1
|
Zhang Z, Liu Z, Yuan Y, Zhang W, Zhang S. Manipulation of juvenile hormone signaling by the fire blight pathogen Erwinia amylovora mediates fecundity enhancement of pear psylla. PEST MANAGEMENT SCIENCE 2025; 81:402-414. [PMID: 39329350 DOI: 10.1002/ps.8443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND In nature, plant pathogens often rely on insect vectors for transmission. Through long-term evolution, plant pathogens and insect vectors have established a mutually beneficial symbiotic relationship. Fire blight, caused by the Gram-negative bacterium Erwinia amylovora (Eam), poses a significant global threat to apple and pear production due to its rapid dissemination among host plants of the Rosaceae family. Despite evidence of E. amylovora transmission by various insects, the association between this pathogen and the pear psylla Cacopsylla chinensis, a common vector insect in pear orchards, remains unclear. RESULTS Sampling investigations and qRT-PCR results revealed that C. chinensis, from 11 pear orchards severely affected by fire blight disease in Xinjiang of China, harbored varying levels of this pathogen. Eam-positive females exhibited significantly higher fecundity compared to Eam-negative individuals, displaying accelerated ovarian development and a notable increase in egg production. Further RNAi results revealed that juvenile hormone (JH) receptor methoprene-tolerant (CcMet) and a crucial downstream gene Krüppel-homologue 1 (CcKr-h1) mediated the fecundity improvement of C. chinensis induced by Eam. Additionally, miR-2b, which targets CcKr-h1, was identified as being involved in Eam-induced fecundity enhancement in C. chinensis. CONCLUSION This study unveils, for the first time, that Eam colonize and amplify the fecundity of C. chinensis females. Host miR-2b targets CcKr-h1 of the JH signaling pathway to regulate the heightened fecundity of C. chinensis induced by Eam. These findings not only broaden our understanding of the interaction between plant pathogens and insect vectors, but also provide novel strategies for managing fire blight and pear psylla. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhixian Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhenya Liu
- The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, Tarim University, Alar, China
- Key Lab of Xinjiang Production and Construction Corps in Comprehensive Agricultural Pest Management in Southern Xinjiang, Tarim University, Alar, China
| | - Yulin Yuan
- The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, Tarim University, Alar, China
- Key Lab of Xinjiang Production and Construction Corps in Comprehensive Agricultural Pest Management in Southern Xinjiang, Tarim University, Alar, China
| | - Wangbin Zhang
- The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, Tarim University, Alar, China
- Key Lab of Xinjiang Production and Construction Corps in Comprehensive Agricultural Pest Management in Southern Xinjiang, Tarim University, Alar, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya City, China
| |
Collapse
|
2
|
Sadanandappa MK, Ahmad S, Mohanraj R, Ratnaparkhi M, Sathyanarayana SH. Defensive tactics: lessons from Drosophila. Biol Open 2024; 13:bio061609. [PMID: 39718046 PMCID: PMC11695572 DOI: 10.1242/bio.061609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Parasitoid wasps exert strong selective pressure on their hosts, driving the evolution of diverse defense strategies. Drosophila, a widely studied model organism, hosts a wide range of parasites, including parasitoid wasps, and has evolved immune and behavioral mechanisms to mitigate the risk of parasitization. These defenses range from avoidance and evasion to post-infection immune responses, such as melanotic encapsulation. In response, parasitoid wasps have developed countermeasures, contributing to an ongoing arms race between host and parasite. This article reviews the anti-parasitoid behaviors of Drosophila, focusing on their role in reducing parasitization and enhancing host survival and fitness. It also explores the molecular and neuronal circuit mechanisms that underlie these behaviors, using Drosophila as an ecologically relevant model for studying host-parasitoid interactions. Furthermore, the article discusses the potential applications of these findings in biological pest control and highlights key unresolved questions in the field.
Collapse
Affiliation(s)
- Madhumala K. Sadanandappa
- Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center,Lebanon, NH 03756, USA
| | | | - Robinson Mohanraj
- Biomedical Science, Nitte University for Science Education and Research, Mangalore, Karnataka 575018, India
| | | | - Shivaprasad H. Sathyanarayana
- Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center,Lebanon, NH 03756, USA
| |
Collapse
|
3
|
Wang H, Chen Q, Wei T. Complex interactions among insect viruses-insect vector-arboviruses. INSECT SCIENCE 2024; 31:683-693. [PMID: 37877630 DOI: 10.1111/1744-7917.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023]
Abstract
Insects are the host or vector of diverse viruses including those that infect vertebrates, plants, and fungi. Insect viruses reside inside their insect hosts and are vertically transmitted from parent to offspring. The insect virus-host relationship is intricate, as these viruses can impact various aspects of insect biology, such as development, reproduction, sex ratios, and immunity. Arthropod-borne viruses (arboviruses) that cause substantial global health or agricultural problems can also be vertically transmitted to insect vector progeny. Multiple infections with insect viruses and arboviruses are common in nature. Such coinfections involve complex interactions, including synergism, dependence, and antagonism. Recent studies have shed light on the influence of insect viruses on the competence of insect vectors for arboviruses. In this review, we focus on the biological effects of insect viruses on the transmission of arboviruses by insects. We also discuss the potential mechanisms by which insect viruses affect the ability of hosts to transmit arboviruses, as well as potential strategies for disease control through manipulation of insect viruses. Analyses of the interactions among insect vectors, insect viruses and arboviruses will provide new opportunities for development of innovative strategies to control arbovirus transmission.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
An X, Gu Q, Wang J, Chang T, Zhang W, Wang JJ, Niu J. Insect-specific RNA virus affects the stylet penetration activity of brown citrus aphid (Aphis citricidus) to facilitate its transmission. INSECT SCIENCE 2024; 31:255-270. [PMID: 37358052 DOI: 10.1111/1744-7917.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/27/2023]
Abstract
Sap-sucking insects often transmit plant viruses but also carry insect viruses, which infect insects but not plants. The impact of such insect viruses on insect host biology and ecology is largely unknown. Here, we identified a novel insect-specific virus carried by brown citrus aphid (Aphis citricidus), which we tentatively named Aphis citricidus picornavirus (AcPV). Phylogenetic analysis discovered a monophyletic cluster with AcPV and other unassigned viruses, suggesting that these viruses represent a new family in order Picornavirales. Systemic infection with AcPV triggered aphid antiviral immunity mediated by RNA interference, resulting in asymptomatic tolerance. Importantly, we found that AcPV was transmitted horizontally by secretion of the salivary gland into the feeding sites of plants. AcPV influenced aphid stylet behavior during feeding and increased the time required for intercellular penetration, thus promoting its transmission among aphids with plants as an intermediate site. The gene expression results suggested that this mechanism was linked with transcription of salivary protein genes and plant defense hormone signaling. Together, our results show that the horizontal transmission of AcPV in brown citrus aphids evolved in a manner similar to that of the circulative transmission of plant viruses by insect vectors, thus providing a new ecological perspective on the activity of insect-specific viruses found in aphids and improving the understanding of insect virus ecology.
Collapse
Affiliation(s)
- Xin An
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Qiaoying Gu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Jing Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Tengyu Chang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Wei Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Sadanandappa MK, Bosco G. Parasitoid cues modulate Drosophila germline development and stem cell proliferation. Cell Rep 2024; 43:113657. [PMID: 38175752 DOI: 10.1016/j.celrep.2023.113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
Environmental factors influence an organism's reproductive ability by regulating germline development and physiology. While the reproductive adaptations in response to extrinsic stress cues offer fitness and survival advantages to individuals, the mechanistic understanding of these modifications remains unclear. Here, we find that parasitoid wasps' stress signaling regulates Drosophila melanogaster oogenesis. We show that fruit flies dwelling in the wasp-infested area elevate their fecundity, and the observed reproductive response is specific to Pachycrepoideus sp., a pupal parasitoid wasp. Pachycrepoideus-specific olfactory and visual cues recruit the signaling pathways that promote germline stem cell proliferation and accelerate follicle development, increasing egg production in Drosophila females. Downregulation of signaling engaged in oocyte development by shifting flies to a non-wasp-infested environment increases apoptosis of the developing follicles. Thus, this study establishes host germline responsiveness to parasitoid-specific signals and supports a predator strategy to increase hosts for infection.
Collapse
Affiliation(s)
- Madhumala K Sadanandappa
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
6
|
Caldas-Garcia GB, Santos VC, Fonseca PLC, de Almeida JPP, Costa MA, Aguiar ERGR. The Viromes of Six Ecosystem Service Provider Parasitoid Wasps. Viruses 2023; 15:2448. [PMID: 38140687 PMCID: PMC10747428 DOI: 10.3390/v15122448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 12/24/2023] Open
Abstract
Parasitoid wasps are fundamental insects for the biological control of agricultural pests. Despite the importance of wasps as natural enemies for more sustainable and healthy agriculture, the factors that could impact their species richness, abundance, and fitness, such as viral diseases, remain almost unexplored. Parasitoid wasps have been studied with regard to the endogenization of viral elements and the transmission of endogenous viral proteins that facilitate parasitism. However, circulating viruses are poorly characterized. Here, RNA viromes of six parasitoid wasp species are studied using public libraries of next-generation sequencing through an integrative bioinformatics pipeline. Our analyses led to the identification of 18 viruses classified into 10 families (Iflaviridae, Endornaviridae, Mitoviridae, Partitiviridae, Virgaviridae, Rhabdoviridae, Chuviridae, Orthomyxoviridae, Xinmoviridae, and Narnaviridae) and into the Bunyavirales order. Of these, 16 elements were described for the first time. We also found a known virus previously identified on a wasp prey which suggests viral transmission between the insects. Altogether, our results highlight the importance of virus surveillance in wasps as its service disruption can affect ecology, agriculture and pest management, impacting the economy and threatening human food security.
Collapse
Affiliation(s)
- Gabriela B. Caldas-Garcia
- Virus Bioinformatics Laboratory, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Brazil; (G.B.C.-G.); (P.L.C.F.)
| | - Vinícius Castro Santos
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil; (V.C.S.); (J.P.P.d.A.)
| | - Paula Luize Camargos Fonseca
- Virus Bioinformatics Laboratory, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Brazil; (G.B.C.-G.); (P.L.C.F.)
- Department of Genetics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil
| | - João Paulo Pereira de Almeida
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil; (V.C.S.); (J.P.P.d.A.)
| | - Marco Antônio Costa
- Departament of Biological Sciences, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Brazil;
| | - Eric Roberto Guimarães Rocha Aguiar
- Virus Bioinformatics Laboratory, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Brazil; (G.B.C.-G.); (P.L.C.F.)
| |
Collapse
|
7
|
Zhang W, Li R, Li S, Li SY, Niu J, Wang JJ. RNA virus diversity in three parasitoid wasps of tephritid flies: insights from novel and known species. Microbiol Spectr 2023; 11:e0313923. [PMID: 37930041 PMCID: PMC10714968 DOI: 10.1128/spectrum.03139-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Parasitoid wasp populations have developed persistent beneficial symbiotic relationships with several viruses through repeated evolution. However, there have been limited reports on RNA viruses in parasitoid wasps of tephritid flies, a significant pest group affecting fruits and vegetables. This study explores the diversity of RNA viruses in three parasitoid wasps of tephritid flies and highlights the potential biological significance of specific viruses in Diachasmimorpha longicaudata. These findings have important implications for the development of sustainable pest management strategies and the enhancement of artificial rearing techniques for parasitoid wasps.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Rong Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Shuai Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Shao-Yang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Chen Y, Wang P, Shu X, Wang Z, Chen X. Morphology and Ultrastructure of the Female Reproductive Apparatus of an Asexual Strain of the Endoparasitoid Meteorus pulchricornis (Wesmael) (Hymenoptera, Braconidae). BIOLOGY 2023; 12:biology12050713. [PMID: 37237527 DOI: 10.3390/biology12050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Meteorus pulchricornis (Wesmael) is a solitary endoparasitoid of lepidopteran pests and a good candidate for the control of Spodoptera frugiperda. To elucidate the structure of the female reproductive apparatus, which may play a role in facilitating successful parasitism, we presented the description of the morphology and ultrastructure of the whole female reproductive system in a thelytokous strain of M. pulchricornis. Its reproductive system includes a pair of ovaries without specialized ovarian tissues, a branched venom gland, a venom reservoir, and a single Dufour gland. Each ovariole contains follicles and oocytes at different stages of maturation. A fibrous layer, possibly an egg surface protector, coats the surface of mature eggs. The venom gland consists of secretory units (including secretory cells and ducts) with abundant mitochondria, vesicles and end apparatuses in the cytoplasm, and a lumen. The venom reservoir is comprised of a muscular sheath, epidermal cells with few end apparatuses and mitochondria, and a large lumen. Furthermore, venosomes are produced by secretory cells and delivered into the lumen via the ducts. As a result, myriad venosomes are observed in the venom gland filaments and the venom reservoir, suggesting that they may function as a parasitic factor and have important roles in effective parasitism.
Collapse
Affiliation(s)
- Yusi Chen
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Pengzhan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Shu
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhizhi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xuexin Chen
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Liu X, Yang Y, Fan Q, Zhang Q, Ji Q. Effect of Ultraviolet-B Radiating Drosophila melanogaster as Host on the Quality of Trichopria drosophilae, a Pupal Parasitoid of Drosophila suzukii. INSECTS 2023; 14:insects14050423. [PMID: 37233051 DOI: 10.3390/insects14050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
The pupal parasitoid, Trichopria drosophilae Perkins (Hymenoptera: Diapriidae), is an ectoparasitoid of the genus Drosophila with great potential for application in biological control based on its excellent control efficiency for Drosophila suzukii Matsumura (Diptera: Drosophilidae), and it has has even been commercialized by biofactories. Due to its characteristics of short life cycle, large number of offspring, easy rearing, rapid reproduction, and low cost, Drosophila melanogaster (Diptera: Drosophilidae) is currently being utilized as a host to mass produce T. drosophilae. To simplify the mass rearing process and omit the separation of hosts and parasitoids, ultraviolet-B (UVB) was used as an irradiation source to irradiate D. melanogaster pupae, and the effects on T. drosophilae were studied. The results showed that UVB radiation significantly reduces host emergence and affects the duration of parasitoid development (female: F0 increased from 21.50 to 25.80, F1 from 23.10 to 26.10; male: F0 decreased from 17.00 to 14.10, F1 from 17.20 to 14.70), which has great significance for the separation of hosts and parasitoids as well as of females and males. Of the various studied conditions, UVB irradiation was ideal when the host was supplied with parasitoids for 6 h. The selection test results showed that the female-to-male ratio of emerging parasitoids in this treatment was highest at 3.47. The no-selection test resulted in the highest rates of parasitization and parasitoid emergence rate, maximized inhibition of host development, and allowed the omission of the separation step. Finally, the results of the semi-field test showed that the parasitoids bred in this treatment could search for their hosts normally and could therefore be directly applied in the biological control of Drosophila pests in the field.
Collapse
Affiliation(s)
- Xuxiang Liu
- Biological Control Research Institute, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China Fruit Fly Research and Control Center of FAO/IAEA, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
| | - Yongbang Yang
- Biological Control Research Institute, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China Fruit Fly Research and Control Center of FAO/IAEA, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
| | - Qingwen Fan
- Biological Control Research Institute, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China Fruit Fly Research and Control Center of FAO/IAEA, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
| | - Qinyuan Zhang
- Biological Control Research Institute, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China Fruit Fly Research and Control Center of FAO/IAEA, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
| | - Qinge Ji
- Biological Control Research Institute, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China Fruit Fly Research and Control Center of FAO/IAEA, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
| |
Collapse
|
10
|
He YJ, Ye ZX, Zhang CX, Li JM, Chen JP, Lu G. An RNA Virome Analysis of the Pink-Winged Grasshopper Atractomorpha sinensis. INSECTS 2022; 14:9. [PMID: 36661938 PMCID: PMC9862791 DOI: 10.3390/insects14010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
A large number of RNA viruses have been discovered in most insect orders using high-throughput sequencing (HTS) and advanced bioinformatics methods. In this study, an RNA virome of the grasshopper was systematically identified in Atractomorpha sinensis (Orthoptera: Pyrgomorphidae), an important agricultural pest known as the pink-winged grasshopper. These insect viruses were classified as the nege-like virus, iflavirus, ollusvirus, and chu-like virus using HTS and phylogenetic analyses. Meanwhile, the full sequences of four novel RNA viruses were obtained with RACE and named Atractomorpha sinensis nege-like virus 1 (ASNV1), Atractomorpha sinensis iflavirus 1 (ASIV1), Atractomorpha sinensis ollusvirus 1 (ASOV1), and Atractomorpha sinensis chu-like virus 1 (ASCV1), respectively. Moreover, the analysis of virus-derived small interfering RNAs showed that most of the RNA viruses were targeted by the host antiviral RNA interference pathway. Moreover, our results provide a comprehensive analysis on the RNA virome of A. sinensis.
Collapse
Affiliation(s)
| | | | | | | | | | - Gang Lu
- Correspondence: (J.-P.C.); (G.L.)
| |
Collapse
|
11
|
Izraeli Y, Lepetit D, Atias S, Mozes-Daube N, Wodowski G, Lachman O, Luria N, Steinberg S, Varaldi J, Zchori-Fein E, Chiel E. Genomic characterization of viruses associated with the parasitoid Anagyrus vladimiri (Hymenoptera: Encyrtidae). J Gen Virol 2022; 103. [PMID: 36748430 DOI: 10.1099/jgv.0.001810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Knowledge on symbiotic microorganisms of insects has increased dramatically in recent years, yet relatively little data are available regarding non-pathogenic viruses. Here we studied the virome of the parasitoid wasp Anagyrus vladimiri Triapitsyn (Hymenoptera: Encyrtidae), a biocontrol agent of mealybugs. By high-throughput sequencing of viral nucleic acids, we revealed three novel viruses, belonging to the families Reoviridae [provisionally termed AnvRV (Anagyrus vladimiri reovirus)], Iflaviridae (AnvIFV) and Dicistroviridae (AnvDV). Phylogenetic analysis further classified AnvRV in the genus Idnoreovirus, and AnvDV in the genus Triatovirus. The genome of AnvRV comprises 10 distinct genomic segments ranging in length from 1.5 to 4.2 kb, but only two out of the 10 ORFs have a known function. AnvIFV and AnvDV each have one polypeptide ORF, which is typical of iflaviruses but very un-common among dicistroviruses. Five conserved domains were found along both the ORFs of those two viruses. AnvRV was found to be fixed in an A. vladimiri population that was obtained from a mass rearing facility, whereas its prevalence in field-collected A. vladimiri was ~15 %. Similarly, the prevalence of AnvIFV and AnvDV was much higher in the mass rearing population than in the field population. The presence of AnvDV was positively correlated with the presence of Wolbachia in the same individuals. Transmission electron micrographs of females' ovaries revealed clusters and viroplasms of reovirus-like particles in follicle cells, suggesting that AnvRV is vertically transmitted from mother to offspring. AnvRV was not detected in the mealybugs, supporting the assumption that this virus is truly associated with the wasps. The possible effects of these viruses on A. vladimiri's biology, and on biocontrol agents in general, are discussed. Our findings identify RNA viruses as potentially involved in the multitrophic system of mealybugs, their parasitoids and other members of the holobiont.
Collapse
Affiliation(s)
- Yehuda Izraeli
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.,Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - David Lepetit
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, Villeurbanne, France
| | - Shir Atias
- Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Netta Mozes-Daube
- Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Gal Wodowski
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.,Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Oded Lachman
- Department of Plant Pathology and Weed Research, ARO, Volcani Research Center, Rishon LeZion, Israel
| | - Neta Luria
- Department of Plant Pathology and Weed Research, ARO, Volcani Research Center, Rishon LeZion, Israel
| | | | - Julien Varaldi
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, Villeurbanne, France
| | - Einat Zchori-Fein
- Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Elad Chiel
- Department of Biology and Environment, University of Haifa - Oranim, Tivon, Israel
| |
Collapse
|
12
|
Xue H, Zhao Y, Wang L, Zhu X, Zhang K, Li D, Ji J, Niu L, Cui J, Luo J, Gao X. Regulation of amino acid metabolism in Aphis gossypii parasitized by Binodoxys communis. Front Nutr 2022; 9:1006253. [PMID: 36245483 PMCID: PMC9558109 DOI: 10.3389/fnut.2022.1006253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
The vast majority of parasitoids are capable of precise and meticulous regulation of nutrition and metabolism within the host. An important building block of life, amino acids are critical to the development of parasitoids. To date, research on how parasitoids regulate host amino acid metabolism remains limited. In this study, Aphis gossypii and its dominant parasitoid Binodoxys communis were used as a study system to explore how parasitism may change the regulation of amino acids in A. gossypii with UHPLC-MS/MS and RT-qPCR techniques. Here, for the first 8 h of parasitism the abundance of almost all amino acids in cotton aphids increased, and after 16 h most of the amino acids decreased. An amino acid of parasitic syndrome, the content of Tyr increased gradually after being parasitized. The expression of genes related to amino acid metabolism increased significantly in early stages of parasitism and then significantly decreased gradually. At the same time, the abundance of Buchnera, a cotton aphid specific symbiont increased significantly. Our comprehensive analyses reveal impacts of B. communis on the amino acid regulatory network in cotton aphid from three aspects: amino acid metabolism, gene expression, and bacterial symbionts. Therefore, this research provides an important theoretical basis for parasitoid nutritional regulation in host, which is highly significant as it may inform the artificial reproduction of parasitoids and the biological control of insect pests.
Collapse
Affiliation(s)
- Hui Xue
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yunyun Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiangzhen Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kaixin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Dongyang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lin Niu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Jinjie Cui,
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Junyu Luo,
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Xueke Gao,
| |
Collapse
|