1
|
Lien YW, Amendola D, Lee KS, Bartlau N, Xu J, Furusawa G, Polz MF, Stocker R, Weiss GL, Pilhofer M. Mechanism of bacterial predation via ixotrophy. Science 2024; 386:eadp0614. [PMID: 39418385 DOI: 10.1126/science.adp0614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/17/2024] [Indexed: 10/19/2024]
Abstract
Ixotrophy is a contact-dependent predatory strategy of filamentous bacteria in aquatic environments for which the molecular mechanism remains unknown. We show that predator-prey contact can be established by gliding motility or extracellular assemblages we call "grappling hooks." Cryo-electron microscopy identified the grappling hooks as heptamers of a type IX secretion system substrate. After close predator-prey contact is established, cryo-electron tomography and functional assays showed that puncturing by a type VI secretion system mediated killing. Single-cell analyses with stable isotope-labeled prey revealed that prey components are taken up by the attacker. Depending on nutrient availability, insertion sequence elements toggle the activity of ixotrophy. A marine metagenomic time series shows coupled dynamics of ixotrophic bacteria and prey. We found that the mechanism of ixotrophy involves multiple cellular machineries, is conserved, and may shape microbial populations in the environment.
Collapse
Affiliation(s)
- Yun-Wei Lien
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Davide Amendola
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Kang Soo Lee
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Nina Bartlau
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Jingwei Xu
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Malaysia
| | - Martin F Polz
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Gregor L Weiss
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
2
|
Schmidt S, Mondino S, Gomez-Valero L, Escoll P, Mascarenhas DPA, Gonçalves A, Camara PHM, Garcia Rodriguez FJ, Rusniok C, Sachse M, Moya-Nilges M, Fontaine T, Zamboni DS, Buchrieser C. The unique Legionella longbeachae capsule favors intracellular replication and immune evasion. PLoS Pathog 2024; 20:e1012534. [PMID: 39259722 PMCID: PMC11419355 DOI: 10.1371/journal.ppat.1012534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/23/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
Legionella longbeachae and Legionella pneumophila are the most common causative agents of Legionnaires' disease. While the clinical manifestations caused by both species are similar, species-specific differences exist in environmental niches, disease epidemiology, and genomic content. One such difference is the presence of a genomic locus predicted to encode a capsule. Here, we show that L. longbeachae indeed expresses a capsule in post-exponential growth phase as evidenced by electron microscopy analyses, and that capsule expression is abrogated when deleting a capsule transporter gene. Capsule purification and its analysis via HLPC revealed the presence of a highly anionic polysaccharide that is absent in the capsule mutant. The capsule is important for replication and virulence in vivo in a mouse model of infection and in the natural host Acanthamoeba castellanii. It has anti-phagocytic function when encountering innate immune cells such as human macrophages and it is involved in the low cytokine responses in mice and in human monocyte derived macrophages, thus dampening the innate immune response. Thus, the here characterized L. longbeachae capsule is a novel virulence factor, unique among the known Legionella species, which may aid L. longbeachae to survive in its specific niches and which partly confers L. longbeachae its unique infection characteristics.
Collapse
Affiliation(s)
- Silke Schmidt
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Sonia Mondino
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | - Pedro Escoll
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | | | - Augusto Gonçalves
- Department of Cell Biology, Medical School of Ribeirão Preto, FMRP/USP, Ribeirão Preto, Brazil
| | - Pedro H. M. Camara
- Department of Cell Biology, Medical School of Ribeirão Preto, FMRP/USP, Ribeirão Preto, Brazil
| | | | - Christophe Rusniok
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | - Martin Sachse
- UTechS UBI, Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Maryse Moya-Nilges
- UTechS UBI, Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Thierry Fontaine
- Biologie et Pathogénicité fongiques, Institut Pasteur, Paris, France
| | - Dario S. Zamboni
- Department of Cell Biology, Medical School of Ribeirão Preto, FMRP/USP, Ribeirão Preto, Brazil
| | - Carmen Buchrieser
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| |
Collapse
|
3
|
Cooper C, Legood S, Wheat RL, Forrest D, Sharma P, Haycocks JRJ, Grainger DC. H-NS is a bacterial transposon capture protein. Nat Commun 2024; 15:7137. [PMID: 39164300 PMCID: PMC11335895 DOI: 10.1038/s41467-024-51407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
The histone-like nucleoid structuring (H-NS) protein is a DNA binding factor, found in gammaproteobacteria, with functional equivalents in diverse microbes. Universally, such proteins are understood to silence transcription of horizontally acquired genes. Here, we identify transposon capture as a major overlooked function of H-NS. Using genome-scale approaches, we show that H-NS bound regions are transposition "hotspots". Since H-NS often interacts with pathogenicity islands, such targeting creates clinically relevant phenotypic diversity. For example, in Acinetobacter baumannii, we identify altered motility, biofilm formation, and interactions with the human immune system. Transposon capture is mediated by the DNA bridging activity of H-NS and, if absent, more ubiquitous transposition results. Consequently, transcribed and essential genes are disrupted. Hence, H-NS directs transposition to favour evolutionary outcomes useful for the host cell.
Collapse
Affiliation(s)
- Charles Cooper
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Simon Legood
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Rachel L Wheat
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - David Forrest
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Prateek Sharma
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - David C Grainger
- School of Biosciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
4
|
Sun C, Zhou D, He J, Liu H, Fu Y, Zhou Z, Leptihn S, Yu Y, Hua X, Xu Q. A panel of genotypically and phenotypically diverse clinical Acinetobacter baumannii strains for novel antibiotic development. Microbiol Spectr 2024; 12:e0008624. [PMID: 38916336 PMCID: PMC11302250 DOI: 10.1128/spectrum.00086-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Acinetobacter baumannii is one of the most important pathogens worldwide. The intrinsic and acquired resistance of A. baumannii, coupled with the slow pace of novel antimicrobial drug development, poses an unprecedented and enormous challenge to clinical anti-infective therapy of A. baumannii. Recent studies in the field of pathogenicity, antibiotic resistance, and biofilms of A. baumannii have focused on the model strains, including ATCC 17978, ATCC 19606, and AB5075. However, these model strains represent only a limited portion of the heterogeneity in A. baumannii. Furthermore, variants of these model strains have emerged that show significant diversity not only at the genotypic level but also reflected in differences at the phenotypic levels of capsule, virulence, pathogenicity, and antibiotic resistance. Research on A. baumannii, a key pathogen, would benefit from a standardized approach, which characterizes heterogeneous strains in order to facilitate rapid diagnosis, discovery of new therapeutic targets, and efficacy assessment. Our study provides and describes a standardized, genomically and phenotypically heterogeneous panel of 45 different A. baumannii strains for the research community. In addition, we performed comparative analyses of several phenotypes of this panel. We found that the sequence type 2 (ST2) group showed significantly higher rates of resistance, lower fitness cost for adaptation, and yet less biofilm formation. The Macrocolony type E (MTE, flat center and wavy edge phenotype reported in the literature) group showed a less clear correlation of resistance rates and growth rate, but was observed to produce more biofilms. Our study sheds light on the complex interplay of resistance fitness and biofilm formation within distinct strains, offering insights crucial for combating A. baumannii infection. IMPORTANCE Acinetobacter baumannii is globally notorious, and in an effort to combat the spread of such pathogens, several emerging candidate therapies have already surfaced. However, the strains used to test these therapies vary across studies (the sources and numbers of test strains are varied and often very large, with little heterogeneity). The variation complicates the studies. Furthermore, the limited standardized resources of A. baumannii strains have greatly restricted the research on the physiology, pathogenicity, and antibiotic resistance. Therefore, it is crucial for the research community to acquire a standardized and heterogeneous panel of A. baumannii. Our study meticulously selected 45 diverse A. baumannii strains from a total of 2,197 clinical isolates collected from 64 different hospitals across 27 provinces in China, providing a scientific reference for the research community. This assistance will significantly facilitate scientific exchange in academic research.
Collapse
Affiliation(s)
- Chunli Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, Zhejiang, China
| | - Danyan Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haiyang Liu
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Fu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sebastian Leptihn
- Department of Antimicrobial Biotechnology, Fraunhofer Institute for Cell Therapy & Immunology (IZI), Leipzig, Germany
- Department of Biochemistry, Health and Medical University, Erfurt, Germany
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingye Xu
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Rodriguez Jimenez A, Breine A, Whiteway C, Dechamps E, George IF, Van der Henst C. Bactericidal effect of bacteria isolated from the marine sponges Hymeniacidon perlevis and Halichondria panicea against carbapenem-resistant Acinetobacter baumannii. Lett Appl Microbiol 2024; 77:ovae035. [PMID: 38684470 DOI: 10.1093/lambio/ovae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024]
Abstract
In this study, we evaluated the antimicrobial activity of bacteria isolated from the marine sponges Hymeniacidon perlevis and Halichondria panicea against seven Acinetobacter baumannii strains, the majority of which were clinically relevant carbapenem-resistant A. baumannii strains. We observed the inhibitory activity of 18 (out of 114) sponge-isolated bacterial strains against all A. baumanii strains using medium-throughput solid agar overlay assays. These inhibitory strains belonged to the genera Lactococcus, Pseudomonas, and Vagococcus. In addition, this antimicrobial activity was validated through a liquid co-cultivation challenge using an inhibitory strain of each genus and a green fluorescent protein-tagged A. baumanii strain. Fluorescence measurements indicated that the growth of A. baumanii was inhibited by the sponge isolates. In addition, the inability of A. baumanii to grow after spreading the co-cultures on solid medium allowed us to characterize the activity of the sponge isolates as bactericidal. In conclusion, this study demonstrates that marine sponges are a reservoir of bacteria that deserves to be tapped for antibiotic discovery against A. baumanii.
Collapse
Affiliation(s)
- Ana Rodriguez Jimenez
- Ecology of Aquatic Systems, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Anke Breine
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Clemence Whiteway
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Etienne Dechamps
- Ecology of Aquatic Systems, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Isabelle F George
- Ecology of Aquatic Systems, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
- Marine Biology, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Charles Van der Henst
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| |
Collapse
|
6
|
Sykes EME, Mateo-Estrada V, Engelberg R, Muzaleva A, Zhanel G, Dettman J, Chapados J, Gerdis S, Akineden Ö, Khan IUH, Castillo-Ramírez S, Kumar A. Phylogenomic and phenotypic analyses highlight the diversity of antibiotic resistance and virulence in both human and non-human Acinetobacter baumannii. mSphere 2024; 9:e0074123. [PMID: 38440986 PMCID: PMC10964423 DOI: 10.1128/msphere.00741-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
Acinetobacter baumannii is a Gram-negative, opportunistic pathogen that causes infections in the immunocompromised. With a high incidence of muti-drug resistance, carbapenem-resistant A. baumannii is designated as a priority 1 pathogen by the WHO. The current literature has expertly characterized clinical isolates of A. baumannii. As the challenge of these infections has recently been classified as a One Health issue, we set out to explore the diversity of isolates from human and non-clinical sources, such as agricultural surface water, urban streams, various effluents from wastewater treatment plants, and food (tank milk); and, importantly, these isolates came from a wide geographic distribution. Phylogenomic analysis considering almost 200 isolates showed that our diverse set is well-differentiated from the main international clones of A. baumannii. We discovered novel sequence types in both hospital and non-clinical settings and five strains that overexpress the resistance-nodulation-division efflux pump adeIJK without changes in susceptibility reflected by this overexpression. Furthermore, we detected a bla ADC-79 in a non-human isolate despite its sensitivity to all antibiotics. There was no significant differentiation between the virulence profiles of clinical and non-clinical isolates in the Galleria mellonella insect model of virulence, suggesting that virulence is neither dependent on geographic origin nor isolation source. The detection of antibiotic resistance and virulence genes in non-human strains suggests that these isolates may act as a genetic reservoir for clinical strains. This endorses the notion that in order to combat multi-drug-resistant infection caused by A. baumannii, a One Health approach is required, and a deeper understanding of non-clinical strains must be achieved.IMPORTANCEThe global crisis of antibiotic resistance is a silent one. More and more bacteria are becoming resistant to all antibiotics available for treatment, leaving no options remaining. This includes Acinetobacter baumannii. This Gram-negative, opportunistic pathogen shows a high frequency of multi-drug resistance, and many strains are resistant to the last-resort drugs carbapenem and colistin. Research has focused on strains of clinical origin, but there is a knowledge gap regarding virulence traits, particularly how A. baumannii became the notorious pathogen of today. Antibiotic resistance and virulence genes have been detected in strains from animals and environmental locations such as grass and soil. As such, A. baumannii is a One Health concern, which includes the health of humans, animals, and the environment. Thus, in order to truly combat the antibiotic resistance crisis, we need to understand the antibiotic resistance and virulence gene reservoirs of this pathogen under the One Health continuum.
Collapse
Affiliation(s)
- Ellen M. E. Sykes
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Valeria Mateo-Estrada
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Raelene Engelberg
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anna Muzaleva
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - George Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeremy Dettman
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Julie Chapados
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Suzanne Gerdis
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Ömer Akineden
- Dairy Sciences, Institute of Veterinary Food Science, Justus-Liebig, University of Giessen, Giessen, Germany
| | - Izhar U. H. Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Maure A, Robino E, Van der Henst C. The intracellular life of Acinetobacter baumannii. Trends Microbiol 2023; 31:1238-1250. [PMID: 37487768 DOI: 10.1016/j.tim.2023.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023]
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic bacterium responsible for nosocomial and community-acquired infections. This pathogen is globally disseminated and associated with high levels of antibiotic resistance, which makes it an important threat to human health. Recently, new evidence showed that several A. baumannii isolates can survive and proliferate within eukaryotic professional and/or nonprofessional phagocytic cells, with in vivo consequences. This review provides updated information and describes the tools that A. baumannii possesses to adhere, colonize, and replicate in host cells. Additionally, we emphasize the high genetic and phenotypic heterogeneity detected amongst A. baumannii isolates and its impact on the bacterial intracellular features. We also discuss the need for standardized methods to characterize this pathogen robustly and consequently consider some strains as facultative intracellular bacteria.
Collapse
Affiliation(s)
- Alexandra Maure
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Etienne Robino
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Charles Van der Henst
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
8
|
Breine A, Van Holsbeeck K, Martin C, Gonzalez S, Mannes M, Pardon E, Steyaert J, Remaut H, Ballet S, Van der Henst C. Bypassing the Need for Cell Permeabilization: Nanobody CDR3 Peptide Improves Binding on Living Bacteria. Bioconjug Chem 2023. [PMID: 37418494 PMCID: PMC10360062 DOI: 10.1021/acs.bioconjchem.3c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Membrane interaction constitutes to be an essential parameter in the mode of action of entities such as proteins, as well as cell-penetrating and antimicrobial peptides, resulting in noninvasive or lytic activities depending on the membrane compositions and interactions. Recently, a nanobody able to interact with the top priority, multidrug-resistant bacterial pathogen Acinetobacter baumannii was discovered, although binding took place with fixed cells only. To potentially overcome this limitation, linear peptides corresponding to the complementarity-determining regions (CDR) were synthesized and fluorescently labeled. Microscopy data indicated clear membrane interactions of the CDR3 sequence with living A. baumannii cells, indicating both the importance of the CDR3 as part of the parent nanobody paratope and the improved binding ability and thus avoiding the need for permeabilization of the cells. In addition, cyclization of the peptide with an additionally introduced rigidifying 1,2,3-triazole bridge retains its binding ability while proteolytically protecting the peptide. Overall, this study resulted in the discovery of novel peptides binding a multidrug-resistant pathogen.
Collapse
Affiliation(s)
- A Breine
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - K Van Holsbeeck
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - C Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - S Gonzalez
- CNRS, BioCIS, CY Cergy-Paris Université, 95000 Neuville sur Oise, France
| | - M Mannes
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - E Pardon
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - J Steyaert
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - H Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium
| | - S Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - C Van der Henst
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
9
|
Bai J, Raustad N, Denoncourt J, van Opijnen T, Geisinger E. Genome-wide phage susceptibility analysis in Acinetobacter baumannii reveals capsule modulation strategies that determine phage infectivity. PLoS Pathog 2023; 19:e1010928. [PMID: 37289824 PMCID: PMC10249906 DOI: 10.1371/journal.ppat.1010928] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Phage have gained renewed interest as an adjunctive treatment for life-threatening infections with the resistant nosocomial pathogen Acinetobacter baumannii. Our understanding of how A. baumannii defends against phage remains limited, although this information could lead to improved antimicrobial therapies. To address this problem, we identified genome-wide determinants of phage susceptibility in A. baumannii using Tn-seq. These studies focused on the lytic phage Loki, which targets Acinetobacter by unknown mechanisms. We identified 41 candidate loci that increase susceptibility to Loki when disrupted, and 10 that decrease susceptibility. Combined with spontaneous resistance mapping, our results support the model that Loki uses the K3 capsule as an essential receptor, and that capsule modulation provides A. baumannii with strategies to control vulnerability to phage. A key center of this control is transcriptional regulation of capsule synthesis and phage virulence by the global regulator BfmRS. Mutations hyperactivating BfmRS simultaneously increase capsule levels, Loki adsorption, Loki replication, and host killing, while BfmRS-inactivating mutations have the opposite effect, reducing capsule and blocking Loki infection. We identified novel BfmRS-activating mutations, including knockouts of a T2 RNase protein and the disulfide formation enzyme DsbA, that hypersensitize bacteria to phage challenge. We further found that mutation of a glycosyltransferase known to alter capsule structure and bacterial virulence can also cause complete phage resistance. Finally, additional factors including lipooligosaccharide and Lon protease act independently of capsule modulation to interfere with Loki infection. This work demonstrates that regulatory and structural modulation of capsule, known to alter A. baumannii virulence, is also a major determinant of susceptibility to phage.
Collapse
Affiliation(s)
- Jinna Bai
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Nicole Raustad
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Jason Denoncourt
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Tim van Opijnen
- Broad Institute of MIT and Harvard, CISID, Cambridge, Massachusetts, United States of America
| | - Edward Geisinger
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Valcek A, Philippe C, Whiteway C, Robino E, Nesporova K, Bové M, Coenye T, De Pooter T, De Coster W, Strazisar M, Van der Henst C. Phenotypic Characterization and Heterogeneity among Modern Clinical Isolates of Acinetobacter baumannii. Microbiol Spectr 2023; 11:e0306122. [PMID: 36475894 PMCID: PMC9927488 DOI: 10.1128/spectrum.03061-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogenic bacterium prioritized by WHO and CDC because of its increasing antibiotic resistance. Heterogeneity among strains represents the hallmark of A. baumannii bacteria. We wondered to what extent extensively used strains, so-called reference strains, reflect the dynamic nature and intrinsic heterogeneity of these bacteria. We analyzed multiple phenotypic traits of 43 nonredundant, modern, and multidrug-resistant, extensively drug-resistant, and pandrug-resistant clinical isolates and broadly used strains of A. baumannii. Comparison of these isolates at the genetic and phenotypic levels confirmed a high degree of heterogeneity. Importantly, we observed that a significant portion of modern clinical isolates strongly differs from several historically established strains in the light of colony morphology, cellular density, capsule production, natural transformability, and in vivo virulence. The significant differences between modern clinical isolates of A. baumannii and established strains could hamper the study of A. baumannii, especially concerning its virulence and resistance mechanisms. Hence, we propose a variable collection of modern clinical isolates that are characterized at the genetic and phenotypic levels, covering a wide range of the phenotypic spectrum, with six different macrocolony type groups, from avirulent to hypervirulent phenotypes, and with naturally noncapsulated to hypermucoid strains, with intermediate phenotypes as well. Strain-specific mechanistic observations remain interesting per se, and established "reference" strains have undoubtedly been shown to be very useful to study basic mechanisms of A. baumannii biology. However, any study based on a specific strain of A. baumannii should be compared to modern and clinically relevant isolates. IMPORTANCE Acinetobacter baumannii is a bacterium prioritized by the CDC and WHO because of its increasing antibiotic resistance, leading to treatment failures. The hallmark of this pathogen is the high heterogeneity observed among isolates, due to a very dynamic genome. In this context, we tested if a subset of broadly used isolates, considered "reference" strains, was reflecting the genetic and phenotypic diversity found among currently circulating clinical isolates. We observed that the so-called reference strains do not cover the whole diversity of the modern clinical isolates. While formerly established strains successfully generated a strong base of knowledge in the A. baumannii field and beyond, our study shows that a rational choice of strain, related to a specific biological question, should be taken into consideration. Any data obtained with historically established strains should also be compared to modern and clinically relevant isolates, especially concerning drug screening, resistance, and virulence contexts.
Collapse
Affiliation(s)
- Adam Valcek
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Chantal Philippe
- Research Unit in the Biology of Microorganisms (URBM), NARILIS, University of Namur (UNamur), Namur, Belgium
| | - Clémence Whiteway
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Etienne Robino
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Kristina Nesporova
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Mona Bové
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tim De Pooter
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wouter De Coster
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mojca Strazisar
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Charles Van der Henst
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
11
|
Penicillin Binding Protein 7/8 Is a Potential Drug Target in Carbapenem-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2023; 67:e0103322. [PMID: 36475717 PMCID: PMC9872597 DOI: 10.1128/aac.01033-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Limited therapeutic options dictate the need for new classes of antimicrobials active against carbapenem-resistant Acinetobacter baumannii. Presented data confirm and extend penicillin binding protein 7/8 (PBP 7/8) as a high-value target in the CR A. baumannii strain HUMC1. PBP 7/8 was essential for optimal growth/survival of HUMC1 in ex vivo human ascites and in a rat subcutaneous abscess model; in a mouse pneumonia model, the absence of PBP 7/8 decreased lethality 11-fold. The loss of PBP 7/8 resulted in increased permeability, sensitivity to complement, and lysozyme-mediated bactericidal activity. These changes did not appear to be due to alterations in the cellular fatty acid composition or capsule production. However, a decrease in lipid A and an increase in coccoidal cells and cell aggregation were noted. The compromise of the stringent permeability barrier in the PBP 7/8 mutant was reflected by an increased susceptibility to several antimicrobials. Importantly, expression of ampC was not significantly affected by the loss of PBP 7/8 and serial passage of the mutant strain in human ascites over 7 days did not yield revertants possessing a wild-type phenotype. In summary, these data and other features support PBP 7/8 as a high-value drug target for extensively drug-resistant and CR A. baumannii. Our results guide next-stage studies; the determination that the inactivation of PBP 7/8 results in an increased sensitivity to lysozyme enables the design of a high-throughput screening assay to identify small molecule compounds that can specifically inhibit PBP 7/8 activity.
Collapse
|
12
|
Noel HR, Petrey JR, Palmer LD. Mobile genetic elements in Acinetobacter antibiotic-resistance acquisition and dissemination. Ann N Y Acad Sci 2022; 1518:166-182. [PMID: 36316792 PMCID: PMC9771954 DOI: 10.1111/nyas.14918] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pathogenic Acinetobacter species, most notably Acinetobacter baumannii, are a significant cause of healthcare-associated infections worldwide. Acinetobacter infections are of particular concern to global health due to the high rates of multidrug resistance and extensive drug resistance. Widespread genome sequencing and analysis has determined that bacterial antibiotic resistance is often acquired and disseminated through the movement of mobile genetic elements, including insertion sequences (IS), transposons, integrons, and conjugative plasmids. In Acinetobacter specifically, resistance to carbapenems and cephalosporins is highly correlated with IS, as many ISAba elements encode strong outwardly facing promoters that are required for sufficient expression of β-lactamases to confer clinical resistance. Here, we review the role of mobile genetic elements in antibiotic resistance in Acinetobacter species through the framework of the mechanism of resistance acquisition and with a focus on experimentally validated mechanisms.
Collapse
Affiliation(s)
- Hannah R. Noel
- Department of Microbiology and Immunology University of Illinois Chicago Chicago Illinois USA
| | - Jessica R. Petrey
- Department of Microbiology and Immunology University of Illinois Chicago Chicago Illinois USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology University of Illinois Chicago Chicago Illinois USA
| |
Collapse
|
13
|
de Dios R, Gadar K, McCarthy RR. A high-efficiency scar-free genome-editing toolkit for Acinetobacter baumannii. J Antimicrob Chemother 2022; 77:3390-3398. [PMID: 36216579 PMCID: PMC9704439 DOI: 10.1093/jac/dkac328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The current mutagenesis tools for Acinetobacter baumannii leave selection markers or residual sequences behind, or involve tedious counterselection and screening steps. Furthermore, they are usually adapted for model strains, rather than for MDR clinical isolates. OBJECTIVES To develop a scar-free genome-editing tool suitable for chromosomal and plasmid modifications in MDR A. baumannii AB5075. METHODS We prove the efficiency of our adapted genome-editing system by deleting the multidrug efflux pumps craA, cmlA5 and resistance island 2 (RI2), as well as curing plasmid p1AB5075, and combining these mutations. We then characterized the susceptibility of the mutants compared with the WT to different antibiotics (i.e. chloramphenicol, amikacin and tobramycin) by disc diffusion assays and determined the MIC for each strain. RESULTS We successfully adapted the genome-editing protocol to A. baumannii AB5075, achieving a double recombination frequency close to 100% and routinely securing the construction of a mutant within 10 working days. Furthermore, we show that both CraA and p1AB5075 are involved in chloramphenicol resistance, and that RI2 and p1AB5075 play a role in resistance to amikacin and tobramycin. CONCLUSIONS We have developed a versatile and highly efficient genome-editing tool for A. baumannii. We have demonstrated it can be used to modify both the chromosome and native plasmids. By challenging the method, we show the role of CraA and p1AB5075 in antibiotic resistance.
Collapse
Affiliation(s)
- Rubén de Dios
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Kavita Gadar
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | | |
Collapse
|
14
|
Insertion Sequence (IS)-Excision Enhancer (IEE)-Mediated IS Excision from the lacZ Gene Restores the Lactose Utilization Defect of Shiga Toxin-Producing Escherichia coli O121:H19 Strains and Is Responsible for Their Delayed Lactose Utilization Phenotype. Appl Environ Microbiol 2022; 88:e0076022. [PMID: 35913153 PMCID: PMC9397093 DOI: 10.1128/aem.00760-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactose utilization is one of the general biochemical characteristics of Escherichia coli, and the lac operon is responsible for this phenotype, which can be detected on lactose-containing media, such as MacConkey agar, after 24 h of incubation. However, some Shiga toxin-producing E. coli (STEC) O121:H19 strains exhibit an unusual phenotype called delayed lactose utilization (DLU), in which lactose utilization can be detected after 48 h of cultivation but not after only 24 h of cultivation. Insertion of an insertion sequence (IS), IS600, into the lacZ gene appears to be responsible for the DLU phenotype, and exposure to lactose has been reported to be necessary to observe this phenotype, but the mechanism underlying these phenomena remains to be elucidated. Here, we performed detailed analyses of the lactose utilization abilities of a set of O121:H19 strains and their mutants and found that IS-excision enhancer (IEE)-mediated excision of IS600 reactivates the lacZ gene and that the selective proliferation of IS-cured subclones in lactose-supplemented culture medium is responsible for the expression of the DLU phenotype. In addition, we analyzed the patterns of IS insertion into the lacZ and iee genes in the global O121:H19 population and revealed that while there are O121:H19 strains or lineage/sublineages that contain the IS insertion into iee or intact lacZ and thus do not show the DLU phenotype, most currently circulating O121:H19 strains contain IS600-inserted lacZ and intact iee and thus exhibit this phenotype. IMPORTANCE Insertion sequences (ISs) can modulate gene expression by gene inactivation or activation. While phenotypic changes due to IS insertion/transposition are frequently observed, gene reactivation by precise or simple IS excision rarely occurs. In this study, we show that IS600 is excised from the lacZ gene by IS-excision enhancer (IEE) during the cultivation of Shiga toxin-producing Escherichia coli (STEC) O121:H19 strains that show an unusual phenotype called delayed lactose utilization (DLU). This excision rescued their lactose utilization defect, and the subsequent selective proliferation of IS-cured subclones in lactose-containing medium resulted in the expression of the DLU phenotype. As we also show that most currently circulating O121:H19 strains exhibit this phenotype, this study not only provides information helpful for the isolation and identification of O121:H19 STEC but also offers novel insights into the roles of IS and IEE in the generation of phenotypic variation in bacterial populations.
Collapse
|