1
|
Ding Y, Ma R, Zhang R, Zhang H, Zhang J, Li S, Zhang S. Increased antibiotic resistance gene abundance linked to intensive bacterial competition in the phyllosphere across an elevational gradient. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70042. [PMID: 39572861 PMCID: PMC11581953 DOI: 10.1111/1758-2229.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024]
Abstract
Antibiotic resistance genes (ARGs) are ancient and widespread in natural habitats, providing survival advantages for microbiomes under challenging conditions. In mountain ecosystems, phyllosphere bacterial communities face multiple stress conditions, and the elevational gradients of mountains represent crucial environmental gradients for studying biodiversity distribution patterns. However, the distribution patterns of ARGs in the phyllosphere along elevational gradients, and their correlation with bacterial community structures, remain poorly understood. Here, we applied metagenomic analyses to investigate the abundance and diversity of ARGs in 88 phyllosphere samples collected from Mount Tianmu, a national natural reserve. Our results showed that the abundance of ARGs in the phyllosphere increased along elevational gradients and was dominated by multidrug resistance and efflux pumps. The composition of bacterial communities, rather than plant traits or abiotic factors, significantly affected ARG abundance. Moreover, increased ARG abundance was correlated with greater phylogenetic overdispersion and a greater proportion of negative associations in the bacterial co-occurrence networks, suggesting that bacterial competition primarily shapes phyllosphere resistomes. These findings constitute a major advance in the biodiversity of phyllosphere resistomes along elevations, emphasizing the significant impact of bacterial community structure and assembly on ARG distribution, and are essential for understanding the emergence of ARGs.
Collapse
Affiliation(s)
- Yihui Ding
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Rui‐Ao Ma
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Ran Zhang
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Hongwei Zhang
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Jian Zhang
- School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Shaopeng Li
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Si‐Yu Zhang
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| |
Collapse
|
2
|
Danso Ofori A, Su W, Zheng T, Datsomor O, Titriku JK, Xiang X, Kandhro AG, Ahmed MI, Mawuli EW, Awuah RT, Zheng A. Roles of Phyllosphere Microbes in Rice Health and Productivity. PLANTS (BASEL, SWITZERLAND) 2024; 13:3268. [PMID: 39683062 DOI: 10.3390/plants13233268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
The phyllosphere, comprising the aerial portions of plants, is a vibrant ecosystem teeming with diverse microorganisms crucial for plant health and productivity. This review examines the functional roles of phyllosphere microorganisms in rice (Oryza sativa), focusing on their importance in nutrient uptake, disease resistance, and growth promotion. The molecular mechanisms underlying these interactions are explored along with their potential applications in enhancing sustainable rice production. The symbiotic relationships between rice plants and their associated microorganisms are highlighted, offering insights into improved agricultural practices. Furthermore, this review addresses the challenges and future developments in translating laboratory findings into practical applications. By synthesizing current research, this comprehensive analysis serves as a valuable resource for leveraging phyllosphere microbes in rice farming and related fields.
Collapse
Affiliation(s)
- Andrews Danso Ofori
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Su
- Renshou County Agricultural and Rural Bureau, Meishan 620500, China
| | - Tengda Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Osmond Datsomor
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - John Kwame Titriku
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xing Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Abdul Ghani Kandhro
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Irfan Ahmed
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Edzesi Wisdom Mawuli
- Plant Improvement and Productivity Division, Biotechnology Unit, Council for Scientific and Industrial Research, Fumesua, Kumasi P.O. Box UP 63, Ghana
| | - Richard Tuyee Awuah
- Crop and Soil Science Department, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology (KNUST), PMB KNUST, Kumasi P.O. Box UP 1279, Ghana
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Muzafar S, Nair RR, Andersson DI, Warsi OM. The strength of interspecies interaction in a microbial community determines its susceptibility to invasion. PLoS Biol 2024; 22:e3002889. [PMID: 39509456 PMCID: PMC11575764 DOI: 10.1371/journal.pbio.3002889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/19/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Previous work shows that a host's resident microbial community can provide resistance against an invading pathogen. However, this community is continuously changing over time due to adaptive mutations, and how these changes affect the invasion resistance of these communities remains poorly understood. To address this knowledge gap, we used an experimental evolution approach in synthetic communities of Escherichia coli and Salmonella Typhimurium to investigate how the invasion resistance of this community against a bacterium expressing a virulent phenotype, i.e., colicin secretion, changes over time. We show that evolved communities accumulate mutations in genes involved in carbon metabolism and motility, while simultaneously becoming less resistant to invasion. By investigating two-species competitions and generating a three-species competition model, we show that this outcome is dependent on the strength of interspecies interactions. Our study demonstrates how adaptive changes in microbial communities can make them more prone to the detrimental effects of an invading species.
Collapse
Affiliation(s)
- Suraya Muzafar
- Dept. of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ramith R Nair
- Dept. of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Dept. of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Omar M Warsi
- Dept. of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Poupin MJ, González B. Embracing complexity in plant-microbiome systems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70000. [PMID: 39189551 PMCID: PMC11348195 DOI: 10.1111/1758-2229.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/27/2024] [Indexed: 08/28/2024]
Abstract
Despite recent advances in understanding the role of microorganisms in plant holobiont metabolism, physiology, and fitness, several relevant questions are yet to be answered, with implications for ecology, evolution, and sustainable agriculture. This article explores some of these questions and discusses emerging research areas in plant microbiomes. Firstly, it emphasizes the need to move beyond taxonomic characterization towards understanding microbial functions within plant ecosystems. Secondly, controlling methodological biases and enhancing OMICS technologies' standardization is imperative for a deeper comprehension of plant-microbiota interactions. Furthermore, while plant microbiota research has primarily centred on bacteria and fungi, other microbial players such as archaea, viruses, and microeukaryotes have been largely overlooked. Emerging evidence highlights their presence and potential roles, underscoring the need for thorough assessments. Future research should aim to elucidate the ecological microbial interactions, their impact on plant performance, and how the plant context shapes microbial community dynamics. Finally, a discussion is provided on how the multiple layers of abiotic and biotic factors influencing the spatiotemporal dynamics of plant-microbiome systems require in-depth attention. Examples illustrate how synthetic communities and computational methods such as machine learning and artificial intelligence provide alternatives to tackle these challenges and analyse the plant holobiont as a complex system.
Collapse
Affiliation(s)
- María Josefina Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezSantiagoChile
- Center of Applied Ecology and Sustainability (CAPES)SantiagoChile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN‐SAP)SantiagoChile
| | - Bernardo González
- Laboratorio de Bioingeniería, Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezSantiagoChile
- Center of Applied Ecology and Sustainability (CAPES)SantiagoChile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN‐SAP)SantiagoChile
| |
Collapse
|
5
|
Woodford L, Fellows R, White HL, Ormsby MJ, Quilliam RS. Salmonella Typhimurium and Vibrio cholerae can be transferred from plastic mulch to basil and spinach salad leaves. Heliyon 2024; 10:e31343. [PMID: 38818200 PMCID: PMC11137414 DOI: 10.1016/j.heliyon.2024.e31343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Plastic pollution is increasingly found in agricultural environments, where it contaminates soil and crops. Microbial biofilms rapidly colonise environmental plastics, such as the plastic mulches used in agricultural systems, which provide a unique environment for microbial plastisphere communities. Human pathogens can also persist in the plastisphere, and enter agricultural environments via flooding or irrigation with contaminated water. In this study we examined whether Salmonella Typhimurium and Vibrio cholerae can be transferred from the plastisphere on plastic mulch to the surface of ready-to-eat crop plants, and subsequently persist on the leaf surface. Both S. Typhimurium and V. cholerae were able to persist for 14 days on fragments of plastic mulch adhering to the surface of leaves of both basil and spinach. Importantly, within 24 h both pathogens were capable of dissociating from the surface of the plastic and were transferred onto the surface of both basil and spinach leaves. This poses a further risk to food safety and human health, as even removal of adhering plastics and washing of these ready-to-eat crops would not completely remove these pathogens. As the need for more intensive food production increases, so too does the use of plastic mulches in agronomic systems. Therefore, there is now an urgent need to understand the unquantified co-pollutant pathogen risk of contaminating agricultural and food production systems with plastic pollution.
Collapse
Affiliation(s)
- Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Rosie Fellows
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Hannah L. White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michael J. Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S. Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
6
|
Jorrin B, Haskett TL, Knights HE, Martyn A, Underwood TJ, Dolliver J, Ledermann R, Poole PS. Stable, fluorescent markers for tracking synthetic communities and assembly dynamics. MICROBIOME 2024; 12:81. [PMID: 38715147 PMCID: PMC11075435 DOI: 10.1186/s40168-024-01792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/09/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND After two decades of extensive microbiome research, the current forefront of scientific exploration involves moving beyond description and classification to uncovering the intricate mechanisms underlying the coalescence of microbial communities. Deciphering microbiome assembly has been technically challenging due to their vast microbial diversity but establishing a synthetic community (SynCom) serves as a key strategy in unravelling this process. Achieving absolute quantification is crucial for establishing causality in assembly dynamics. However, existing approaches are primarily designed to differentiate a specific group of microorganisms within a particular SynCom. RESULTS To address this issue, we have developed the differential fluorescent marking (DFM) strategy, employing three distinguishable fluorescent proteins in single and double combinations. Building on the mini-Tn7 transposon, DFM capitalises on enhanced stability and broad applicability across diverse Proteobacteria species. The various DFM constructions are built using the pTn7-SCOUT plasmid family, enabling modular assembly, and facilitating the interchangeability of expression and antibiotic cassettes in a single reaction. DFM has no detrimental effects on fitness or community assembly dynamics, and through the application of flow cytometry, we successfully differentiated, quantified, and tracked a diverse six-member SynCom under various complex conditions like root rhizosphere showing a different colonisation assembly dynamic between pea and barley roots. CONCLUSIONS DFM represents a powerful resource that eliminates dependence on sequencing and/or culturing, thereby opening new avenues for studying microbiome assembly. Video Abstract.
Collapse
Affiliation(s)
- Beatriz Jorrin
- Molecular Plant Sciences Section, Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
| | - Timothy L Haskett
- Molecular Plant Sciences Section, Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Hayley E Knights
- Molecular Plant Sciences Section, Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Anna Martyn
- Molecular Plant Sciences Section, Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Thomas J Underwood
- Molecular Plant Sciences Section, Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Jessica Dolliver
- Molecular Plant Sciences Section, Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Raphael Ledermann
- Molecular Plant Sciences Section, Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Philip S Poole
- Molecular Plant Sciences Section, Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| |
Collapse
|
7
|
Kunzler M, Schlechter RO, Schreiber L, Remus-Emsermann MNP. Hitching a Ride in the Phyllosphere: Surfactant Production of Pseudomonas spp. Causes Co-swarming of Pantoea eucalypti 299R. MICROBIAL ECOLOGY 2024; 87:62. [PMID: 38683223 PMCID: PMC11058625 DOI: 10.1007/s00248-024-02381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Here, we demonstrate the beneficial effect of surfactant-producing pseudomonads on Pantoea eucalypti 299R. We conducted a series of experiments in environments of increasing complexity. P. eucalypti 299R (Pe299R), and Pseudomonas sp. FF1 (Pff1) or Pe299R and surfactant-production deficient Pseudomonas sp. FF1::ΔviscB (Pff1ΔviscB) were co-inoculated in broth, on swarming agar plates, and on plants. In broth, there were no differences in the growth dynamics of Pe299R when growing in the presence of Pff1 or Pff1ΔviscB. By contrast, on swarming agar plates, Pe299R was able to co-swarm with Pff1 which led to a significant increase in Pe299R biomass compared to Pe299R growing with Pff1ΔviscB or in monoculture. Finally in planta, and using the single-cell bioreporter for reproductive success (CUSPER), we found a temporally distinct beneficial effect of Pff1 on co-inoculated Pe299R subpopulations that did not occur in the presence of Pff1ΔviscB. We tested three additional surfactant-producing pseudomonads and their respective surfactant knockout mutants on PE299R on swarming agar showing similar results. This led us to propose a model for the positive effect of surfactant production during leaf colonization. Our results indicate that co-motility might be common during leaf colonization and adds yet another facet to the already manyfold roles of surfactants.
Collapse
Affiliation(s)
- Michael Kunzler
- Institute for Biology - Microbiology, Freie Universität Berlin, Königin-Luise Straße 12-16, 14195, Berlin, Germany
| | - Rudolf O Schlechter
- Institute for Biology - Microbiology, Freie Universität Berlin, Königin-Luise Straße 12-16, 14195, Berlin, Germany
| | - Lukas Schreiber
- Institute for Cellular and Molecular Botany, Bonn University, Kirschallee 1-3, 53115, Bonn, Germany
| | - Mitja N P Remus-Emsermann
- Institute for Biology - Microbiology, Freie Universität Berlin, Königin-Luise Straße 12-16, 14195, Berlin, Germany.
| |
Collapse
|
8
|
Rangel LI, Leveau JHJ. Applied microbiology of the phyllosphere. Appl Microbiol Biotechnol 2024; 108:211. [PMID: 38358509 PMCID: PMC10869387 DOI: 10.1007/s00253-024-13042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
The phyllosphere, or plant leaf surface, represents a microbial ecosystem of considerable size, holding extraordinary biodiversity and enormous potential for the discovery of new products, tools, and applications in biotechnology, agriculture, medicine, and elsewhere. This mini-review highlights the applied microbiology of the phyllosphere as an original field of study concerning itself with the genes, gene products, natural compounds, and traits that underlie phyllosphere-specific adaptations and services that have commercial and economic value for current or future innovation. Examples include plant-growth-promoting and disease-suppressive phyllobacteria, probiotics and fermented foods that support human health, as well as microbials that remedy foliar contamination with airborne pollutants, residual pesticides, or plastics. Phyllosphere microbes promote plant biomass conversion into compost, renewable energy, animal feed, or fiber. They produce foodstuffs such as thickening agents and sugar substitutes, industrial-grade biosurfactants, novel antibiotics and cancer drugs, as well as enzymes used as food additives or freezing agents. Furthermore, new developments in DNA sequence-based profiling of leaf-associated microbial communities allow for surveillance approaches in the context of food safety and security, for example, to detect enteric human pathogens on leafy greens, predict plant disease outbreaks, and intercept plant pathogens and pests on internationally traded goods. KEY POINTS: • Applied phyllosphere microbiology concerns leaf-specific adaptations for economic value • Phyllobioprospecting searches the phyllosphere microbiome for product development • Phyllobiomonitoring tracks phyllosphere microbial profiles for early risk detection.
Collapse
Affiliation(s)
- Lorena I Rangel
- Cell & Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK.
- Department of Plant Pathology, University of California, Davis, CA, USA.
| | - Johan H J Leveau
- Department of Plant Pathology, University of California, Davis, CA, USA.
| |
Collapse
|
9
|
Hansen ZA, Fulcher MR, Wornson N, Spawn-Lee SA, Johnson M, Song Z, Michalska-Smith M, May G, Seabloom EW, Borer ET, Kinkel LL. Soil nutrient amendment increases the potential for inter-kingdom resource competition among foliar endophytes. ISME COMMUNICATIONS 2024; 4:ycae130. [PMID: 39583585 PMCID: PMC11586052 DOI: 10.1093/ismeco/ycae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
Foliar endophytes play crucial roles in large-scale ecosystem functions such as plant productivity, decomposition, and nutrient cycling. While the possible effects of environmental nutrient supply on the growth and carbon use of endophytic microbes have critical implications for these processes, these impacts are not fully understood. Here, we examined the effects of long-term elevated nitrogen, phosphorus, potassium, and micronutrient (NPKμ) supply on culturable bacterial and fungal foliar endophytes inhabiting the prairie grass Andropogon gerardii. We hypothesized that elevated soil nutrients alter the taxonomic composition and carbon use phenotypes of foliar endophytes and significantly shift the potential for resource competition among microbes within leaves. We observed changes in taxonomic composition and carbon use patterns of fungal, but not bacterial, endophytes of A. gerardii growing in NPKμ-amended versus ambient conditions. Fungal endophytes from NPKμ-amended plants had distinct carbon use profiles and demonstrated greater specialization across carbon sources compared to control plots. Resource niche overlap between bacterial and fungal endophytes also increased with plot nutrient supply, suggesting enhanced potential for inter-kingdom competition. Collectively, this work suggests that soil nutrient enrichment alters how fungal endophyte communities exist in the foliar environment, with potentially significant implications for broad-scale ecosystem function.
Collapse
Affiliation(s)
- Zoe A Hansen
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, United States
| | - Michael R Fulcher
- United States Department of Agriculture, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Frederick, MD 21702, United States
| | - Nicholas Wornson
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, United States
| | - Seth A Spawn-Lee
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Mitch Johnson
- Department of Horticulture, University of Minnesota, Saint Paul, MN 55108, United States
| | - Zewei Song
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, United States
| | - Matthew Michalska-Smith
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, United States
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States
| | - Georgiana May
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States
| | - Eric W Seabloom
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States
| | - Elizabeth T Borer
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States
| | - Linda L Kinkel
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, United States
| |
Collapse
|
10
|
Govindaraju AM, Friel CA, Good NM, Banks SL, Wayne KS, Martinez-Gomez NC. Lanthanide-dependent isolation of phyllosphere methylotrophs selects for a phylogenetically conserved but metabolically diverse community. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546956. [PMID: 38077020 PMCID: PMC10705262 DOI: 10.1101/2023.06.28.546956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The influence of lanthanide biochemistry during methylotrophy demands a reassessment of how the composition and metabolic potential of methylotrophic phyllosphere communities are affected by the presence of these metals. To investigate this, methylotrophs were isolated from soybean leaves by selecting for bacteria capable of methanol oxidation with lanthanide cofactors. Of the 344 pink-pigmented facultative methylotroph isolates, none were obligately lanthanide-dependent. Phylogenetic analyses revealed that all strains were nearly identical to each other and to model strains from the extorquens clade of Methylobacterium, with rpoB providing higher resolution than 16s rRNA for strain-specific identification. Despite the low species diversity, the metabolic capabilities of the community diverged greatly. Strains encoding identical PQQ-dependent alcohol dehydrogenases displayed significantly different growth from each other on alcohols in the presence and absence of lanthanides. Several strains also lacked well-characterized lanthanide-associated genes thought to be important for phyllosphere colonization. Additionally, 3% of our isolates were capable of growth on sugars and 23% were capable of growth on aromatic acids, substantially expanding the range of multicarbon substrates utilized by members of the extorquens clade in the phyllosphere. Whole genome sequences of eleven novel strains are reported. Our findings suggest that the expansion of metabolic capabilities, as well as differential usage of lanthanides and their influence on metabolism among closely related strains, point to evolution of niche partitioning strategies to promote colonization of the phyllosphere.
Collapse
Affiliation(s)
- Alekhya M. Govindaraju
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Colleen A. Friel
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Nathan M. Good
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Sidney L. Banks
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kenan S. Wayne
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | | |
Collapse
|