1
|
Liao H, Liu C, Zhou S, Liu C, Eldridge DJ, Ai C, Wilhelm SW, Singh BK, Liang X, Radosevich M, Yang QE, Tang X, Wei Z, Friman VP, Gillings M, Delgado-Baquerizo M, Zhu YG. Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments. Nat Commun 2024; 15:8315. [PMID: 39333115 PMCID: PMC11437078 DOI: 10.1038/s41467-024-52450-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 09/07/2024] [Indexed: 09/29/2024] Open
Abstract
The spread of antibiotic resistance genes (ARGs) poses a substantial threat to human health. Phage-mediated transduction could exacerbate ARG transmission. While several case studies exist, it is yet unclear to what extent phages encode and mobilize ARGs at the global scale and whether human impacts play a role in this across different habitats. Here, we combine 38,605 bacterial genomes, 1432 metagenomes, and 1186 metatranscriptomes across 12 contrasting habitats to explore the distribution of prophages and their cargo ARGs in natural and human-impacted environments. Worldwide, we observe a significant increase in the abundance, diversity, and activity of prophage-encoded ARGs in human-impacted habitats linked with relatively higher risk of past antibiotic exposure. This effect was driven by phage-encoded cargo ARGs that could be mobilized to provide increased resistance in heterologous E. coli host for a subset of analyzed strains. Our findings suggest that human activities have altered bacteria-phage interactions, enriching ARGs in prophages and making ARGs more mobile across habitats globally.
Collapse
Affiliation(s)
- Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Chunqin Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Chaofan Ai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Brajesh K Singh
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Xiaolong Liang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning Province, China
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN, USA
| | - Qiu-E Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiang Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | - Michael Gillings
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas, Seville, Spain.
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Zang B, Zhou H, Zhao Y, Sano D, Chen R. Investigating potential auxiliary anaerobic digestion activity of phage under polyvinyl chloride microplastic stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135950. [PMID: 39326145 DOI: 10.1016/j.jhazmat.2024.135950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/18/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Polyvinyl chloride (PVC) microplastics present in sewage were trapped in sludge, thereby hindering anaerobic digestion performance of waste active sludge (WAS). Phages regulate virocell metabolism by encoding auxiliary metabolic genes (AMGs) related to energy acquisition and material degradation, supporting hosts survive in harsh environments and play a crucial role in biogeochemical cycles. This study investigated the potential effects of phages on the recovery of WAS anaerobic digestion under PVC stress. We observed a significant alteration in the phage community induced by PVC microplastics. Phages encoded AMGs related to anaerobic digestion and cell growth probably alleviate PVC microplastics inhibition on WAS anaerobic digestion, and 54.2 % of hydrolysis-related GHs and 40.8 % of acidification-related AMGs were actively transcribed in the PVC-exposed group. Additionally, the degradation of chitin and peptidoglycan during hydrolysis and the conversion of glucose to pyruvate during acidification were more susceptible to phages. Prediction of phage-host relationship indicated that the phyla Pseudomonadota were predominantly targeted hosts by hydrolysis-related and acidification-related phages, and PVC toxicity had minimal impact on phage-host interaction. Our findings highlight the importance of phages in anaerobic digestion and provide a novel strategy for using phages in the functional recovery of microplastic-exposed sludge.
Collapse
Affiliation(s)
- Bei Zang
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hang Zhou
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yubin Zhao
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
3
|
Huang D, Xia R, Chen C, Liao J, Chen L, Wang D, Alvarez PJJ, Yu P. Adaptive strategies and ecological roles of phages in habitats under physicochemical stress. Trends Microbiol 2024; 32:902-916. [PMID: 38433027 DOI: 10.1016/j.tim.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2024]
Abstract
Bacteriophages (phages) play a vital role in ecosystem functions by influencing the composition, genetic exchange, metabolism, and environmental adaptation of microbial communities. With recent advances in sequencing technologies and bioinformatics, our understanding of the ecology and evolution of phages in stressful environments has substantially expanded. Here, we review the impact of physicochemical environmental stress on the physiological state and community dynamics of phages, the adaptive strategies that phages employ to cope with environmental stress, and the ecological effects of phage-host interactions in stressful environments. Specifically, we highlight the contributions of phages to the adaptive evolution and functioning of microbiomes and suggest that phages and their hosts can maintain a mutualistic relationship in response to environmental stress. In addition, we discuss the ecological consequences caused by phages in stressful environments, encompassing biogeochemical cycling. Overall, this review advances an understanding of phage ecology in stressful environments, which could inform phage-based strategies to improve microbiome performance and ecosystem resilience and resistance in natural and engineering systems.
Collapse
Affiliation(s)
- Dan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rong Xia
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengyi Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Linxing Chen
- Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 314100, China.
| |
Collapse
|
4
|
He Y, Zhuo S, Gao D, Pan Y, Li M, Pan J, Jiang Y, Hu Y, Guo J, Lin Q, Sanford RA, Sun W, Shang J, Wei N, Peng S, Jiang Z, Li S, Li Y, Dong Y, Shi L. Viral communities in a pH>10 serpentinite-like environment: insight into diversity and potential roles in modulating the microbiomes by bioactive vitamin B 9 synthesis. Appl Environ Microbiol 2024; 90:e0085024. [PMID: 39016614 PMCID: PMC11337834 DOI: 10.1128/aem.00850-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
Viral communities exist in a variety of ecosystems and play significant roles in mediating biogeochemical processes, whereas viruses inhabiting strongly alkaline geochemical systems remain underexplored. In this study, the viral diversity, potential functionalities, and virus-host interactions in a strongly alkaline environment (pH = 10.4-12.4) exposed to the leachates derived from the serpentinization-like reactions of smelting slags were investigated. The viral populations (e.g., Herelleviridae, Queuovirinae, and Inoviridae) were closely associated with the dominating prokaryotic hosts (e.g., Meiothermus, Trueperaceae, and Serpentinomonas) in this ultrabasic environment. Auxiliary metabolic genes (AMGs) suggested that viruses may enhance hosts' fitness by facilitating cofactor biosynthesis, hydrogen metabolism, and carbon cycling. To evaluate the activity of synthesis of essential cofactor vitamin B9 by the viruses, a viral folA (vfolA) gene encoding dihydrofolate reductase (DHFR) was introduced into a thymidine-auxotrophic strain Escherichia coli MG1655 ΔfolA mutant, which restored the growth of the latter in the absence of thymidine. Notably, the homologs of the validated vDHFR were globally distributed in the viromes across various ecosystems. The present study sheds new light on the unique viral communities in hyperalkaline ecosystems and their potential beneficial impacts on the coexisting microbial consortia by supplying essential cofactors. IMPORTANCE This study presents a comprehensive investigation into the diversity, potential functionalities, and virus-microbe interactions in an artificially induced strongly alkaline environment. Functional validation of the detected viral folA genes encoding dihydrofolate reductase substantiated the synthesis of essential cofactors by viruses, which may be ubiquitous, considering the broad distribution of the viral genes associated with folate cycling.
Collapse
Affiliation(s)
- Yu He
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Shiyan Zhuo
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Donghao Gao
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yue Pan
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Studies, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Studies, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yidan Hu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Jinzhi Guo
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Qin Lin
- Shanghai Biozeron Biological Technology Co. Ltd, China, Shanghai, China
| | - Robert A. Sanford
- Department of Earth Science & Environmental Change, University of Illinois Urbana-Champaign, Urbana, llinois, USA
| | - Weimin Sun
- Guangdong Institute of Eco-environmental and Soil Science, Guangdong, China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Shuming Peng
- Institute of Ecological Environment, Chengdu University of Technology, Chengdu, China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Shuyi Li
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yongzhe Li
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Beijing, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Wuhan, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Beijing, China
| |
Collapse
|
5
|
Stiffler AK, Hesketh-Best PJ, Varona NS, Zagame A, Wallace BA, Lapointe BE, Silveira CB. Genomic and induction evidence for bacteriophage contributions to sargassum-bacteria symbioses. MICROBIOME 2024; 12:143. [PMID: 39090708 PMCID: PMC11295528 DOI: 10.1186/s40168-024-01860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Symbioses between primary producers and bacteria are crucial for nutrient exchange that fosters host growth and niche adaptation. Yet, how viruses that infect bacteria (phages) influence these bacteria-eukaryote interactions is still largely unknown. Here, we investigate the role of viruses on the genomic diversity and functional adaptations of bacteria associated with pelagic sargassum. This brown alga has dramatically increased its distribution range in the Atlantic in the past decade and is predicted to continue expanding, imposing severe impacts on coastal ecosystems, economies, and human health. RESULTS We reconstructed 73 bacterial and 3963 viral metagenome-assembled genomes (bMAGs and vMAGs, respectively) from coastal Sargassum natans VIII and surrounding seawater. S. natans VIII bMAGs were enriched in prophages compared to seawater (28% and 0.02%, respectively). Rhodobacterales and Synechococcus bMAGs, abundant members of the S. natans VIII microbiome, were shared between the algae and seawater but were associated with distinct phages in each environment. Genes related to biofilm formation and quorum sensing were enriched in S. natans VIII phages, indicating their potential to influence algal association in their bacterial hosts. In-vitro assays with a bacterial community harvested from sargassum surface biofilms and depleted of free viruses demonstrated that these bacteria are protected from lytic infection by seawater viruses but contain intact and inducible prophages. These bacteria form thicker biofilms when growing on sargassum-supplemented seawater compared to seawater controls, and phage induction using mitomycin C was associated with a significant decrease in biofilm formation. The induced metagenomes were enriched in genomic sequences classified as temperate viruses compared to uninduced controls. CONCLUSIONS Our data shows that prophages contribute to the flexible genomes of S. natans VIII-associated bacteria. These prophages encode genes with symbiotic functions, and their induction decreases biofilm formation, an essential capacity for flexible symbioses between bacteria and the alga. These results indicate that prophage acquisition and induction contribute to genomic and functional diversification during sargassum-bacteria symbioses, with potential implications for algae growth. Video Abstract.
Collapse
Affiliation(s)
| | - Poppy J Hesketh-Best
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Natascha S Varona
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Ashley Zagame
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Bailey A Wallace
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Brian E Lapointe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, 34946, USA
| | - Cynthia B Silveira
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, 33149, USA.
| |
Collapse
|
6
|
Zhu Y, Yan S, Chen X, Li Y, Xie S. Thallium spill shifts the structural and functional characteristics of viral communities with different lifestyles in river sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174531. [PMID: 38971241 DOI: 10.1016/j.scitotenv.2024.174531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Thallium (Tl), a highly toxic heavy metal, can affect microbial community, while little is known about its effect on viral community. The present study investigated the variation of viral communities, as well as their interactions with microbial hosts under Tl stress. Tl in sediments significantly altered the composition and diversity of the viral communities, but showed no significant links with the prokaryotic communities, which may reveal a potential discrepancy in the sensitivity of the viral and prokaryotic communities to heavy metal stress. Auxiliary metabolic genes (AMGs) involved in denitrification, methane oxidation and organic sulfur transformation were enriched at T1-contaminated sites, while the abundance of AMGs related to methanogenesis and sulfate reduction were higher at pristine sites. Specially, the enrichment of AMGs involved in assimilatory sulfate reduction in Tl-contaminated sites could possibly reduce Tl bioavailability by enhancing the microbially-driven sulfur cycling to generate sulfides that could be complexed with Tl. Moreover, there was a significantly positive correlation between virus-carrying metal resistant genes and the sedimentary Tl concentration, implying that Tl contamination might enhance the metal resistant potential of the viruses. Serving as the functional gene reservoir, the response of viral AMGs to Tl stress could represent a potential pathway for microorganisms to be adapted to the metal-polluted environments. Our study provided novel insights into the impact of Tl spill on viral communities, shedding light on functional characteristics and the links of virus-host interaction with Tl level.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yangyang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Li L, Zhou M, Yu M, Ren X, Li L, Shen C, Deng C, Liu Y, Yang B. Correlation between the development of phage resistance and the original antibiotic resistance of host bacteria under the co-exposure of antibiotic and bacteriophage. ENVIRONMENTAL RESEARCH 2024; 252:118921. [PMID: 38631474 DOI: 10.1016/j.envres.2024.118921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Bacteriophages (phages) are viruses capable of regulating the proliferation of antibiotic resistant bacteria (ARB). However, phages that directly cause host lethality may quickly select for phage resistant bacteria, and the co-evolutionary trade-offs under varying environmental conditions, including the presence of antibiotics, remains unclear as to their impact on phage and antibiotic resistance. Here, we report the emergence of phage resistance in three distinct E. coli strains with varying resistance to β-lactam antibiotics, treated with different ampicillin (AMP) concentrations. Hosts exhibiting stronger antibiotic resistance demonstrated a higher propensity to develop and maintain stable phage resistance. When exposed to polyvalent phage KNT-1, the growth of AMP-sensitive E. coli K12 was nearly suppressed within 18 h, while the exponential growth of AMP-resistant E. coli TEM and super-resistant E. coli NDM-1 was delayed by 12 h and 8 h, respectively. The mutation frequency and mutated colony count of E. coli NDM-1 were almost unaffected by co-existing AMP, whereas for E. coli TEM and K12, these metrics significantly decreased with increasing AMP concentration from 8 to 50 μg/mL, becoming unquantifiable at 100 μg/mL. Furthermore, the fitness costs of phage resistance mutation and its impact on initial antibiotic resistance in bacteria were further examined, through analyzing AMP susceptibility, biofilm formation and EPS secretion of the isolated phage resistant mutants. The results indicated that acquiring phage resistance could decrease antibiotic resistance, particularly for hosts lacking strong antibiotic resistance. The ability of mutants to form biofilm contributes to antibiotic resistance, but the correlation is not entirely positive, while the secretion of extracellular polymeric substance (EPS), especially the protein content, plays a crucial role in protecting the bacteria from both antibiotic and phage exposure. This study explores phage resistance development in hosts with different antibiotic resistance and helps to understand the limitations and possible solutions of phage-based technologies.
Collapse
Affiliation(s)
- Lingli Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China.
| | - Mengya Zhou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Ming Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Xu Ren
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu, 610065, PR China
| | - Linzhi Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Chunjun Shen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Chunping Deng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Yucheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Bing Yang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| |
Collapse
|
8
|
Li W, Wang Y, Zhao K, Xu L, Shi T, Ma B, Lv X. Host-virus coevolution drives soil microbial function succession along a millennium land reclamation chronosequence. J Adv Res 2024:S2090-1232(24)00258-3. [PMID: 38960277 DOI: 10.1016/j.jare.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
INTRODUCTION Gene exchange between viruses and hosts plays an important role in driving virus-host coevolution, enabling adaptation of both viruses and hosts to environmental changes. However, the mechanisms and functional significance of virus-host gene exchanges over long-term scales remain largely unexplored. OBJECTIVE The present study aimed to gain insights into the role of viruses in virus-host interactions and coevolution by monitoring virome dynamics along a millennium-long land reclamation chronosequence. METHODS We collected 24 soil samples from 8 stages of a millennium-long land reclamation chronosequence, including non-reclamation, and reclamation periods of 10, 50, 100, 300, 500, 700, and 1000 years. We characterized their metagenomes, and identified DNA viruses within these metagenomes. RESULTS Our findings reveal a significant shift in viral community composition after 50 years of land reclamation, but soil viral diversity reached a stable phase approximately 300 years after the initial reclamation. Analysis of the virus-host network showed a scale-free degree distribution and a reduction in complexity over time, with generalist viruses emerging as key facilitators of horizontal gene transfer. CONCLUSION These findings highlight the integral role of viruses, especially generalist types, in mediating gene exchanges between viruses and hosts, thereby influencing the coevolutionary dynamics in soil ecosystems over significant timescales. This study offers novel insights into long-term virus-host interactions, showing how the virome responds to environmental changes, driving shifts in various microbial functions in reclaimed land.
Collapse
Affiliation(s)
- Wenbing Li
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Yiling Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Linya Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Tingfeng Shi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
9
|
Gomathinayagam S, Kodiveri Muthukaliannan G. Dynamics of antibiotic resistance genes in plasmids and bacteriophages. Crit Rev Microbiol 2024:1-10. [PMID: 38651513 DOI: 10.1080/1040841x.2024.2339262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
This brief review explores the intricate interplay between bacteriophages and plasmids in the context of antibiotic resistance gene (ARG) dissemination. Originating from studies in the late 1950s, the review traces the evolution of knowledge regarding extrachromosomal factors facilitating horizontal gene transfer and adaptation in bacteria. Analyzing the gene repertoires of plasmids and bacteriophages, the study highlights their contributions to bacterial evolution and adaptation. While plasmids encode essential and accessory genes influencing host characteristics, bacteriophages carry auxiliary metabolic genes (AMGs) that augment host metabolism. The debate on phages carrying ARGs is explored through a critical evaluation of various studies, revealing contrasting findings from researchers. Additionally, the review addresses the interplay between prophages and plasmids, underlining their similarities and divergences. Based on the available literature evidence, we conclude that plasmids generally encode ARGs while bacteriophages typically do not contain ARGs. But extra-chromosomaly present prophages with plasmid characteristics can encode and disseminate ARGs.
Collapse
|
10
|
Beavogui A, Lacroix A, Wiart N, Poulain J, Delmont TO, Paoli L, Wincker P, Oliveira PH. The defensome of complex bacterial communities. Nat Commun 2024; 15:2146. [PMID: 38459056 PMCID: PMC10924106 DOI: 10.1038/s41467-024-46489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Bacteria have developed various defense mechanisms to avoid infection and killing in response to the fast evolution and turnover of viruses and other genetic parasites. Such pan-immune system (defensome) encompasses a growing number of defense lines that include well-studied innate and adaptive systems such as restriction-modification, CRISPR-Cas and abortive infection, but also newly found ones whose mechanisms are still poorly understood. While the abundance and distribution of defense systems is well-known in complete and culturable genomes, there is a void in our understanding of their diversity and richness in complex microbial communities. Here we performed a large-scale in-depth analysis of the defensomes of 7759 high-quality bacterial population genomes reconstructed from soil, marine, and human gut environments. We observed a wide variation in the frequency and nature of the defensome among large phyla, which correlated with lifestyle, genome size, habitat, and geographic background. The defensome's genetic mobility, its clustering in defense islands, and genetic variability was found to be system-specific and shaped by the bacterial environment. Hence, our results provide a detailed picture of the multiple immune barriers present in environmentally distinct bacterial communities and set the stage for subsequent identification of novel and ingenious strategies of diversification among uncultivated microbes.
Collapse
Affiliation(s)
- Angelina Beavogui
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Auriane Lacroix
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Nicolas Wiart
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 / Tara GOsee, Paris, France
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 / Tara GOsee, Paris, France
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, 8093, Switzerland
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes lab, Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 / Tara GOsee, Paris, France
| | - Pedro H Oliveira
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France.
| |
Collapse
|
11
|
Zhang H, Zhang H, Du H, Yu X, Xu Y. The insights into the phage communities of fermented foods in the age of viral metagenomics. Crit Rev Food Sci Nutr 2024:1-13. [PMID: 38214674 DOI: 10.1080/10408398.2023.2299323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Phages play a critical role in the assembly and regulation of fermented food microbiome through lysis and lysogenic lifestyle, which in turn affects the yield and quality of fermented foods. Therefore, it is important to investigate and characterize the diversity and function of phages under complex microbial communities and nutrient substrate conditions to provide novel insights into the regulation of traditional spontaneous fermentation. Viral metagenomics has gradually garnered increasing attention in fermented food research to elucidate phage functions and characterize the interactions between phages and the microbial community. Advances in this technology have uncovered a wide range of phages associated with the production of traditional fermented foods and beverages. This paper reviews the common methods of viral metagenomics applied in fermented food research, and summarizes the ecological functions of phages in traditional fermented foods. In the future, combining viral metagenomics with culturable methods and metagenomics will broaden the scope of research on fermented food systems, revealing the complex role of phages and intricate phage-bacterium interactions.
Collapse
Affiliation(s)
- Huadong Zhang
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongxia Zhang
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaowei Yu
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Chen L, Zhao X, Wongso S, Lin Z, Wang S. Trade-offs between receptor modification and fitness drive host-bacteriophage co-evolution leading to phage extinction or co-existence. THE ISME JOURNAL 2024; 18:wrae214. [PMID: 39441988 PMCID: PMC11538992 DOI: 10.1093/ismejo/wrae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Parasite-host co-evolution results in population extinction or co-existence, yet the factors driving these distinct outcomes remain elusive. In this study, Salmonella strains were individually co-evolved with the lytic phage SF1 for 30 days, resulting in phage extinction or co-existence. We conducted a systematic investigation into the phenotypic and genetic dynamics of evolved host cells and phages to elucidate the evolutionary mechanisms. Throughout co-evolution, host cells displayed diverse phage resistance patterns: sensitivity, partial resistance, and complete resistance, to wild-type phage. Moreover, phage resistance strength showed a robust linear correlation with phage adsorption, suggesting that surface modification-mediated phage attachment predominates as the resistance mechanism in evolved bacterial populations. Additionally, bacterial isolates eliminating phages exhibited higher mutation rates and lower fitness costs in developing resistance compared to those leading to co-existence. Phage resistance genes were classified into two categories: key mutations, characterized by nonsense/frameshift mutations in rfaH-regulated rfb genes, leading to the removal of the receptor O-antigen; and secondary mutations, which involve less critical modifications, such as fimbrial synthesis and tRNA modification. The accumulation of secondary mutations resulted in partial and complete resistance, which could be overcome by evolved phages, whereas key mutations conferred undefeatable complete resistance by deleting receptors. In conclusion, higher key mutation frequencies with lower fitness costs promised strong resistance and eventual phage extinction, whereas deficiencies in fitness cost, mutation rate, and key mutation led to co-existence. Our findings reveal the distinct population dynamics and evolutionary trade-offs of phage resistance during co-evolution, thereby deepening our understanding of microbial interactions.
Collapse
Affiliation(s)
- Lin Chen
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xue Zhao
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington Street SW, Blacksburg, Virginia 24061, United States
| | - Shelyn Wongso
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Zhuohui Lin
- Department of Microbiology and Immunology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Siyun Wang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|