phn, or nah genes, were not found. Possibly Thalassospira spp. co-occupy niches with other PAH-degrading bacteria that provide them with PAH degradation intermediates and facilitated their inhabitation in PAH-exposed microbial ecosystems. IMPORTANCE Comprehensive investigation of multiple genomic data sets from targeted microbial taxa deposited in databases may provide substantial information to predict metabolic capabilities and ecological roles in different environments. This study is the first report that details the functional profiling of Thalassospira spp. that have repeatedly been found in polycyclic aromatic hydrocarbon (PAH)-exposed marine bacterial communities by using genomic data from a new isolate, Thalassospira strain GO-4, and other strains in databases. Through screening of functional genes potentially involved in aromatic hydrocarbon biodegradation across 33 Thalassospira genomes and growth assays for strain GO-4, it was suggested that Thalassospira spp. unexceptionally conserved the ability to metabolize single-ring, PAH biodegradation intermediates, while being incapable of utilizing PAHs. This expanded our understanding of this potentially important contributing member to PAH-degrading microbial ecosystems; such species are considered to be specialized in driving downstream reactions of PAH biodegradation.
Collapse
|
9
|
Hu EZ, Lan XR, Liu ZL, Gao J, Niu DK. A positive correlation between GC content and growth temperature in prokaryotes. BMC Genomics 2022; 23:110. [PMID: 35139824 PMCID: PMC8827189 DOI: 10.1186/s12864-022-08353-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND GC pairs are generally more stable than AT pairs; GC-rich genomes were proposed to be more adapted to high temperatures than AT-rich genomes. Previous studies consistently showed positive correlations between growth temperature and the GC contents of structural RNA genes. However, for the whole genome sequences and the silent sites of the codons in protein-coding genes, the relationship between GC content and growth temperature is in a long-lasting debate. RESULTS With a dataset much larger than previous studies (681 bacteria and 155 archaea with completely assembled genomes), our phylogenetic comparative analyses showed positive correlations between optimal growth temperature (Topt) and GC content both in bacterial and archaeal structural RNA genes and in bacterial whole genome sequences, chromosomal sequences, plasmid sequences, core genes, and accessory genes. However, in the 155 archaea, we did not observe a significant positive correlation of Topt with whole-genome GC content (GCw) or GC content at four-fold degenerate sites. We randomly drew 155 samples from the 681 bacteria for 1000 rounds. In most cases (> 95%), the positive correlations between Topt and genomic GC contents became statistically nonsignificant (P > 0.05). This result suggested that the small sample sizes might account for the lack of positive correlations between growth temperature and genomic GC content in the 155 archaea and the bacterial samples of previous studies. Comparing the GC content among four categories (psychrophiles/psychrotrophiles, mesophiles, thermophiles, and hyperthermophiles) also revealed a positive correlation between GCw and growth temperature in bacteria. By including the GCw of incompletely assembled genomes, we expanded the sample size of archaea to 303. Positive correlations between GCw and Topt appear especially after excluding the halophilic archaea whose GC contents might be strongly shaped by intense UV radiation. CONCLUSIONS This study explains the previous contradictory observations and ends a long debate. Prokaryotes growing in high temperatures have higher GC contents. Thermal adaptation is one possible explanation for the positive association. Meanwhile, we propose that the elevated efficiency of DNA repair in response to heat mutagenesis might have the by-product of increasing GC content like that happens in intracellular symbionts and marine bacterioplankton.
Collapse
Affiliation(s)
- En-Ze Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xin-Ran Lan
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhi-Ling Liu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jie Gao
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
10
|
Park J, Yim SS, Wang HH. High-Throughput Transcriptional Characterization of Regulatory Sequences from Bacterial Biosynthetic Gene Clusters. ACS Synth Biol 2021; 10:1859-1873. [PMID: 34288650 DOI: 10.1021/acssynbio.0c00639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent efforts to sequence, survey, and functionally characterize the diverse biosynthetic capabilities of bacteria have identified numerous Biosynthetic Gene Clusters (BGCs). Genes found within BGCs are typically transcriptionally silent, suggesting their expression is tightly regulated. To better elucidate the underlying mechanisms and principles that govern BGC regulation on a DNA sequence level, we employed high-throughput DNA synthesis and multiplexed reporter assays to build and to characterize a library of BGC-derived regulatory sequences. Regulatory sequence transcription levels were measured in the Actinobacteria Streptomyces albidoflavus J1074, a popular model strain from a genus rich in BGC diversity. Transcriptional activities varied over 1000-fold in range and were used to identify key features associated with expression, including GC content, transcription start sites, and sequence motifs. Furthermore, we demonstrated that transcription levels could be modulated through coexpression of global regulatory proteins. Lastly, we developed and optimized a S. albidoflavus cell-free expression system for rapid characterization of regulatory sequences. This work helps to elucidate the regulatory landscape of BGCs and provides a diverse library of characterized regulatory sequences for rational engineering and activation of cryptic BGCs.
Collapse
Affiliation(s)
- Jimin Park
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sung Sun Yim
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Harris H. Wang
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
| |
Collapse
|