1
|
Wu Z, Guo L, Wu Y, Yang M, Du S, Shao J, Zhang Z, Zhao Y. Novel phage infecting the Roseobacter CHUG lineage reveals a diverse and globally distributed phage family. mSphere 2024; 9:e0045824. [PMID: 38926906 PMCID: PMC11288001 DOI: 10.1128/msphere.00458-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Bacteriophages play an essential role in shaping the diversity and metabolism of bacterial communities. Marine Roseobacter group is an abundant heterotrophic bacterial group that is involved in many major element cycles, especially carbon and sulfur. Members of the Roseobacter CHUG (Clade Hidden and Underappreciated Globally) lineage are globally distributed and are activated in pelagic marine environments. In this study, we isolated and characterized a phage, CRP-810, that infects the CHUG strain FZCC0198. The genome of CRP-810 was dissimilar to those of other known phages. Additionally, 251 uncultured viral genomes (UViGs) closely related to CRP-810 were obtained from the uncultivated marine viral contig databases. Comparative genomic and phylogenetic analyses revealed that CRP-810 and these related UViGs exhibited conserved genome synteny, representing a new phage family with at least eight subgroups. Most of the CRP-810-type phages contain an integrase gene, and CRP-810 can be integrated into the host genome. Further analysis revealed that three CRP-810-type members were prophages found in the genomes of marine SAR11, Poseidonocella, and Sphingomonadaceae. Finally, viromic read-mapping analysis showed that CRP-810-type phages were globally distributed and displayed distinct biogeographic patterns related to temperature and latitude. Many members with a lower G + C content were mainly distributed in the trade station, whereas members with a higher G + C content were mainly distributed in polar and westerlies station, indicating that the niche differentiation of phages was subject to host adaptation. Collectively, these findings identify a novel phage family and expand our understanding of phylogenetic diversity, evolution, and biogeography of marine phages. IMPORTANCE The Roseobacter CHUG lineage, affiliated with the Pelagic Roseobacter Cluster (PRC), is widely distributed in the global oceans and is active in oligotrophic seawater. However, knowledge of the bacteriophages that infect CHUG members is limited. In this study, a CHUG phage, CRP-810, that infects the CHUG strain FZCC0198, was isolated and shown to have a novel genomic architecture. In addition, 251 uncultured viral genomes closely related to CRP-810 were recovered and included in the analyses. Phylogenomic analyses revealed that the CRP-810-type phages represent a new phage family containing at least eight genus-level subgroups. Members of this family were predicted to infect various marine bacteria. We also demonstrated that the CRP-810-type phages are widely distributed in global oceans and display distinct biogeographic patterns related to latitude. Collectively, this study provides important insights into the genomic organization, diversity, and ecology of a novel phage family that infect ecologically important bacteria in the global ocean.
Collapse
Affiliation(s)
- Zuqing Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Luyuan Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyu Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sen Du
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiabing Shao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zefeng Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Brüwer JD, Sidhu C, Zhao Y, Eich A, Rößler L, Orellana LH, Fuchs BM. Globally occurring pelagiphage infections create ribosome-deprived cells. Nat Commun 2024; 15:3715. [PMID: 38698041 PMCID: PMC11066056 DOI: 10.1038/s41467-024-48172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
Phages play an essential role in controlling bacterial populations. Those infecting Pelagibacterales (SAR11), the dominant bacteria in surface oceans, have been studied in silico and by cultivation attempts. However, little is known about the quantity of phage-infected cells in the environment. Using fluorescence in situ hybridization techniques, we here show pelagiphage-infected SAR11 cells across multiple global ecosystems and present evidence for tight community control of pelagiphages on the SAR11 hosts in a case study. Up to 19% of SAR11 cells were phage-infected during a phytoplankton bloom, coinciding with a ~90% reduction in SAR11 cell abundance within 5 days. Frequently, a fraction of the infected SAR11 cells were devoid of detectable ribosomes, which appear to be a yet undescribed possible stage during pelagiphage infection. We dubbed such cells zombies and propose, among other possible explanations, a mechanism in which ribosomal RNA is used as a resource for the synthesis of new phage genomes. On a global scale, we detected phage-infected SAR11 and zombie cells in the Atlantic, Pacific, and Southern Oceans. Our findings illuminate the important impact of pelagiphages on SAR11 populations and unveil the presence of ribosome-deprived zombie cells as part of the infection cycle.
Collapse
Affiliation(s)
- Jan D Brüwer
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany.
| | - Chandni Sidhu
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Yanlin Zhao
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Andreas Eich
- PSL Research University: EPHE-UPVD-CNRS,UAR 3278 CRIOBE, Moorea, French Polynesia
| | - Leonard Rößler
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Luis H Orellana
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Bernhard M Fuchs
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany.
| |
Collapse
|
3
|
Li H, Cai L, Wang L, Wang Y, Xu J, Zhang R. The structure and assembly mechanisms of T4-like cyanophages community in the South China Sea. Microbiol Spectr 2024; 12:e0200223. [PMID: 38193726 PMCID: PMC10846272 DOI: 10.1128/spectrum.02002-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Marine ecosystems contain an immense diversity of phages, many of which infect cyanobacteria (cyanophage) that are largely responsible for primary productivity. To characterize the genetic diversity and biogeographic distribution of the marine T4-like cyanophage community in the northern South China Sea, the T4-like cyanophage portal protein gene (g20) was amplified. Phylogenetic analysis revealed that marine T4-like cyanophages were highly diverse, with g20 operational taxonomic units being affiliated with five defined clades (Clusters I-V). Cluster II had a wide geographic distribution, Cluster IV was the most abundant in the open sea, and Cluster I was dominant in coastal shelf environments. Our results showed T4-like cyanophages (based on g20) community was generally shaped via heterogeneous selection. Highly variable environmental factors (such as salinity and temperature) can heterogeneously select different cyanophage communities. Nevertheless, the dominant drivers of the T4-like cyanophage community based on the g20 and g23 (T4-like phage major capsid protein gene) were different, probably due to different coverages by the primer sets. Furthermore, the community assembly processes of T4-like cyanophages were affected by host traits (abundance and distribution), viral traits (latent period, burst size, and host range), and environmental properties (temperature and salinity).IMPORTANCECyanophages are abundant and ubiquitous in the oceans, altering population structures and evolution of cyanobacteria, which account for a large portion of global carbon fixation, through host mortality, horizontal gene transfer, and the modulation of host metabolism. However, little is known about the biogeography and ecological drivers that shape the cyanophage community. Here, we use g20 and g23 genes to examine the biogeographic patterns and the assembly mechanisms of T4-like cyanophage community in the northern part of the South China Sea. The different coverages of primer sets might lead to the different dominant drivers of T4-like cyanophage community based on g20 and g23 genes. Our results showed that characteristics of viral traits (latent period, burst size, and host range) and host traits (abundance and distribution) were found to either limit or enhance the biogeographic distribution of T4-like cyanophages. Overall, both virus and host properties are critical to consider when determining rules of community assembly for viruses.
Collapse
Affiliation(s)
- Huifang Li
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Long Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yu Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Juntian Xu
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Kim KE, Joo HM, Kim YJ, Kang D, Lee TK, Jung SW, Ha SY. Ecological Interaction between Bacteriophages and Bacteria in Sub-Arctic Kongsfjorden Bay, Svalbard, Norway. Microorganisms 2024; 12:276. [PMID: 38399681 PMCID: PMC10893223 DOI: 10.3390/microorganisms12020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine virus diversity and their relationships with their hosts in the marine environment remain unclear. This study investigated the co-occurrence of marine DNA bacteriophages (phages) and bacteria in the sub-Arctic area of Kongsfjorden Bay in Svalbard (Norway) in April and June 2018 using metagenomics tools. Of the marine viruses identified, 48-81% were bacteriophages of the families Myoviridae, Siphoviridae, and Podoviridae. Puniceispirillum phage HMO-2011 was dominant (7.61%) in April, and Puniceispirillum phage HMO-2011 (3.32%) and Pelagibacter phage HTVC008M (3.28%) were dominant in June. Gammaproteobacteria (58%), including Eionea flava (14.3%) and Pseudomonas sabulinigri (12.2%), were dominant in April, whereas Alphaproteobacteria (87%), including Sulfitobacter profundi (51.5%) and Loktanella acticola (32.4%), were dominant in June. The alpha diversity of the bacteriophages and bacterial communities exhibited opposite patterns. The diversity of the bacterial community was higher in April and lower in June. Changes in water temperature and light can influence the relationship between bacteria and bacteriophages.
Collapse
Affiliation(s)
- Kang Eun Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; (K.E.K.); (Y.J.K.)
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea;
| | - Hyoung Min Joo
- Unit of Next Generation IBRV Building Program, Korea Polar Research Institute, Incheon 21990, Republic of Korea;
| | - Yu Jin Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; (K.E.K.); (Y.J.K.)
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea;
| | - Donhyug Kang
- Marine Domain & Security Research Department, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea;
| | - Taek-Kyun Lee
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea;
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Seung Won Jung
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; (K.E.K.); (Y.J.K.)
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea;
| | - Sun-Yong Ha
- Division of Polar Ocean Science Research, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| |
Collapse
|
5
|
Heinrichs ME, Piedade GJ, Popa O, Sommers P, Trubl G, Weissenbach J, Rahlff J. Breaking the Ice: A Review of Phages in Polar Ecosystems. Methods Mol Biol 2024; 2738:31-71. [PMID: 37966591 DOI: 10.1007/978-1-0716-3549-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages, or phages, are viruses that infect and replicate within bacterial hosts, playing a significant role in regulating microbial populations and ecosystem dynamics. However, phages from extreme environments such as polar regions remain relatively understudied due to challenges such as restricted ecosystem access and low biomass. Understanding the diversity, structure, and functions of polar phages is crucial for advancing our knowledge of the microbial ecology and biogeochemistry of these environments. In this review, we will explore the current state of knowledge on phages from the Arctic and Antarctic, focusing on insights gained from -omic studies, phage isolation, and virus-like particle abundance data. Metagenomic studies of polar environments have revealed a high diversity of phages with unique genetic characteristics, providing insights into their evolutionary and ecological roles. Phage isolation studies have identified novel phage-host interactions and contributed to the discovery of new phage species. Virus-like particle abundance and lysis rate data, on the other hand, have highlighted the importance of phages in regulating bacterial populations and nutrient cycling in polar environments. Overall, this review aims to provide a comprehensive overview of the current state of knowledge about polar phages, and by synthesizing these different sources of information, we can better understand the diversity, dynamics, and functions of polar phages in the context of ongoing climate change, which will help to predict how polar ecosystems and residing phages may respond to future environmental perturbations.
Collapse
Affiliation(s)
- Mara Elena Heinrichs
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Gonçalo J Piedade
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Ovidiu Popa
- Institute of Quantitative and Theoretical Biology Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | | | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Julia Weissenbach
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Janina Rahlff
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
- Aero-Aquatic Virus Research Group, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
6
|
Mendoza-Cano F, Encinas-García T, Muhlia-Almazán A, Porchas-Cornejo M, de la Re-Vega E, Sánchez-Paz A. Development and validation of a real-time PCR assay protocol for the specific detection and quantification of pelagiphages in seawater samples. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106168. [PMID: 37708616 DOI: 10.1016/j.marenvres.2023.106168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023]
Abstract
Earth is inhabited by numerous adaptations of cellular forms shaped by the persistent scrutiny of natural selection. Thus, as natural selection has fixed beneficial adaptations of functional traits, cellular life has conquered almost all environmental niches on our planet. However, cellular life succumbs in number and genetic diversity to viruses. Among all viruses, phages are highly prevalent in diverse environments, and due to their vast genetic diversity and abundance, their relevant role as significant players in several ecological processes is now fully recognized. Pelagiphages, bacteriophages infecting bacteria of the SAR11 clade, are the most abundant viruses in the oceans. However, the ecological contribution of pelagiphages on populations of Pelagibacterales remains largely underestimated. An essential aspect of estimating the impact of bacteriophages is their absolute and precise quantification, which provides relevant information about the host-virus interactions and the structure of viral assemblages. Consequently, due to its abundance and claimed influence in the biogeochemical cycling of elements, the accurate quantification of pelagiphages results in an essential task. This study describes the development and validation of a sensitive, specific, accurate and reproducible qPCR platform targeting pelagiphages. Moreover, this method allowed the detection and quantification of pelagiphages in the Gulf of California for the first time.
Collapse
Affiliation(s)
- F Mendoza-Cano
- Laboratorio de Virología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), S.C. (Campus Hermosillo), Calle Hermosa 101, Fraccionamiento Los Ángeles, Hermosillo, Sonora, C.P. 83206, México
| | - T Encinas-García
- Laboratorio de Virología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), S.C. (Campus Hermosillo), Calle Hermosa 101, Fraccionamiento Los Ángeles, Hermosillo, Sonora, C.P. 83206, México; Departamento de Investigaciones Científicas y Tecnológicas (DICTUS), Universidad de Sonora, Hermosillo, Sonora, 83000, México
| | - A Muhlia-Almazán
- Bioenergetics and Molecular Genetics Lab, Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, 83304, México
| | - M Porchas-Cornejo
- Centro de Investigaciones Biológicas del Noroeste, S.C. Km 2.35 Carretera a Las Tinajas, S/N Colonia Tinajas, Guaymas, Sonora, C.P. 85460, México
| | - E de la Re-Vega
- Departamento de Investigaciones Científicas y Tecnológicas (DICTUS), Universidad de Sonora, Hermosillo, Sonora, 83000, México
| | - A Sánchez-Paz
- Laboratorio de Virología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), S.C. (Campus Hermosillo), Calle Hermosa 101, Fraccionamiento Los Ángeles, Hermosillo, Sonora, C.P. 83206, México.
| |
Collapse
|
7
|
Su Y, Zhang W, Liang Y, Wang H, Liu Y, Zheng K, Liu Z, Yu H, Ren L, Shao H, Sung YY, Mok WJ, Wong LL, Zhang YZ, McMinn A, Wang M. Identification and genomic analysis of temperate Halomonas bacteriophage vB_HmeY_H4907 from the surface sediment of the Mariana Trench at a depth of 8,900 m. Microbiol Spectr 2023; 11:e0191223. [PMID: 37728551 PMCID: PMC10580944 DOI: 10.1128/spectrum.01912-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/04/2023] [Indexed: 09/21/2023] Open
Abstract
Viruses play crucial roles in the ecosystem by modulating the host community structure, mediating biogeochemical cycles, and compensating for the metabolism of host cells. Mariana Trench, the world's deepest hadal habitat, harbors a variety of unique microorganisms that have adapted to its extreme conditions of low temperatures, high pressure, and nutrient scarcity. However, our knowledge about isolated hadal phage strains in the hadal trench is still limited. This study reported the discovery of a temperate phage, vB_HmeY_H4907, infecting Halomonas meridiana H4907, isolated from surface sediment from the Mariana Trench at a depth of 8,900 m. To our best knowledge, it is the deepest isolated siphovirus from the ocean. Its 40,452 bp linear dsDNA genome has 57.64% GC content and 55 open reading frames, and it is highly homologous to its host. Phylogenetic analysis and average nucleotide sequence identification reveal that vB_HmeY_H4907 is separated from the isolated phages and represents a new family, Suviridae, with eight predicted proviruses and six uncultured viral genomes. They are widely distributed in the ocean, suggesting a prevalence of this viral family in the deep sea. These findings expand our understanding of the phylogenetic diversity and genomic features of hadal lysogenic phages, provide essential information for further studies of phage-host interactions and evolution, and may reveal new insights into the lysogenic lifestyles of viruses inhabiting the hadal ocean. IMPORTANCE Halomonas phage vB_HmeY_H4907 is the deepest isolated siphovirus from the ocean, and it represents a novel abundant viral family in the ocean. This study provides insights into the genomic, phylogenetic, and ecological characteristics of the new viral family, namely, Suviridae.
Collapse
Affiliation(s)
- Yue Su
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Wenjing Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China
| | - Hongmin Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ziqi Liu
- Department of Integrated Global Studies, School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Hao Yu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Linyi Ren
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|