1
|
Shen H, Li Y, Pi Q, Tian J, Xu X, Huang Z, Huang J, Pian C, Mao S. Unveiling novel antimicrobial peptides from the ruminant gastrointestinal microbiomes: A deep learning-driven approach yields an anti-MRSA candidate. J Adv Res 2025:S2090-1232(25)00005-0. [PMID: 39756573 DOI: 10.1016/j.jare.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
INTRODUCTION Antimicrobial peptides (AMPs) present a promising avenue to combat the growing threat of antibiotic resistance. The ruminant gastrointestinal microbiome serves as a unique ecosystem that offers untapped potential for AMP discovery. OBJECTIVES The aims of this study are to develop an effective methodology for the identification of novel AMPs from ruminant gastrointestinal microbiomes, followed by evaluating their antimicrobial efficacy and elucidating the mechanisms underlying their activity. METHODS We developed a deep learning-based model to identify AMP candidates from a dataset comprising 120 metagenomes and 10,373 metagenome-assembled genomes derived from the ruminant gastrointestinal tract. Both in vivo and in vitro experiments were performed to examine and validate the antimicrobial activities of the AMP candidates that were selected through bioinformatic analysis and subsequently synthesized chemically. Additionally, molecular dynamics simulations were conducted to explore the action mechanism of the most potent AMP candidate. RESULTS The deep learning model identified 27,192 potential secretory AMP candidates. Following bioinformatic analysis, 39 candidates were synthesized and tested. Remarkably, all synthesized peptides demonstrated antimicrobial activity against Staphylococcus aureus, with 79.5% showing effectiveness against multiple pathogens. Notably, Peptide 4, which exhibited the highest antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA), confirmed this effect in a mouse model with wound infection, exhibiting a low propensity for resistance development and minimal cytotoxicity and hemolysis towards mammalian cells. Molecular dynamics simulations provided insights into the mechanism of Peptide 4, primarily its ability to disrupt bacterial cell membranes, leading to cell death. CONCLUSION This study highlights the power of combining deep learning with microbiome research to uncover novel therapeutic candidates, paving the way for the development of next-generation antimicrobials like Peptide 4 to combat the growing threat of MRSA would infections. It also underscores the value of utilizing ruminant microbial resources.
Collapse
Affiliation(s)
- Hong Shen
- Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yanru Li
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Qingjie Pi
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Junru Tian
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xianghan Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Zan Huang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jinghu Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Cong Pian
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China.
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
2
|
Firkins JL, Henderson EL, Duan H, Pope PB. International Symposium on Ruminant Physiology: Current perspective on rumen microbial ecology to improve fiber digestibility. J Dairy Sci 2024:S0022-0302(24)01394-8. [PMID: 39701529 DOI: 10.3168/jds.2024-25863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/17/2024] [Indexed: 12/21/2024]
Abstract
Although cellulose has received the most attention, further research is needed for a complete comprehension of other fiber components in forage and nonforage fiber sources corresponding with the array of enzymes needed for depolymerization and resulting fermentation of sugars. The carbohydrate-active enzymes (CAZymes) have been described in detail herein, although new information will no doubt accumulate in the future. Known CAZymes are attributed to taxa that are easily detected via 16S rRNA gene profiling techniques, but such approaches have limitations. We describe how closely related species or strains expand into different niches depending on diet and the dynamic availability of remaining fibrous substrates. Moreover, expression of CAZymes and other enzymes such as in fermentation pathways can shift among strains and even within strains over time of incubation. We describe unique fibrolytic components of bacteria, protozoa, and fungi while emphasizing the development of consortia that efficiently increase neutral detergent fiber degradability (NDFD). For example, more powerful genome-centric functional omics approaches combined with expanded bioinformatics and network analyses are needed to expand our current understanding of ruminal function and the bottlenecks that lead to among-study variation in NDFD. Specific examples highlighted include our lack of fundamental understanding why starch limits NDFD, whereas moderate inclusion of rumen-degraded protein, certain supplemental fatty acids (especially palmitic), and supplemental sugars sometimes stimulates NDFD. Current and future research must uncover deeper complexity in the rumen microbiome through a combination of approaches described herein to be followed by validation using novel cultivation studies and, ultimately, NDFD measured in vivo for integration with ruminant productivity traits.
Collapse
Affiliation(s)
- J L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus OH 43210 USA.
| | - E L Henderson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - H Duan
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - P B Pope
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia; Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway; Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
3
|
de Souza Lima V, Cedrola F, Morales MJA, Solferini VN. Disentangling the metabolic profile of rumen ciliates: A historical perspective and future directions. Eur J Protistol 2024; 96:126126. [PMID: 39500144 DOI: 10.1016/j.ejop.2024.126126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 12/20/2024]
Abstract
Rumen ciliates constitute a highly diverse group within the subclass Trichostomatia. They are known for their symbiotic relationship with ruminant hosts and their pivotal role in digestive metabolism. This review presents a historical analysis of research on rumen ciliate metabolism, since the earliest studies, based on in vitro and in situ experiments, as well as molecular studies, initially relying on Sanger sequencing, and more recently, next-generation sequencing techniques. Finally, the paper discusses future approaches that may be useful for elucidating the metabolic profile of various taxa of rumen ciliates.
Collapse
Affiliation(s)
- Valdirley de Souza Lima
- Laboratório de Diversidade Genética, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Franciane Cedrola
- Laboratório de Diversidade Genética, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
| | - Millke Jasmine Arminini Morales
- Laboratório de Diversidade Genética, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Vera Nisaka Solferini
- Laboratório de Diversidade Genética, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Marcos CN, Carro MD, Gutiérrez-Rivas M, Atxaerandio R, Goiri I, García-Rodríguez A, González-Recio O. Ruminal microbiome changes across lactation in primiparous Holstein cows with varying methane intensity: Heritability assessment. J Dairy Sci 2024; 107:7064-7078. [PMID: 38788852 DOI: 10.3168/jds.2023-24552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/02/2024] [Indexed: 05/26/2024]
Abstract
Methane is a potent greenhouse gas produced during the ruminal fermentation and is associated with a loss of feed energy. Therefore, efforts to reduce methane emissions have been ongoing in the last decades. Methane production is highly influenced by factors such as the ruminal microbiome and host genetics. Previous studies have proposed to use the ruminal microbiome to reduce long-term methane emissions, as ruminal microbiome composition is a moderately heritable trait and genetic improvement accumulates over time. Lactation stage is another important factor that might influence methane production, but potential associations with the ruminal microbiome have not been evaluated previously. This study sought to examine the changes in ruminal microbiome over the lactation period of primiparous Holstein cows differing in methane intensity (MI) and estimate the heritability of the abundance of relevant microorganisms. Ruminal content samples from 349 primiparous Holstein cows with 14 to 378 DIM were collected from May 2018 to June 2019. Methane intensity of each cow was calculated as methane concentration/milk yield. Up to 64 taxonomic features (TF) from 20 phyla had a significant differential abundance between cows with low and high MI early in lactation, 16 TF during mid lactation, and none late in lactation. Taxonomical features within the Firmicutes, Proteobacteria, Melainabacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria phyla were associated with low MI, whereas eukaryotic TF and those within the Euryarchaeota, Verrucomicrobia, Kiritimatiellaeota, and Lentisphaerae phyla were associated with high MI. Out of the 60 TF that were found to be differentially abundant between early and late lactation in cows with low MI, 56 TF were also significant when cows with low and high MI were compared in the first third of the lactation. In general, microbes associated with low MI were more abundant early in lactation (e.g., Acidaminococcus, Aeromonas, and Weimeria genera) and showed low to moderate heritabilities (0.03 to 0.33). These results suggest some potential to modulate the rumen microbiome composition through selective breeding for lower MI. Differences in the ruminal microbiome of cows with extreme MI levels likely result from variations in the ruminal physiology of these cows and were more noticeable early in lactation, probably due to important interactions between the host phenotype and environmental factors associated with that period. Our results suggest that the ruminal microbiome evaluated early in lactation may be more precise for MI difference, and hence, this should be considered to optimize sampling periods to establish a reference population in genomic selection scenarios.
Collapse
Affiliation(s)
- C N Marcos
- Departamento de Producción Agraria, ETSIAAB, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC, 28040 Madrid, Spain.
| | - M D Carro
- Departamento de Producción Agraria, ETSIAAB, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - M Gutiérrez-Rivas
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC, 28040 Madrid, Spain
| | - R Atxaerandio
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain
| | - I Goiri
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain
| | - A García-Rodríguez
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain
| | - O González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC, 28040 Madrid, Spain.
| |
Collapse
|
5
|
Li X, Lippens G, Parrou JL, Cioci G, Esque J, Wang Z, Laville E, Potocki-Veronese G, Labourel A. Biochemical characterization of a SusD-like protein involved in β-1,3-glucan utilization by an uncultured cow rumen Bacteroides. mSphere 2024; 9:e0027824. [PMID: 39012103 PMCID: PMC11351036 DOI: 10.1128/msphere.00278-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
In ruminants, the rumen is a specialized stomach that is adapted to the breakdown of plant-derived complex polysaccharides through the coordinated activities of a diverse microbial community. Bacteroidota is a major phylum in this bovine rumen microbiota. They contain several clusters of genes called polysaccharide utilization loci (PULs) that encode proteins working in concert to capture, degrade, and transport polysaccharides. Despite the critical role of SusD-like proteins for efficient substrate transport, they remain largely unexplored. Here, we present the biochemical characterization of a SusD-like protein encoded by a β-glucan utilization locus from an Escherichia coli metagenomic clone previously isolated by functional screening of the bovine rumen microbiome. In this study, we show that clone 41O1 can grow on laminaritriose, cellotriose, and a mixture of cellobiosyl-cellobiose and glucosyl-cellotriose as sole carbon sources. Based on this, we used various in vitro analyses to investigate the binding ability of 41O1_SusD-like towards these oligosaccharides and the corresponding polysaccharides. We observed a clear binding affinity for β-1,6 branched β-1,3-glucans (laminarins, yeast β-glucan) and laminaritriose. Comparison of the AlphaFold2 model of 41O1_SusD-like with its closest structural homologs highlights a similar pattern of substrate recognition. In particular, three tryptophan residues are shown to be crucial for laminarin recognition. In the context of the cow rumen, we discuss the possible substrates targeted by the 41O1_PUL, such as the (1,3;1,4)-β-d-glucans present in cereal grains or the β-1,3- and (1,3;1,6)-β-d-glucans that are components of the cell wall of ruminal yeasts.IMPORTANCEThe rumen microbiota can majorly impact overall animal health, feed efficiency, and release of harmful substances into the environment. This microbiota is involved in the fermentation of organic matter to provide the host with valuable and assimilable nutrients. Bacteroidota efficiently captures, breaks down, and imports complex polysaccharides through the concerted action of proteins encoded by polysaccharide utilization loci (PULs). Within this system, SusD-like protein has proven necessary for the active internalization of the substrate. Nevertheless, the vast majority of SusD-like proteins characterized to date originate from cultured bacteria. With regard to the diversity and importance of uncultured bacteria in the rumen, further studies are required to better understand the role of polysaccharide utilization loci in ruminal polysaccharide degradation. Our detailed characterization of the 41O1_SusD-like therefore contributes to a better understanding of the carbohydrate metabolism of an uncultured Bacteroides from the cow rumen.
Collapse
Affiliation(s)
- Xiaoqian Li
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Guy Lippens
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Jean-Luc Parrou
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Gianluca Cioci
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Jérémy Esque
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Zhi Wang
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | | | - Aurore Labourel
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
6
|
Li Z, Hu Y, Li H, Lin Y, Cheng M, Zhu F, Guo Y. Effects of yeast culture supplementation on milk yield, rumen fermentation, metabolism, and bacterial composition in dairy goats. Front Vet Sci 2024; 11:1447238. [PMID: 39170629 PMCID: PMC11336828 DOI: 10.3389/fvets.2024.1447238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The effects of yeast culture (YC) on dairy goat milk yield and potential effects of rumen microbial population changes on rumen fermentation are poorly understood. This study aimed to evaluate the effects of YC on milk yield and rumen fermentation in dairy goats and explore the potential microbial mechanisms. Forty Laoshan dairy goats with a weight of 51.23 ± 2.23 kg and daily milk yield of 1.41 ± 0.26 kg were randomly divided into 4 groups: control (no YC), YC1 (10 g/day per goat), YC2 (25 g/day per goat), and YC3 (40 g/day per goat). The pre-feeding period was 15 days, and the official period was 60 days. Laoshan dairy goats were milked twice daily, and the individual milk yield was recorded. On the last day of the official period, rumen fluid was collected to measure rumen fermentation, perform quantitative polymerase chain reaction (PCR), and detect metabolites. Compared to the control group, the YC group had greater milk yield; higher acetic acid, butyric acid, and total volatile fatty acid contents; and lower ammonia-N (NH3-N) content in the rumen (p < 0.05). YC increased the abundance of Clostridia_UCG-014 and Paraprevotella (p < 0.05). Differential metabolites L-leucine and aspartic acid were screened. This study revealed the microbial mechanisms linking the relative abundance of Paraprevotella and Clostridia_UCG-014 to L-leucine and aspartic acid utilization. These results describe the potential benefits of supplementing 10 g/day per goat YC in the diets of Laoshan dairy goats for improving the rumen environment and milk yield.
Collapse
Affiliation(s)
- Zunyan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yufeng Hu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Haibin Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yingting Lin
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Ming Cheng
- Qingdao Animal Husbandry and Veterinary Research Institute, Qingdao, China
| | - Fenghua Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yixuan Guo
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
7
|
Cedrola F, Gürelli G, Vinicius Xavier Senra M, Jasmine Arminini Morales M, Júnio Pedroso Dias R, Nisaka Solferini V. Phylogenomics corroborates morphology: New discussions on the systematics of Trichostomatia (Ciliophora, Litostomatea). Eur J Protistol 2024; 95:126093. [PMID: 38897098 DOI: 10.1016/j.ejop.2024.126093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
The subclass Trichostomatia (Ciliophora, Litostomatea) constitutes a well-supported monophyletic group, which includes ciliates exclusively found as symbionts of vertebrates, primarily herbivorous mammals. Recent molecular analyses reinforce the subclass monophyly, though almost all orders, suborders, families, and genera are found to be non-monophyletic. Here, we reconstructed the evolutionary history of the subclass Trichostomatia using a phylogenomic approach and discussed some systematic inconsistencies. We propose a new Ophryoscolecidae genus, Dagostonium, to include Diplodinium polygonale. Monoposthium cynodontum is transferred to the genus Cycloposthium.
Collapse
Affiliation(s)
- Franciane Cedrola
- Laboratório de Diversidade Genética, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
| | - Gözde Gürelli
- Department of Biology, Faculty of Science, Kastamonu University, Kastamonu, Turkey
| | | | - Millke Jasmine Arminini Morales
- Laboratório de Diversidade Genética, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Roberto Júnio Pedroso Dias
- Laboratório de Protozoologia, Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Vera Nisaka Solferini
- Laboratório de Diversidade Genética, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil; Center for Computational Engineering and Sciences, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
8
|
Toyber I, Kumar R, Jami E. Rumen protozoa are a hub for diverse hydrogenotrophic functions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13298. [PMID: 38961629 PMCID: PMC11222294 DOI: 10.1111/1758-2229.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/08/2024] [Indexed: 07/05/2024]
Abstract
Ciliate protozoa are an integral part of the rumen microbial community involved in a variety of metabolic processes. These processes are thought to be in part the outcome of interactions with their associated prokaryotic community. For example, methane production is enhanced through interspecies hydrogen transfer between protozoa and archaea. We hypothesize that ciliate protozoa are host to a stable prokaryotic community dictated by specific functions they carry. Here, we modify the microbial community by varying the forage-to-concentrate ratios and show that, despite major changes in the prokaryotic community, several taxa remain stably associated with ciliate protozoa. By quantifying genes belonging to various known reduction pathways in the rumen, we find that the bacterial community associated with protozoa is enriched in genes belonging to hydrogen utilization pathways and that these genes correspond to the same taxonomic affiliations seen enriched in protozoa. Our results show that ciliate protozoa in the rumen may serve as a hub for various hydrogenotrophic functions and a better understanding of the processes driven by different protozoa may unveil the potential role of ciliates in shaping rumen metabolism.
Collapse
Affiliation(s)
- Ido Toyber
- Department of Ruminant Science, Institute of Animal SciencesAgricultural Research Organization, Volcani CenterRishon LeZionIsrael
- Department of Animal Sciencethe Hebrew University of JerusalemRehovotIsrael
| | - Raghawendra Kumar
- Department of Ruminant Science, Institute of Animal SciencesAgricultural Research Organization, Volcani CenterRishon LeZionIsrael
| | - Elie Jami
- Department of Ruminant Science, Institute of Animal SciencesAgricultural Research Organization, Volcani CenterRishon LeZionIsrael
| |
Collapse
|
9
|
Cedrola F, Senra MVX, Morales MJA, Fregulia P, Canesin L, Dias RJP, Solferini VN. Giants' cooperation: a draft genome of the giant ciliate Muniziella cunhai suggests its ecological role in the capybara's digestive metabolism. Microb Genom 2024; 10:001263. [PMID: 38953769 PMCID: PMC11316547 DOI: 10.1099/mgen.0.001263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Several hundred ciliate species live in animals' guts as a part of their microbiome. Among them, Muniziella cunhai (Trichostomatia, Pycnotrichidae), the largest described ciliate, is found exclusively associated with Hydrochoerus hydrochaeris (capybara), the largest known rodent reaching up to 90 kg. Here, we present the sequence, structural and functional annotation of this giant microeukaryote macronuclear genome and discuss its phylogenetic placement. The 85 Mb genome is highly AT rich (GC content 25.71 %) and encodes a total of 11 397 protein-coding genes, of which 2793 could have their functions predicted with automated functional assignments. Functional annotation showed that M. cunhai can digest recalcitrant structural carbohydrates, non-structural carbohydrates, and microbial cell walls, suggesting a role in diet metabolization and in microbial population control in the capybara's intestine. Moreover, the phylogenetic placement of M. cunhai provides insights on the origins of gigantism in the subclass Trichostomatia.
Collapse
Affiliation(s)
- Franciane Cedrola
- Laboratório de Diversidade Genética, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | - Millke Jasmine Arminini Morales
- Laboratório de Diversidade Genética, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Priscila Fregulia
- Laboratório de Protozoologia, Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | - Roberto Júnio Pedroso Dias
- Laboratório de Protozoologia, Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Vera Nisaka Solferini
- Laboratório de Diversidade Genética, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Center for Computational Engineering and Sciences, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
10
|
Wang R, Bai B, Huang Y, Degen A, Mi J, Xue Y, Hao L. Yaks Are Dependent on Gut Microbiota for Survival in the Environment of the Qinghai Tibet Plateau. Microorganisms 2024; 12:1122. [PMID: 38930503 PMCID: PMC11205922 DOI: 10.3390/microorganisms12061122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The yak (Poephagus grunniens) has evolved unique adaptations to survive the harsh environment of the Qinghai-Tibetan Plateau, while their gut microorganisms play a crucial role in maintaining the health of the animal. Gut microbes spread through the animal population not only by horizontal transmission but also vertically, which enhances microbial stability and inheritance between generations of the population. Homogenization of gut microbes in different animal species occurs in the same habitat, promoting interspecies coexistence. Using the yak as a model animal, this paper discusses the adaptive strategies under extreme environments, and how the gut microbes of the yak circulate throughout the Tibetan Plateau system, which not only affects other plateau animals such as plateau pikas, but can also have a profound impact on the health of people. By examining the relationships between yaks and their gut microbiota, this review offers new insights into the adaptation of yaks and their ecological niche on the Qinghai-Tibetan plateau.
Collapse
Affiliation(s)
- Runze Wang
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (R.W.); (B.B.)
| | - Binqiang Bai
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (R.W.); (B.B.)
| | - Yayu Huang
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France;
| | - Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel;
| | - Jiandui Mi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China;
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (R.W.); (B.B.)
| |
Collapse
|
11
|
Corrêa PS, Fernandes MA, Jimenez CR, Mendes LW, Lima PDMT, Abdalla AL, Louvandini H. Interaction between methanotrophy and gastrointestinal nematodes infection on the rumen microbiome of lambs. FEMS Microbiol Ecol 2024; 100:fiae083. [PMID: 38821514 PMCID: PMC11165275 DOI: 10.1093/femsec/fiae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/21/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
Complex cross-talk occurs between gastrointestinal nematodes and gut symbiotic microbiota, with consequences for animal metabolism. To investigate the connection between methane production and endoparasites, this study evaluated the effect of mixed infection with Haemonchus contortus and Trichostrongylus colubriformis on methanogenic and methanotrophic community in rumen microbiota of lambs using shotgun metagenomic and real-time quantitative PCR (qPCR). The rumen content was collected from six Santa Inês lambs, (7 months old) before and after 42 days infection by esophageal tube. The metagenomic analysis showed that the infection affected the microbial community structure leading to decreased abundance of methanotrophs bacteria, i.e. α-proteobacteria and β-proteobacteria, anaerobic methanotrophic archaea (ANME), protozoa, sulfate-reducing bacteria, syntrophic bacteria with methanogens, geobacter, and genes related to pyruvate, fatty acid, nitrogen, and sulfur metabolisms, ribulose monophosphate cycle, and Entner-Doudoroff Pathway. Additionally, the abundance of methanogenic archaea and the mcrA gene did not change. The co-occurrence networks enabled us to identify the interactions between each taxon in microbial communities and to determine the reshaping of rumen microbiome associations by gastrointestinal nematode infection. Besides, the correlation between ANMEs was lower in the animal's postinfection. Our findings suggest that gastrointestinal parasites potentially lead to decreased methanotrophic metabolism-related microorganisms and genes.
Collapse
Affiliation(s)
- Patricia Spoto Corrêa
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenario Avenue, Piracicaba, SP 13416-000, Brazil
| | - Murilo Antonio Fernandes
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenario Avenue, Piracicaba, SP 13416-000, Brazil
| | - Carolina Rodriguez Jimenez
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenario Avenue, Piracicaba, SP 13416-000, Brazil
| | - Lucas William Mendes
- Laboratory of Molecular Cell Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenario Avenue, Piracicaba, SP 13416-000, Brazil
| | - Paulo de Mello Tavares Lima
- Department of Animal Science, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071, United States
| | - Adibe Luiz Abdalla
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenario Avenue, Piracicaba, SP 13416-000, Brazil
| | - Helder Louvandini
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenario Avenue, Piracicaba, SP 13416-000, Brazil
| |
Collapse
|
12
|
Yu Z, Yan M, Somasundaram S. Rumen protozoa and viruses: The predators within and their functions-A mini-review. JDS COMMUNICATIONS 2024; 5:236-240. [PMID: 38646576 PMCID: PMC11026968 DOI: 10.3168/jdsc.2023-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/07/2023] [Indexed: 04/23/2024]
Abstract
The rumen microbiome digests plant feedstuff that would be otherwise indigestible and provides most of the metabolizable energy and protein the host animals need. Until recently, research efforts have primarily been directed to bacteria and archaea, leaving the protozoa, fungi, and viruses much less understood. Protozoa contribute to feed digestion and fermentation, but as predators, they affect the microbiome and its function by regulating the abundance and activities of other rumen microbes both in a top-down (by directly killing the prey) and bottom-up (by affecting the metabolism of other microbes) manner. Rumen viruses (or phages, used interchangeably below) are diverse and abundant but the least understood. They are also predators (intracellular "predators") because of their lytic lifecycle, although they can co-exist peacefully with their hosts and reprogram host metabolism, buttressing host ecological fitness. In doing so, rumen viruses also affect the rumen microbiome in both a top-down and a bottom-up manner. Here we review the recent advancement in understanding both types of predators, focusing on their potential impact on the rumen microbiome and functions.
Collapse
Affiliation(s)
- Zhongtang Yu
- Department of Animal Sciences, Center of Microbiome Science, The Ohio State University, Columbus, OH 43210
| | - Ming Yan
- Department of Animal Sciences, Center of Microbiome Science, The Ohio State University, Columbus, OH 43210
| | - Sripoorna Somasundaram
- Department of Animal Sciences, Center of Microbiome Science, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
13
|
Pratt CJ, Meili CH, Jones AL, Jackson DK, England EE, Wang Y, Hartson S, Rogers J, Elshahed MS, Youssef NH. Anaerobic fungi in the tortoise alimentary tract illuminate early stages of host-fungal symbiosis and Neocallimastigomycota evolution. Nat Commun 2024; 15:2714. [PMID: 38548766 PMCID: PMC10978972 DOI: 10.1038/s41467-024-47047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
Anaerobic gut fungi (AGF, Neocallimastigomycota) reside in the alimentary tract of herbivores. While their presence in mammals is well documented, evidence for their occurrence in non-mammalian hosts is currently sparse. Culture-independent surveys of AGF in tortoises identified a unique community, with three novel deep-branching genera representing >90% of sequences in most samples. Representatives of all genera were successfully isolated under strict anaerobic conditions. Transcriptomics-enabled phylogenomic and molecular dating analyses indicated an ancient, deep-branching position in the AGF tree for these genera, with an evolutionary divergence time estimate of 104-112 million years ago (Mya). Such estimates push the establishment of animal-Neocallimastigomycota symbiosis from the late to the early Cretaceous. Further, tortoise-associated isolates (T-AGF) exhibited limited capacity for plant polysaccharides metabolism and lacked genes encoding several carbohydrate-active enzyme (CAZyme) families. Finally, we demonstrate that the observed curtailed degradation capacities and reduced CAZyme repertoire is driven by the paucity of horizontal gene transfer (HGT) in T-AGF genomes, compared to their mammalian counterparts. This reduced capacity was reflected in an altered cellulosomal production capacity in T-AGF. Our findings provide insights into the phylogenetic diversity, ecological distribution, evolutionary history, evolution of fungal-host nutritional symbiosis, and dynamics of genes acquisition in Neocallimastigomycota.
Collapse
Affiliation(s)
- Carrie J Pratt
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Casey H Meili
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Adrienne L Jones
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Darian K Jackson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Emma E England
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Yan Wang
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Steve Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Janet Rogers
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
14
|
Liang J, Zhang R, Chang J, Chen L, Nabi M, Zhang H, Zhang G, Zhang P. Rumen microbes, enzymes, metabolisms, and application in lignocellulosic waste conversion - A comprehensive review. Biotechnol Adv 2024; 71:108308. [PMID: 38211664 DOI: 10.1016/j.biotechadv.2024.108308] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
The rumen of ruminants is a natural anaerobic fermentation system that efficiently degrades lignocellulosic biomass and mainly depends on synergistic interactions between multiple microbes and their secreted enzymes. Ruminal microbes have been employed as biomass waste converters and are receiving increasing attention because of their degradation performance. To explore the application of ruminal microbes and their secreted enzymes in biomass waste, a comprehensive understanding of these processes is required. Based on the degradation capacity and mechanism of ruminal microbes and their secreted lignocellulose enzymes, this review concentrates on elucidating the main enzymatic strategies that ruminal microbes use for lignocellulose degradation, focusing mainly on polysaccharide metabolism-related gene loci and cellulosomes. Hydrolysis, acidification, methanogenesis, interspecific H2 transfer, and urea cycling in ruminal metabolism are also discussed. Finally, we review the research progress on the conversion of biomass waste into biofuels (bioethanol, biohydrogen, and biomethane) and value-added chemicals (organic acids) by ruminal microbes. This review aims to provide new ideas and methods for ruminal microbe and enzyme applications, biomass waste conversion, and global energy shortage alleviation.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ru Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Mohammad Nabi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
15
|
Qi W, Xue MY, Jia MH, Zhang S, Yan Q, Sun HZ. - Invited Review - Understanding the functionality of the rumen microbiota: searching for better opportunities for rumen microbial manipulation. Anim Biosci 2024; 37:370-384. [PMID: 38186256 PMCID: PMC10838668 DOI: 10.5713/ab.23.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/03/2023] [Indexed: 01/09/2024] Open
Abstract
Rumen microbiota play a central role in the digestive process of ruminants. Their remarkable ability to break down complex plant fibers and proteins, converting them into essential organic compounds that provide animals with energy and nutrition. Research on rumen microbiota not only contributes to improving animal production performance and enhancing feed utilization efficiency but also holds the potential to reduce methane emissions and environmental impact. Nevertheless, studies on rumen microbiota face numerous challenges, including complexity, difficulties in cultivation, and obstacles in functional analysis. This review provides an overview of microbial species involved in the degradation of macromolecules, the fermentation processes, and methane production in the rumen, all based on cultivation methods. Additionally, the review introduces the applications, advantages, and limitations of emerging omics technologies such as metagenomics, metatranscriptomics, metaproteomics, and metabolomics, in investigating the functionality of rumen microbiota. Finally, the article offers a forward-looking perspective on the new horizons and technologies in the field of rumen microbiota functional research. These emerging technologies, with continuous refinement and mutual complementation, have deepened our understanding of rumen microbiota functionality, thereby enabling effective manipulation of the rumen microbial community.
Collapse
Affiliation(s)
- Wenlingli Qi
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Yuan Xue
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Hui Jia
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuxian Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qiongxian Yan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hui-Zeng Sun
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Belanche A, Palma-Hidalgo JM, Jiménez E, Yáñez-Ruiz DR. Enhancing rumen microbial diversity and its impact on energy and protein metabolism in forage-fed goats. Front Vet Sci 2023; 10:1272835. [PMID: 38179333 PMCID: PMC10764530 DOI: 10.3389/fvets.2023.1272835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction This study explores if promoting a complex rumen microbiota represents an advantage or a handicap in the current dairy production systems in which ruminants are artificially reared in absence of contact with adult animals and fed preserved monophyte forage. Methods In order to promote a different rumen microbial diversity, a total of 36 newborn goat kids were artificially reared, divided in 4 groups and daily inoculated during 10 weeks with autoclaved rumen fluid (AUT), fresh rumen fluid from adult goats adapted to forage (RFF) or concentrate (RFC) diets, or absence of inoculation (CTL). At 6 months of age all animals were shifted to an oats hay diet to determine their ability to digest a low quality forage. Results and discussion Early life inoculation with fresh rumen fluid promoted an increase in the rumen overall microbial diversity which was detected later in life. As a result, at 6 months of age RFF and RFC animals had higher bacterial (+50 OTUs) and methanogens diversity (+4 OTUs) and the presence of a complex rumen protozoal community (+32 OTUs), whereas CTL animals remained protozoa-free. This superior rumen diversity and presence of rumen protozoa had beneficial effects on the energy metabolism allowing a faster adaptation to the forage diet, a higher forage digestion (+21% NDF digestibility) and an energetically favourable shift of the rumen fermentation pattern from acetate to butyrate (+92%) and propionate (+19%) production. These effects were associated with the presence of certain rumen bacterial taxa and a diverse protozoal community. On the contrary, the presence of rumen protozoa (mostly Entodinium) had a negative impact on the N metabolism leading to a higher bacterial protein breakdown in the rumen and lower microbial protein flow to the host based on purine derivatives urinary excretion (-17% to -54%). The inoculation with autoclaved rumen fluid, as source of fermentation products but not viable microbes, had smaller effects than using fresh inoculum. These findings suggest that enhancing rumen microbial diversity represents a desirable attribute when ruminants are fed forages in which the N supply does not represent a limiting factor for the rumen microbiota.
Collapse
Affiliation(s)
- Alejandro Belanche
- Estación Experimental del Zaidín (CSIC), Granada, Spain
- Department of Animal Production and Food Sciences, University of Zaragoza, Zaragoza, Spain
| | | | | | | |
Collapse
|
17
|
Takahashi K, Kuwahara H, Horikawa Y, Izawa K, Kato D, Inagaki T, Yuki M, Ohkuma M, Hongoh Y. Emergence of putative energy parasites within Clostridia revealed by genome analysis of a novel endosymbiotic clade. THE ISME JOURNAL 2023; 17:1895-1906. [PMID: 37653056 PMCID: PMC10579323 DOI: 10.1038/s41396-023-01502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
The Clostridia is a dominant bacterial class in the guts of various animals and are considered to nutritionally contribute to the animal host. Here, we discovered clostridial endosymbionts of cellulolytic protists in termite guts, which have never been reported with evidence. We obtained (near-)complete genome sequences of three endosymbiotic Clostridia, each associated with a different parabasalid protist species with various infection rates: Trichonympha agilis, Pseudotrichonympha grassii, and Devescovina sp. All these protists are previously known to harbor permanently-associated, mutualistic Endomicrobia or Bacteroidales that supplement nitrogenous compounds. The genomes of the endosymbiotic Clostridia were small in size (1.0-1.3 Mbp) and exhibited signatures of an obligately-intracellular parasite, such as an extremely limited capability to synthesize amino acids, cofactors, and nucleotides and a disrupted glycolytic pathway with no known net ATP-generating system. Instead, the genomes encoded ATP/ADP translocase and, interestingly, regulatory proteins that are unique to eukaryotes in general and are possibly used to interfere with host cellular processes. These three genomes formed a clade with metagenome-assembled genomes (MAGs) derived from the guts of other animals, including human and ruminants, and the MAGs shared the characteristics of parasites. Gene flux analysis suggested that the acquisition of the ATP/ADP translocase gene in a common ancestor was probably key to the emergence of this parasitic clade. Taken together, we provide novel insights into the multilayered symbiotic system in the termite gut by adding the presence of parasitism and present an example of the emergence of putative energy parasites from a dominant gut bacterial clade.
Collapse
Affiliation(s)
- Kazuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Hirokazu Kuwahara
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Yutaro Horikawa
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Kazuki Izawa
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Daiki Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Tatsuya Inagaki
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Masahiro Yuki
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan.
| |
Collapse
|