1
|
Zhu QZ, Yin X, Taubner H, Wendt J, Friedrich MW, Elvert M, Hinrichs KU, Middelburg JJ. Secondary production and priming reshape the organic matter composition in marine sediments. SCIENCE ADVANCES 2024; 10:eadm8096. [PMID: 38758798 PMCID: PMC11100564 DOI: 10.1126/sciadv.adm8096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024]
Abstract
Organic matter (OM) transformations in marine sediments play a crucial role in the global carbon cycle. However, secondary production and priming have been ignored in marine biogeochemistry. By incubating shelf sediments with various 13C-labeled algal substrates for 400 days, we show that ~65% of the lipids and ~20% of the proteins were mineralized by numerically minor heterotrophic bacteria as revealed by RNA stable isotope probing. Up to 11% of carbon from the algal lipids was transformed into the biomass of secondary producers as indicated by 13C incorporation in amino acids. This biomass turned over throughout the experiment, corresponding to dynamic microbial shifts. Algal lipid addition accelerated indigenous OM degradation by 2.5 to 6 times. This priming was driven by diverse heterotrophic bacteria and sulfur- and iron-cycling bacteria and, in turn, resulted in extra secondary production, which exceeded that stimulated by added substrates. These interactions between degradation, secondary production, and priming govern the eventual fate of OM in marine sediments.
Collapse
Affiliation(s)
- Qing-Zeng Zhu
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Xiuran Yin
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Heidi Taubner
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Jenny Wendt
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Michael W. Friedrich
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Marcus Elvert
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Jack J. Middelburg
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
2
|
Yin X, Zhou G, Cai M, Richter-Heitmann T, Zhu QZ, Maeke M, Kulkarni AC, Nimzyk R, Elvert M, Friedrich MW. Physiological versatility of ANME-1 and Bathyarchaeotoa-8 archaea evidenced by inverse stable isotope labeling. MICROBIOME 2024; 12:68. [PMID: 38570877 PMCID: PMC10988981 DOI: 10.1186/s40168-024-01779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/15/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND The trophic strategy is one key principle to categorize microbial lifestyles, by broadly classifying microorganisms based on the combination of their preferred carbon sources, electron sources, and electron sinks. Recently, a novel trophic strategy, i.e., chemoorganoautotrophy-the utilization of organic carbon as energy source but inorganic carbon as sole carbon source-has been specifically proposed for anaerobic methane oxidizing archaea (ANME-1) and Bathyarchaeota subgroup 8 (Bathy-8). RESULTS To further explore chemoorganoautotrophy, we employed stable isotope probing (SIP) of nucleic acids (rRNA or DNA) using unlabeled organic carbon and 13C-labeled dissolved inorganic carbon (DIC), i.e., inverse stable isotope labeling, in combination with metagenomics. We found that ANME-1 archaea actively incorporated 13C-DIC into RNA in the presence of methane and lepidocrocite when sulfate was absent, but assimilated organic carbon when cellulose was added to incubations without methane additions. Bathy-8 archaea assimilated 13C-DIC when lignin was amended; however, their DNA was derived from both inorganic and organic carbon sources rather than from inorganic carbon alone. Based on SIP results and supported by metagenomics, carbon transfer between catabolic and anabolic branches of metabolism is possible in these archaeal groups, indicating their anabolic versatility. CONCLUSION We provide evidence for the incorporation of the mixed organic and inorganic carbon by ANME-1 and Bathy-8 archaea in the environment. Video Abstract.
Collapse
Affiliation(s)
- Xiuran Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Renmin Ave. No.58, Haikou, 570228, China.
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, James-Watt-Strasse 1, Bremen, D-28359, Germany.
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, Bremen, D-28359, Germany.
| | - Guowei Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Renmin Ave. No.58, Haikou, 570228, China
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, James-Watt-Strasse 1, Bremen, D-28359, Germany
| | - Qing-Zeng Zhu
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, Bremen, D-28359, Germany
| | - Mara Maeke
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, James-Watt-Strasse 1, Bremen, D-28359, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, Bremen, D-28359, Germany
| | - Ajinkya C Kulkarni
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, James-Watt-Strasse 1, Bremen, D-28359, Germany
| | - Rolf Nimzyk
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, James-Watt-Strasse 1, Bremen, D-28359, Germany
| | - Marcus Elvert
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, Bremen, D-28359, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Michael W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, James-Watt-Strasse 1, Bremen, D-28359, Germany
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, Bremen, D-28359, Germany
| |
Collapse
|
3
|
Yin X, Zhou G, Wang H, Han D, Maeke M, Richter-Heitmann T, Wunder LC, Aromokeye DA, Zhu QZ, Nimzyk R, Elvert M, Friedrich MW. Unexpected carbon utilization activity of sulfate-reducing microorganisms in temperate and permanently cold marine sediments. THE ISME JOURNAL 2024; 18:wrad014. [PMID: 38365251 PMCID: PMC10811731 DOI: 10.1093/ismejo/wrad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 02/18/2024]
Abstract
Significant amounts of organic carbon in marine sediments are degraded, coupled with sulfate reduction. However, the actual carbon and energy sources used in situ have not been assigned to each group of diverse sulfate-reducing microorganisms (SRM) owing to the microbial and environmental complexity in sediments. Here, we probed microbial activity in temperate and permanently cold marine sediments by using potential SRM substrates, organic fermentation products at very low concentrations (15-30 μM), with RNA-based stable isotope probing. Unexpectedly, SRM were involved only to a minor degree in organic fermentation product mineralization, whereas metal-reducing microbes were dominant. Contrastingly, distinct SRM strongly assimilated 13C-DIC (dissolved inorganic carbon) with H2 as the electron donor. Our study suggests that canonical SRM prefer autotrophic lifestyle, with hydrogen as the electron donor, while metal-reducing microorganisms are involved in heterotrophic organic matter turnover, and thus regulate carbon fluxes in an unexpected way in marine sediments.
Collapse
Affiliation(s)
- Xiuran Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, Bremen D-28359, Germany
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen D-28359, Germany
| | - Guowei Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- School of Resources and Environmental Engineering, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, China
| | - Haihua Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
- College of Urban and Environmental Sciences, Peking University, No. 5 Yiheyuan Road, Beijing 100871, China
| | - Dukki Han
- Department of Marine Bioscience, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung-si 25457, Republic of Korea
| | - Mara Maeke
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen D-28359, Germany
| | - Tim Richter-Heitmann
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
| | - Lea C Wunder
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen D-28359, Germany
| | - David A Aromokeye
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
| | - Qing-Zeng Zhu
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, Bremen D-28359, Germany
| | - Rolf Nimzyk
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
| | - Marcus Elvert
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, Bremen D-28359, Germany
- Faculty of Geosciences, University of Bremen, Klagenfurter Strasse 2-4, Bremen D-28359, Germany
| | - Michael W Friedrich
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, Bremen D-28359, Germany
| |
Collapse
|
4
|
Khomyakova MA, Merkel AY, Mamiy DD, Klyukina AA, Slobodkin AI. Phenotypic and genomic characterization of Bathyarchaeum tardum gen. nov., sp. nov., a cultivated representative of the archaeal class Bathyarchaeia. Front Microbiol 2023; 14:1214631. [PMID: 37675420 PMCID: PMC10477458 DOI: 10.3389/fmicb.2023.1214631] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Bathyarchaeia are widespread in various anoxic ecosystems and are considered one of the most abundant microbial groups on the earth. There are only a few reports of laboratory cultivation of Bathyarchaeia, and none of the representatives of this class has been isolated in pure culture. Here, we report a sustainable cultivation of the Bathyarchaeia archaeon (strain M17CTs) enriched from anaerobic sediment of a coastal lake. The cells of strain M17CTs were small non-motile cocci, 0.4-0.7 μm in diameter. The cytoplasmic membrane was surrounded by an S-layer and covered with an outermost electron-dense sheath. Strain M17CTs is strictly anaerobic mesophile. It grows at 10-45°C (optimum 37°C), at pH 6.0-10.0 (optimum 8.0), and at NaCl concentrations of 0-60 g l-1 (optimum 20 g l-1). Growth occurred in the presence of methoxylated aromatic compounds (3,4-dimethoxybenzoate and vanillate) together with complex proteinaceous substrates. Dimethyl sulfoxide and nitrate stimulated growth. The phylogenomic analysis placed strain M17CTs to BIN-L-1 genus-level lineage from the BA1 family-level lineage and B26-1 order-level lineage (former subgroup-8) within the class Bathyarchaeia. The complete genome of strain M17CTs had a size of 2.15 Mb with a DNA G + C content of 38.1%. Based on phylogenomic position and phenotypic and genomic properties, we propose to assign strain M17CTs to a new species of a novel genus Bathyarchaeum tardum gen. nov., sp. nov. within the class Bathyarchaeia. This is the first sustainably cultivated representative of Bathyarchaeia. We propose under SeqCode the complete genome sequence of strain M17CTs (CP122380) as a nomenclatural type of Bathyarchaeum tardum, which should be considered as a type for the genus Bathyarchaeum, which is proposed as a type for the family Bathyarchaeaceae, order Bathyarchaeales, and of the class Bathyarchaeia.
Collapse
Affiliation(s)
- Maria A. Khomyakova
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Y. Merkel
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Dana D. Mamiy
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexandra A. Klyukina
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander I. Slobodkin
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Bargiela R, Korzhenkov AA, McIntosh OA, Toshchakov SV, Yakimov MM, Golyshin PN, Golyshina OV. Evolutionary patterns of archaea predominant in acidic environment. ENVIRONMENTAL MICROBIOME 2023; 18:61. [PMID: 37464403 DOI: 10.1186/s40793-023-00518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Archaea of the order Thermoplasmatales are widely distributed in natural acidic areas and are amongst the most acidophilic prokaryotic organisms known so far. These organisms are difficult to culture, with currently only six genera validly published since the discovery of Thermoplasma acidophilum in 1970. Moreover, known great diversity of uncultured Thermoplasmatales represents microbial dark matter and underlines the necessity of efforts in cultivation and study of these archaea. Organisms from the order Thermoplasmatales affiliated with the so-called "alphabet-plasmas", and collectively dubbed "E-plasma", were the focus of this study. These archaea were found predominantly in the hyperacidic site PM4 of Parys Mountain, Wales, UK, making up to 58% of total metagenomic reads. However, these archaea escaped all cultivation attempts. RESULTS Their genome-based metabolism revealed its peptidolytic potential, in line with the physiology of the previously studied Thermoplasmatales isolates. Analyses of the genome and evolutionary history reconstruction have shown both the gain and loss of genes, that may have contributed to the success of the "E-plasma" in hyperacidic environment compared to their community neighbours. Notable genes among them are involved in the following molecular processes: signal transduction, stress response and glyoxylate shunt, as well as multiple copies of genes associated with various cellular functions; from energy production and conversion, replication, recombination, and repair, to cell wall/membrane/envelope biogenesis and archaella production. History events reconstruction shows that these genes, acquired by putative common ancestors, may determine the evolutionary and functional divergences of "E-plasma", which is much more developed than other representatives of the order Thermoplasmatales. In addition, the ancestral hereditary reconstruction strongly indicates the placement of Thermogymnomonas acidicola close to the root of the Thermoplasmatales. CONCLUSIONS This study has analysed the metagenome-assembled genome of "E-plasma", which denotes the basis of their predominance in Parys Mountain environmental microbiome, their global ubiquity, and points into the right direction of further cultivation attempts. The results suggest distinct evolutionary trajectories of organisms comprising the order Thermoplasmatales, which is important for the understanding of their evolution and lifestyle.
Collapse
Affiliation(s)
- Rafael Bargiela
- School of Natural Sciences and Centre for Environmental Biotechnology, Bangor University, Bangor, UK
| | | | - Owen A McIntosh
- School of Natural Sciences and Centre for Environmental Biotechnology, Bangor University, Bangor, UK
| | - Stepan V Toshchakov
- Kurchatov Center for Genome Research, NRC Kurchatov Institute, Moscow, Russia
| | | | - Peter N Golyshin
- School of Natural Sciences and Centre for Environmental Biotechnology, Bangor University, Bangor, UK
| | - Olga V Golyshina
- School of Natural Sciences and Centre for Environmental Biotechnology, Bangor University, Bangor, UK.
| |
Collapse
|
6
|
Hou J, Wang Y, Zhu P, Yang N, Liang L, Yu T, Niu M, Konhauser K, Woodcroft BJ, Wang F. Taxonomic and carbon metabolic diversification of Bathyarchaeia during its coevolution history with early Earth surface environment. SCIENCE ADVANCES 2023; 9:eadf5069. [PMID: 37406125 PMCID: PMC10321748 DOI: 10.1126/sciadv.adf5069] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/01/2023] [Indexed: 07/07/2023]
Abstract
Bathyarchaeia, as one of the most abundant microorganisms on Earth, play vital roles in the global carbon cycle. However, our understanding of their origin, evolution, and ecological functions remains poorly constrained. Here, we present the largest dataset of Bathyarchaeia metagenome assembled genome to date and reclassify Bathyarchaeia into eight order-level units corresponding to the former subgroup system. Highly diversified and versatile carbon metabolisms were found among different orders, particularly atypical C1 metabolic pathways, indicating that Bathyarchaeia represent overlooked important methylotrophs. Molecular dating results indicate that Bathyarchaeia diverged at ~3.3 billion years, followed by three major diversifications at ~3.0, ~2.5, and ~1.8 to 1.7 billion years, likely driven by continental emergence, growth, and intensive submarine volcanism, respectively. The lignin-degrading Bathyarchaeia clade emerged at ~300 million years perhaps contributed to the sharply decreased carbon sequestration rate during the Late Carboniferous period. The evolutionary history of Bathyarchaeia potentially has been shaped by geological forces, which, in turn, affected Earth's surface environment.
Collapse
Affiliation(s)
- Jialin Hou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Pengfei Zhu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Na Yang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Lewen Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tiantian Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingyang Niu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kurt Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ben J. Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
7
|
Wang X, Zhang X, Yao C, Shan E, Lv X, Teng J, Zhao J, Wang Q. Impact of aged and virgin microplastics on sedimentary nitrogen cycling and microbial ecosystems in estuaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162977. [PMID: 36963689 DOI: 10.1016/j.scitotenv.2023.162977] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/13/2023]
Abstract
Microplastics (MPs) entering the environment undergo complex weathering (aging) processes, however, the impacts of aged MPs on estuarine nitrogen cycling and microbial ecosystems remain largely unknown. In this study, a 50 days microcosm experiment was conducted to investigate the response of sedimentary nitrogen (N) transformation processes, N2O emission and microbial communities to virgin and aged MPs (PE and PS) exposure. We found that aged MPs influenced sediment nitrogen turnover more rapidly and profoundly than virgin MPs and showed type and dose-response effect. During the first 10 days, higher concentration (3 % by weight of sediment) aged MPs (both PS and PE) treatments significantly promoted denitrification (ANOVA, P < 0.05), while virgin MPs treatments had weak effect on denitrification, compared with the control (P > 0.05). Moreover, higher concentration aged PS-MPs remarkably enhanced N2O emission on the 10th day, while N2O was consumed in the control. After 50 days incubation, there was an overall increase in nirK gene abundance exposed to MPs, and nosZ gene copies in aged PS treatments were around twice that in the control based on qPCR (P < 0.05). The function prediction also showed significant elevation of relative abundance of denitrification and DNRA relevant genes in bacterial community. In addition, aged PS treatment (3 %) recruited specific bacterial and archaeal assemblies, with Sedimenticolaceae, Lentimicrobiaceae, SCGC_AAA011-D5, SG8-5, Lokiarchaeia, and Odinarchaeia selectively enriched in the treatment. Our study highlighted that virgin and aged MPs had different impact on sediment nitrogen cycling, and the ecological risks of aged MPs should be concerned since all MPs eventually get weathered when they enter the environment.
Collapse
Affiliation(s)
- Xiaodan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoli Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Cheng Yao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Encui Shan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaojing Lv
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
8
|
Wang G, Yin X, Feng Z, Chen C, Chen D, Wu B, Liu C, Morel JL, Jiang Y, Yu H, He H, Chao Y, Tang Y, Qiu R, Wang S. Novel biological aqua crust enhances in situ metal(loid) bioremediation driven by phototrophic/diazotrophic biofilm. MICROBIOME 2023; 11:110. [PMID: 37202810 DOI: 10.1186/s40168-023-01549-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/13/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Understanding the ecological and environmental functions of phototrophic biofilms in the biological crust is crucial for improving metal(loid) (e.g. Cd, As) bioremediation in mining ecosystems. In this study, in combination with metal(loid) monitoring and metagenomic analysis, we systematically evaluated the effect of biofilm in a novel biological aqua crust (biogenic aqua crust-BAC) on in situ metal(loid) bioremediation of a representative Pb/Zn tailing pond. RESULTS We observed strong accumulation of potentially bioavailable metal(loid)s and visible phototrophic biofilms in the BAC. Furthermore, dominating taxa Leptolyngbyaceae (10.2-10.4%, Cyanobacteria) and Cytophagales (12.3-22.1%, Bacteroidota) were enriched in biofilm. Along with predominant heterotrophs (e.g. Cytophagales sp.) as well as diazotrophs (e.g. Hyphomonadaceae sp.), autotrophs/diazotrophs (e.g. Leptolyngbyaceae sp.) in phototrophic biofilm enriched the genes encoding extracellular peptidase (e.g. family S9, S1), CAZymes (e.g. CBM50, GT2) and biofilm formation (e.g. OmpR, CRP and LuxS), thus enhancing the capacity of nutrient accumulation and metal(loid) bioremediation in BAC system. CONCLUSIONS Our study demonstrated that a phototrophic/diazotrophic biofilm constitutes the structured communities containing specific autotrophs (e.g. Leptolyngbyaceae sp.) and heterotrophs (e.g. Cytophagales sp.), which effectively control metal(loid) and nutrient input using solar energy in aquatic environments. Elucidation of the mechanisms of biofilm formation coupled with metal(loid) immobilization in BAC expands the fundamental understanding of the geochemical fate of metal(loid)s, which may be harnessed to enhance in situ metal(loid) bioremediation in the aquatic ecosystem of the mining area. Video Abstract.
Collapse
Affiliation(s)
- Guobao Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiuran Yin
- Microbial Ecophysiology Group, University of Bremen, Bremen, Germany
| | - Zekai Feng
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chiyu Chen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Daijie Chen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Bo Wu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chong Liu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jean Louis Morel
- Laboratoire Sols Et Environnement, UMR 1120, Université de Lorraine, INRAE, 54518, Vandoeuvre-Lès-Nancy, France
| | - Yuanyuan Jiang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hang Yu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Huan He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
9
|
Yao H, Liu S, Liu T, Ren D, Yang Q, Zhou Z, Mao J. Screening of marine sediment-derived microorganisms and their bioactive metabolites: a review. World J Microbiol Biotechnol 2023; 39:172. [PMID: 37115432 DOI: 10.1007/s11274-023-03621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Marine sediments are one of the largest habitats on Earth, and their unique ecology, such as high salinity, high pressure, and hypoxia, may activate certain silent genes in marine microbes, resulting in microbes, enzymes, active products, and specific metabolic pathways that can adapt to these specific ecological environments. Marine sediment-derived microorganisms and their bioactive metabolites are of great significance and have potential commercial development prospects for food, pharmaceutical, chemical industries, agriculture, environmental protection and human nutrition and health. In recent years, although there have been numerous scientific reports surrounding marine sediment-derived microorganisms and their bioactive metabolites, a comprehensive review of their research progress is lacking. This paper presents the development and renewal of traditional culture-dependent and omics analysis techniques and their application to the screening of marine sediment-derived microorganisms producing bioactive substances. It also highlights recent research advances in the last five years surrounding the types, functional properties and potential applications of bioactive metabolites produced by marine sediment-derived microorganisms. These bioactive metabolites mainly include antibiotics, enzymes, enzyme inhibitors, sugars, proteins, peptides, and some other small molecule metabolites. In addition, the review ends with concluding remarks on the challenges and future directions for marine sediment-derived microorganisms and their bioactive metabolites. The review report not only helps to deepen the understanding of marine sediment-derived microorganisms and their bioactive metabolites, but also provides some useful information for the exploitation and utilization of marine microbial resources and the mining of new compounds with potential functional properties.
Collapse
Affiliation(s)
- Hongli Yao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Biology and Food Engineering, Bozhou University, Bozhou, 236800, Anhui, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China.
| |
Collapse
|
10
|
Zhou Z, Liu Y, Anantharaman K, Li M. The expanding Asgard archaea invoke novel insights into Tree of Life and eukaryogenesis. MLIFE 2022; 1:374-381. [PMID: 38818484 PMCID: PMC10989744 DOI: 10.1002/mlf2.12048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 06/01/2024]
Abstract
The division of organisms on the Tree of Life into either a three-domain (3D) tree or a two-domain (2D) tree has been disputed for a long time. Ever since the discovery of Archaea by Carl Woese in 1977 using 16S ribosomal RNA sequence as the evolutionary marker, there has been a great advance in our knowledge of not only the growing diversity of Archaea but also the evolutionary relationships between different lineages of living organisms. Here, we present this perspective to summarize the progress of archaeal diversity and changing notion of the Tree of Life. Meanwhile, we provide the latest progress in genomics/physiology-based discovery of Asgard archaeal lineages as the closest relative of Eukaryotes. Furthermore, we propose three major directions for future research on exploring the "next one" closest Eukaryote relative, deciphering the function of archaeal eukaryotic signature proteins and eukaryogenesis from both genomic and physiological aspects, and understanding the roles of horizontal gene transfer, viruses, and mobile elements in eukaryogenesis.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of BacteriologyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced StudyShenzhen UniversityShenzhenChina
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced StudyShenzhen UniversityShenzhenChina
| | | | - Meng Li
- Archaeal Biology Center, Institute for Advanced StudyShenzhen UniversityShenzhenChina
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced StudyShenzhen UniversityShenzhenChina
| |
Collapse
|
11
|
Zhu QZ, Wegener G, Hinrichs KU, Elvert M. Activity of Ancillary Heterotrophic Community Members in Anaerobic Methane-Oxidizing Cultures. Front Microbiol 2022; 13:912299. [PMID: 35722308 PMCID: PMC9201399 DOI: 10.3389/fmicb.2022.912299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria mediate the anaerobic oxidation of methane (AOM) in marine sediments. However, even sediment-free cultures contain a substantial number of additional microorganisms not directly related to AOM. To track the heterotrophic activity of these community members and their possible relationship with AOM, we amended meso- (37°C) and thermophilic (50°C) AOM cultures (dominated by ANME-1 archaea and their partner bacteria of the Seep-SRB2 clade or Candidatus Desulfofervidus auxilii) with L-leucine-3-13C (13C-leu). Various microbial lipids incorporated the labeled carbon from this amino acid, independent of the presence of methane as an energy source, specifically bacterial fatty acids, such as iso and anteiso-branched C15:0 and C17:0, as well as unsaturated C18:1ω9 and C18:1ω7. In natural methane-rich environments, these bacterial fatty acids are strongly 13C-depleted. We, therefore, suggest that those fatty acids are produced by ancillary bacteria that grow on 13C-depleted necromass or cell exudates/lysates of the AOM core communities. Candidates that likely benefit from AOM biomass are heterotrophic bacterial members of the Spirochetes and Anaerolineae—known to produce abundant branched fatty acids and present in all the AOM enrichment cultures. For archaeal lipids, we observed minor 13C-incorporation, but still suggesting some 13C-leu anabolism. Based on their relatively high abundance in the culture, the most probable archaeal candidates are Bathyarchaeota, Thermoplasmatales, and Lokiarchaeota. The identified heterotrophic bacterial and archaeal ancillary members are likely key players in organic carbon recycling in anoxic marine sediments.
Collapse
Affiliation(s)
- Qing-Zeng Zhu
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Gunter Wegener
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.,Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Kai-Uwe Hinrichs
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.,Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Marcus Elvert
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.,Faculty of Geosciences, University of Bremen, Bremen, Germany
| |
Collapse
|