1
|
Tan Z, Chen W, Wei X, Qiu Z, Zhuang W, Zhang B, Xie J, Lin Y, Ren Y, Preis S, Wei C, Zhu S. Virus-bacterium interaction involved in element cycles in biological treatment of coking wastewater. BIORESOURCE TECHNOLOGY 2025; 416:131839. [PMID: 39557096 DOI: 10.1016/j.biortech.2024.131839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Although prokaryotic microbes in coking wastewater (CWW) treatment have been comprehensively studied, the ecological functions of viruses remain unclear. A full-scale CWW biological treatment AOHO combination was studied for the virus-bacterium interactions involved in element cycles by metaviromics, metagenomics and physicochemical characteristics. Results showed the unique viromic profile with Cirlivirales and Petitvirales as the dominant viruses infecting functional bacteria hosts. The auxiliary metabolic genes (AMGs) focused on element cycles, including metabolisms of carbon (fadA), nitrogen (glnA), sulfur (mddA and cysK) and phosphorus (phoH). Other AMGs were involved in toxic tolerance of hosts, improving their cell membrane and wall robustness, antioxidant, DNA repair and cobalamin biosynthesis. Vice versa, the bloomed host provided fitness advantages for viruses. Dissolved oxygen was found to be the key factor shaping the distributions of viral community and AMGs. Summarizing, the study exposed the mutual virus-bacterium interaction in the AOHO combination providing stable treatment efficiency.
Collapse
Affiliation(s)
- Zhijie Tan
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenli Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xinyi Wei
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhaoji Qiu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Weixiong Zhuang
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Baoshan Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Junting Xie
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuexia Lin
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Sergei Preis
- Department of Materials and Environmental Technology, Tallinn University of Technology, Tallinn 19086, Estonia
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Shuang Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Wan HJ, Meng XZ, Cao FH. Sulfide and Hydrogen Bond Networks in the Electric Double Layer: Key Factors for Titanium Passivation Film Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39718465 DOI: 10.1021/acs.langmuir.4c03980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Hydrogen sulfide (H2S), carbonyl sulfide (COS), and dimethyl sulfide (DMS) are the primary sulfur compounds found in seawater, which cause pitting corrosion on the oxide passivation film of titanium, known as "the marine metals". In this study, density functional theory (DFT) was used to analyze the adsorption and surface electronic properties of these three small molecules on the anatase TiO2(101) surface. The analysis was conducted through adsorption energy, work function, Mulliken charge population, and density of states (DOS). The hydrogen bond network structure of the electric double layer (EDL) was studied for these small-molecule systems using ab initio molecular dynamics (AIMD). The optimal adsorption configurations for H2S, COS, and DMS on the anatase TiO2(101) surface are 2Ob-vertical, O-down-vertical, and Ob-parallel, with adsorption energies of -1.32, -0.67, and -1.86 eV, respectively. The surface charge transfer was also investigated. Through comparative AIMD simulations of three different aqueous solutions on the TiO2(101) surface, we observed that COS exerts a more pronounced influence on the electrical double layer within 3.00 Å of the TiO2(101) surface. Specifically, the hydrogen atoms of water tend to aggregate toward the Ob atoms, forming hydrogen bonds, which significantly impacts the corrosion resistance of the TiO2 surface.
Collapse
Affiliation(s)
- Hong-Ji Wan
- School of Materials, Sun Yat-sen University, Shenzhen 518107, China
| | - Xian-Ze Meng
- School of Materials, Sun Yat-sen University, Shenzhen 518107, China
| | - Fa-He Cao
- School of Materials, Sun Yat-sen University, Shenzhen 518107, China
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
3
|
Sun G, Zhang RWY, Chen XY, Chen YH, Zou LH, Zhang J, Li PG, Wang K, Hu ZG. Analysis of optical properties and response mechanism of H 2S fluorescent probe based on rhodamine derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124745. [PMID: 38955071 DOI: 10.1016/j.saa.2024.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
H2S plays a crucial role in numerous physiological and pathological processes. In this project, a new fluorescent probe, SG-H2S, for the detection of H2S, was developed by introducing the recognition group 2,4-dinitrophenyl ether. The combination of rhodamine derivatives can produce both colorimetric reactions and fluorescence reactions. Compared with the current H2S probes, the main advantages of SG-H2S are its wide pH range (5-9), fast response (30 min), and high selectivity in competitive species (including biological mercaptan). The probe SG-H2S has low cytotoxicity and has been successfully applied to imaging in MCF-7 cells, HeLa cells, and BALB/c nude mice. We hope that SG-H2S will provide a vital method for the field of biology.
Collapse
Affiliation(s)
- Guo Sun
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China
| | - Ren-Wei-Yang Zhang
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China
| | - Xu-Yang Chen
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China
| | - Yu-Hua Chen
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China
| | - Liang-Hua Zou
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Jian Zhang
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China.
| | - Ping-Gui Li
- School of Environmental Engineering, Wuxi Univerisity, Jiangsu 214105, China.
| | - Kai Wang
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China.
| | - Zhi-Gang Hu
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China.
| |
Collapse
|
4
|
Zhang Y, Sun C, Guo Z, Liu L, Zhang X, Sun K, Zheng Y, Gates AJ, Todd JD, Zhang XH. An S-methyltransferase that produces the climate-active gas dimethylsulfide is widespread across diverse marine bacteria. Nat Microbiol 2024; 9:2614-2625. [PMID: 39198690 PMCID: PMC11445057 DOI: 10.1038/s41564-024-01788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Hydrogen sulfide (H2S), methanethiol (MeSH) and dimethylsulfide (DMS) are abundant sulfur gases with roles in biogeochemical cycling, chemotaxis and/or climate regulation. Catabolism of the marine osmolyte dimethylsulfoniopropionate (DMSP) is a major source of DMS and MeSH, but both also result from S-methylation of H2S via MddA, an H2S and MeSH S-methyltransferase whose gene is abundant in soil but scarce in marine environments. Here we identify the S-adenosine methionine (SAM)-dependent MeSH and H2S S-methyltransferase 'MddH', which is widespread in diverse marine bacteria and some freshwater and soil bacteria. mddH is predicted in up to ~5% and ~15% of seawater and coastal sediment bacteria, respectively, which is considerably higher than mddA. Furthermore, marine mddH transcript levels are similar to those for the most abundant DMSP lyase gene dddP. This study implies that the importance of H2S and MeSH S-methylation pathways in marine environments is significantly underestimated.
Collapse
Affiliation(s)
- Yunhui Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Chuang Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Zihua Guo
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Liyan Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaotong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Kai Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yanfen Zheng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jonathan D Todd
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
5
|
Cao L, Wang XL, Chu T, Wang YW, Fan YQ, Chen YH, Zhu YW, Zhang J, Ji XY, Wu DD. Role of gasotransmitters in necroptosis. Exp Cell Res 2024; 442:114233. [PMID: 39216662 DOI: 10.1016/j.yexcr.2024.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Gasotransmitters are endogenous gaseous signaling molecules that can freely pass through cell membranes and transmit signals between cells, playing multiple roles in cell signal transduction. Due to extensive and ongoing research in this field, we have successfully identified many gasotransmitters so far, among which nitric oxide, carbon monoxide, and hydrogen sulfide are best studied. Gasotransmitters are implicated in various diseases related to necroptosis, such as cardiovascular diseases, inflammation, ischemia-reperfusion, infectious diseases, and neurological diseases. However, the mechanisms of their effects on necroptosis are not fully understood. This review focuses on endogenous gasotransmitter synthesis and metabolism and discusses their roles in necroptosis, aiming to offer new insights for the therapeutic approaches to necroptosis-associated diseases.
Collapse
Affiliation(s)
- Lei Cao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Xue-Li Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yong-Qi Fan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Hang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Jing Zhang
- Department of Stomatology, The First Affiliated Hospital of Henan University, Kaifeng, Henan, 475001, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Kaifeng, Henan, 475000, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
6
|
Liu X, Wang XR, Zhou F, Xue YR, Yu XY, Liu CH. Novel insights into dimethylsulfoniopropionate cleavage by deep subseafloor fungi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173057. [PMID: 38729372 DOI: 10.1016/j.scitotenv.2024.173057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/07/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Dimethylsulfoniopropionate (DMSP), a key organic sulfur compound in marine and subseafloor sediments, is degraded by phytoplankton and bacteria, resulting in the release of the climate-active volatile gas dimethylsulfide (DMS). However, it remains unclear if dominant eukaryotic fungi in subseafloor sediments possess specific abilities and metabolic mechanisms for DMSP degradation and DMS formation. Our study provides the first evidence that fungi from coal-bearing sediments ∼2 km below the seafloor, such as Aspergillus spp., Chaetomium globosum, Cladosporium sphaerospermum, and Penicillium funiculosum, can degrade DMSP and produce DMS. In Aspergillus sydowii 29R-4-F02, which exhibited the highest DMSP-dependent DMS production rate (16.95 pmol/μg protein/min), two DMSP lyase genes, dddP and dddW, were identified. Remarkably, the dddW gene, previously observed only in bacteria, was found to be crucial for fungal DMSP cleavage. These findings not only extend the list of fungi capable of degrading DMSP, but also enhance our understanding of DMSP lyase diversity and the role of fungi in DMSP decomposition in subseafloor sedimentary ecosystems.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xin-Ran Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Fan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ya-Rong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiang-Yang Yu
- Jiangsu Key Laboratory for Food Quality, Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Chang-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Vitko TG, Cowden S, Yin Z, Suffet IHM. Evaluation of three granular activated carbon filters for the treatment of collections foul air entering a water resource recovery facility. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11073. [PMID: 38978428 DOI: 10.1002/wer.11073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
The treatment of raw foul air that could escape to the atmosphere from the head space of the incoming wastewater sewer lines into a Southern California Water Resource Recovery Facility was evaluated by using a 1/20th scale pilot unit consisting of three different granular activated carbon filter technologies, operating side by side, under similar operating conditions, each having an average 3.8-s contact time. The three activated carbon filters contained each 0.07 m3 of coconut, coal, and coconut mixed with permanganate media. The foul air entering the granular activated carbon filters contained 82% to 83% relative humidity. No moisture removal mechanism was used prior to treatment. The removal of six different odor characters from eight chemical odorants present in the foul air were assessed. These were rotten egg (hydrogen sulfide), rotten vegetables (methyl mercaptan), canned corn (dimethyl sulfide), rotten garlic (dimethyl disulfide), earthy/musty (2-methyl isoborneol and 2-isopropyl 3-methoxy pyrazine), and fecal (skatole and indole). This is the first time a study evaluates the removal of specific odors by simultaneously employing sensory analyses using the odor profile method, which defines the different odor characters and intensities, together with chemical analyses of the odorants causing these odors. The results show that the three granular activated carbon filters, before hydrogen sulfide breakthrough, provided significant improvement in odor intensity and odorant removal. Breakthrough was reached after 57 days for the coconut mixed with permanganate, 107 days for the coconut, and 129 days for the coal granular activated carbon filter. Breakthrough (the critical saturation point of the activated carbon media) was considered reached when the hydrogen sulfide percentage removal diminished to 90% and continued downward. The coconut mixed with permanganate granular activated carbon filter provided the best treatment among the media tested, achieving very good reduction of odorants, as measured by chemical analyses, and reasonable removal of odor intensities, as measured by the odor profile method. The coconut mixed with permanganate granular activated carbon is recommended for short-term odor control systems at sewer networks or emergency plant maintenance situations given its shorter time to breakthrough compared with the other granular activated carbons. The coal and coconut granular activated carbon filters are generally used as the last stage of an odor treatment system. Because of the observed poor to average performance in removing odorants other than hydrogen sulfide, the treatment stage(s) prior to the use of these granulated activated carbons should provide a good methyl mercaptan removal of at least 90% in order to avoid the formation of dimethyl disulfide, which, in the presence of moisture in the carbon filter, emit the characteristic rotten garlic odor. The differences observed between the performances based on odorant removal by chemical analysis compared with those based on sensorial analyses by the odor profile method indicate that both analyses are required to understand more fully the odor dynamics. PRACTITIONER POINTS: Three virgin granulated activated carbon media were evaluated in a field pilot unit using raw collections foul air. Coal, coconut, and coconut mixed with permanganate were tested until breakthrough. Samples were analyzed both chemically (odorants) and sensorially (odors). Coconut mixed with permanganate proved to be the media that better reduced odorants and odors.
Collapse
Affiliation(s)
- Tadeo G Vitko
- Orange County Sanitation District, Fountain Valley, California, USA
| | | | - Zhihang Yin
- Department of Civil and Environmental Engineering, School of Engineering, UCLA, Los Angeles, California, USA
| | - Irwin H Mel Suffet
- Department of Environmental Health Sciences, School of Public Health, UCLA, Los Angeles, California, USA
| |
Collapse
|
8
|
Zhou T, Wang J, Todd JD, Zhang XH, Zhang Y. Quorum Sensing Regulates the Production of Methanethiol in Vibrio harveyi. Microorganisms 2023; 12:35. [PMID: 38257862 PMCID: PMC10819757 DOI: 10.3390/microorganisms12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Methanethiol (MeSH) and dimethyl sulfide (DMS) are important volatile organic sulfur compounds involved in atmospheric chemistry and climate regulation. However, little is known about the metabolism of these compounds in the ubiquitous marine vibrios. Here, we investigated MeSH/DMS production and whether these processes were regulated by quorum-sensing (QS) systems in Vibrio harveyi BB120. V. harveyi BB120 exhibited strong MeSH production from methionine (Met) (465 nmol mg total protein-1) and weak DMS production from dimethylsulfoniopropionate (DMSP) cleavage. The homologs of MegL responsible for MeSH production from L-Met widely existed in vibrio genomes. Using BB120 and its nine QS mutants, we found that the MeSH production was regulated by HAI-1, AI-2 and CAI-1 QS pathways, as well as the luxO gene located in the center of this QS cascade. The regulation role of HAI-1 and AI-2 QS systems in MeSH production was further confirmed by applying quorum-quenching enzyme MomL and exogenous autoinducer AI-2. By contrast, the DMS production from DMSP cleavage showed no significant difference between BB120 and its QS mutants. Such QS-regulated MeSH production may help to remove excess Met that can be harmful for vibrio growth. These results emphasize the importance of QS systems and the MeSH production process in vibrios.
Collapse
Affiliation(s)
- Tiantian Zhou
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (T.Z.); (J.W.); (X.-H.Z.)
| | - Jinyan Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (T.Z.); (J.W.); (X.-H.Z.)
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (T.Z.); (J.W.); (X.-H.Z.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Yunhui Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|