1
|
Larkin AA, Brock ML, Fagan AJ, Moreno AR, Gerace SD, Lees LE, Suarez SA, Eloe-Fadrosh EA, Martiny A. Climate-driven succession in marine microbiome biodiversity and biogeochemical function. RESEARCH SQUARE 2024:rs.3.rs-4682733. [PMID: 39184082 PMCID: PMC11343179 DOI: 10.21203/rs.3.rs-4682733/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Seasonal and El Niño-Southern Oscillation (ENSO) warming result in similar ocean changes as predicted with climate change. Climate-driven environmental cycles have strong impacts on microbiome diversity, but impacts on microbiome function are poorly understood. We quantified changes in microbial genomic diversity and functioning over 11 years covering seasonal and ENSO cycles at a coastal site in the southern California Current. We observed seasonal oscillations between large genome lineages during cold, nutrient rich conditions in winter and spring versus small genome lineages, including Prochlorococcus and Pelagibacter , in summer and fall. Parallel interannual changes separated communities depending on ENSO condition. Biodiversity shifts translated into clear oscillations in microbiome functional potential. Ocean warming induced an ecosystem with less iron but more macronutrient stress genes, depressed organic carbon degradation potential and biomass, and elevated carbon-to-nutrient biomass ratios. The consistent microbial response observed across time-scales points towards large climate-driven changes in marine ecosystems and biogeochemical cycles.
Collapse
|
2
|
Sáez LP, Rodríguez-Caballero G, Olaya-Abril A, Cabello P, Moreno-Vivián C, Roldán MD, Luque-Almagro VM. Genomic Insights into Cyanide Biodegradation in the Pseudomonas Genus. Int J Mol Sci 2024; 25:4456. [PMID: 38674043 PMCID: PMC11049912 DOI: 10.3390/ijms25084456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Molecular studies about cyanide biodegradation have been mainly focused on the hydrolytic pathways catalyzed by the cyanide dihydratase CynD or the nitrilase NitC. In some Pseudomonas strains, the assimilation of cyanide has been linked to NitC, such as the cyanotrophic model strain Pseudomonas pseudoalcaligenes CECT 5344, which has been recently reclassified as Pseudomonas oleovorans CECT 5344. In this work, a phylogenomic approach established a more precise taxonomic position of the strain CECT 5344 within the species P. oleovorans. Furthermore, a pan-genomic analysis of P. oleovorans and other species with cyanotrophic strains, such as P. fluorescens and P. monteilii, allowed for the comparison and identification of the cioAB and mqoAB genes involved in cyanide resistance, and the nitC and cynS genes required for the assimilation of cyanide or cyanate, respectively. While cyanide resistance genes presented a high frequency among the analyzed genomes, genes responsible for cyanide or cyanate assimilation were identified in a considerably lower proportion. According to the results obtained in this work, an in silico approach based on a comparative genomic approach can be considered as an agile strategy for the bioprospection of putative cyanotrophic bacteria and for the identification of new genes putatively involved in cyanide biodegradation.
Collapse
Affiliation(s)
- Lara P. Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain; (L.P.S.); (G.R.-C.); (A.O.-A.); (C.M.-V.); (M.D.R.)
| | - Gema Rodríguez-Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain; (L.P.S.); (G.R.-C.); (A.O.-A.); (C.M.-V.); (M.D.R.)
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain; (L.P.S.); (G.R.-C.); (A.O.-A.); (C.M.-V.); (M.D.R.)
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain; (L.P.S.); (G.R.-C.); (A.O.-A.); (C.M.-V.); (M.D.R.)
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain; (L.P.S.); (G.R.-C.); (A.O.-A.); (C.M.-V.); (M.D.R.)
| | - Víctor M. Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain; (L.P.S.); (G.R.-C.); (A.O.-A.); (C.M.-V.); (M.D.R.)
| |
Collapse
|
3
|
Muñoz-Marín MDC, López-Lozano A, Moreno-Cabezuelo JÁ, Díez J, García-Fernández JM. Mixotrophy in cyanobacteria. Curr Opin Microbiol 2024; 78:102432. [PMID: 38325247 DOI: 10.1016/j.mib.2024.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Cyanobacteria evolved the oxygenic photosynthesis to generate organic matter from CO2 and sunlight, and they were responsible for the production of oxygen in the Earth's atmosphere. This made them a model for photosynthetic organisms, since they are easier to study than higher plants. Early studies suggested that only a minority among cyanobacteria might assimilate organic compounds, being considered mostly autotrophic for decades. However, compelling evidence from marine and freshwater cyanobacteria, including toxic strains, in the laboratory and in the field, has been obtained in the last decades: by using physiological and omics approaches, mixotrophy has been found to be a more widespread feature than initially believed. Furthermore, dominant clades of marine cyanobacteria can take up organic compounds, and mixotrophy is critical for their survival in deep waters with very low light. Hence, mixotrophy seems to be an essential trait in the metabolism of most cyanobacteria, which can be exploited for biotechnological purposes.
Collapse
Affiliation(s)
- María Del Carmen Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Universitario ceiA3, Universidad de Córdoba, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, 14071 Córdoba, Spain
| | - Antonio López-Lozano
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Universitario ceiA3, Universidad de Córdoba, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, 14071 Córdoba, Spain
| | - José Ángel Moreno-Cabezuelo
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Universitario ceiA3, Universidad de Córdoba, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, 14071 Córdoba, Spain
| | - Jesús Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Universitario ceiA3, Universidad de Córdoba, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, 14071 Córdoba, Spain.
| | - José Manuel García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Universitario ceiA3, Universidad de Córdoba, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, 14071 Córdoba, Spain.
| |
Collapse
|
4
|
Cai L, Li H, Deng J, Zhou R, Zeng Q. Biological interactions with Prochlorococcus: implications for the marine carbon cycle. Trends Microbiol 2024; 32:280-291. [PMID: 37722980 DOI: 10.1016/j.tim.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
The unicellular picocyanobacterium Prochlorococcus is the most abundant photoautotroph and contributes substantially to global CO2 fixation. In the vast euphotic zones of the open ocean, Prochlorococcus converts CO2 into organic compounds and supports diverse organisms, forming an intricate network of interactions that regulate the magnitude of carbon cycling and storage in the ocean. An understanding of the biological interactions with Prochlorococcus is critical for accurately estimating the contributions of Prochlorococcus and interacting organisms to the marine carbon cycle. This review synthesizes the primary production contributed by Prochlorococcus in the global ocean. We outline recent progress on the interactions of Prochlorococcus with heterotrophic bacteria, phages, and grazers that multifacetedly determine Prochlorococcus carbon production and fate. We discuss that climate change might affect the biological interactions with Prochlorococcus and thus the marine carbon cycle.
Collapse
Affiliation(s)
- Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Haofu Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China
| | - Junwei Deng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruiqian Zhou
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China; Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|