1
|
Parry CM, Chan LF, Carr DF, Hawcutt DB. Platelet-derived growth factor D expression in adrenal cells is modulated by corticosteroids: putative role in adrenal suppression. Pediatr Res 2023; 93:97-101. [PMID: 35568735 PMCID: PMC9876782 DOI: 10.1038/s41390-022-02094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/15/2022] [Accepted: 04/10/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Adrenal suppression is a clinically concerning side effect of inhaled corticosteroid (ICS) treatment in patients with asthma. Increased susceptibility to ICS-induced adrenal suppression has previously been identified in those with the rs591118 polymorphism in platelet-derived growth factor D (PDGFD). The mechanism underpinning this relationship is not known. METHODS H295R cells were genotyped for rs591118 using a validated Taqman PCR allelic discrimination assay. H295R cell viability was determined after treatment with beclometasone and fluticasone (range 0-330 μM). Cortisol was measured in cell culture medium using competitive enzyme immunoassay. RESULTS PDGFD protein expression in H295R cells was confirmed using Western blotting. When ACTH and forskolin were added to H295R cells, a reduction in PDGFD expression was seen, which was then restored by incubation with prochloraz, a known inhibitor of steroidogenesis. A dose-dependent, decrease in PDGFD expression was observed with beclometasone (over a 24 h incubation period) but not with beclometasone incubations beyond 24 h nor with fluticasone (at 24 or 48 h). CONCLUSIONS H295R cells express PDGFD protein, which can be modulated by incubation with steroidogenesis agonists and antagonists and additionally with exogenous beclometasone. IMPACT PDGFD is expressed in the human adrenal cell line, H295R, and expression can be modulated by beclometasone as well as agonists/antagonists of steroidogenesis. This builds on previous research that identified a SNP in PDGFD (rs591118) as an independent risk factor for adrenal suppression in adults and children with obstructive airway disease treated with inhaled corticosteroids. First in vitro experiments to support a link between the PDGF and cortisol production pathways, supporting the hypothesis that PDGFD variants can affect an individual's sensitivity to corticosteroid-induced adrenal suppression.
Collapse
Affiliation(s)
- Christopher M. Parry
- NIHR Alder Hey Clinical Research Facility, Liverpool, UK ,grid.10025.360000 0004 1936 8470Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Li F. Chan
- grid.4868.20000 0001 2171 1133Centre for Endocrinology, Queen Mary University of London, London, UK
| | - Daniel F. Carr
- grid.10025.360000 0004 1936 8470Department of Pharmacology and Therapeutics, Institute of Molecular, Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Daniel B. Hawcutt
- NIHR Alder Hey Clinical Research Facility, Liverpool, UK ,grid.10025.360000 0004 1936 8470Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Zhao Y, Zhang X, Han C, Cai Y, Li S, Hu X, Wu C, Guan X, Lu C, Nie X. Pharmacogenomics of Leukotriene Modifiers: A Systematic Review and Meta-Analysis. J Pers Med 2022; 12:1068. [PMID: 35887565 PMCID: PMC9316609 DOI: 10.3390/jpm12071068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmacogenetics research on leukotriene modifiers (LTMs) for asthma has been developing rapidly, although pharmacogenetic testing for LTMs is not yet used in clinical practice. We performed a systematic review and meta-analysis on the impact of pharmacogenomics on LTMs response. Studies published until May 2022 were searched using PubMed, EMBASE, and Cochrane databases. Pharmacogenomics/genetics studies of patients with asthma using LTMs with or without other anti-asthmatic drugs were included. Statistical tests of the meta-analysis were performed with Review Manager (Revman, version 5.4, The Cochrane Collaboration, Copenhagen, Denmark) and R language and environment for statistical computing (version 4.1.0 for Windows, R Core Team, Vienna, Austria) software. In total, 31 studies with 8084 participants were included in the systematic review and five studies were also used to perform the meta-analysis. Two included studies were genome-wide association studies (GWAS), which showed different results. Furthermore, none of the SNPs investigated in candidate gene studies were identified in GWAS. In candidate gene studies, the most widely studied SNPs were ALOX5 (tandem repeats of the Sp1-binding domain and rs2115819), LTC4S-444A/C (rs730012), and SLCO2B1 (rs12422149), with relatively inconsistent conclusions. LTC4S-444A/C polymorphism did not show a significant effect in our meta-analysis (AA vs. AC (or AC + CC): −0.06, 95%CI: −0.16 to 0.05, p = 0.31). AA homozygotes had smaller improvements in parameters pertaining to lung functions (−0.14, 95%CI: −0.23 to −0.05, p = 0.002) in a subgroup of patients with non-selective CysLT receptor antagonists and patients without inhaled corticosteroids (ICS) (−0.11, 95%CI: −0.14 to −0.08, p < 0.00001), but not in other subgroups. Variability exists in the pharmacogenomics of LTMs treatment response. Our meta-analysis and systematic review found that LTC4S-444A/C may influence the treatment response of patients taking non-selective CysLT receptor antagonists for asthma, and patients taking LTMs not in combination with ICS for asthma. Future studies are needed to validate the pharmacogenomic influence on LTMs response.
Collapse
Affiliation(s)
- Yuxuan Zhao
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Xinyi Zhang
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Congxiao Han
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Yuchun Cai
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Sicong Li
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Xiaowen Hu
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Caiying Wu
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Xiaodong Guan
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Christine Lu
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02115, USA;
| | - Xiaoyan Nie
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| |
Collapse
|
3
|
Parry CM, Seddon G, Rogers N, Sinha IP, Bracken L, King C, Peak M, Hawcutt DB. Pharmacogenomics and asthma treatment: acceptability to children, families and healthcare professionals. Arch Dis Child 2022; 107:394-399. [PMID: 35074833 DOI: 10.1136/archdischild-2021-322396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Evidence supporting personalised treatment for asthma based on an individual's genetics is mounting. The views of children and young people (CYP), parents and healthcare professionals (HCPs) about this evolution of clinical care are not known. METHODS A pilot prospective questionnaire-based study was undertaken of CYP with asthma, their parents and HCPs at a secondary/tertiary children's hospital in the UK. RESULTS Fifty-nine questionnaires were distributed and 50 returned (response rate 84.7%), comprising 26 CYP (10 were 5-11 years, 11 were 12-15 years and 5 were 16-18 years old), 13 parents and 11 HCPs. For all types of data, personal information was ranked as the 'most important' (n=19, 47.5%) and 'most private' (n=16, 40%), but with considerable variation across groups. Within health data, allergies were rated as 'most important' (n=12, 30.8%), and mental health records the 'most private' (n=21, 53.8%), again with variation across groups. A 'personalised genetic asthma plan' was acceptable to the majority overall (n=40, 80.0%). With regard to sharing CYP's genetic data, 23 (46%) of participants were happy for unconditional sharing between HCPs, and 23 (46%) agreed to sharing solely in relation to the CYP's asthma management. Forty-two (84.0%) of participants felt CYP should be informed about genetic data being shared, and the majority felt this should commence by 12 years of age. CONCLUSION The use of genetic information to guide management of asthma in CYP is largely acceptable to CYP, parents/guardians and HCPs. However, there are key differences between the opinions of CYP, parents and HCPs.
Collapse
Affiliation(s)
- Christopher Mark Parry
- Department of Research, NIHR Alder Hey Clinical Research Facility, Liverpool, UK.,Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Gabrielle Seddon
- Paediatric Medicines Research Unit, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Naomi Rogers
- Paediatric Medicines Research Unit, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Ian P Sinha
- Department of Respiratory Medicine, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Louise Bracken
- Paediatric Medicines Research Unit, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Charlotte King
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Matthew Peak
- Paediatric Medicines Research Unit, Alder Hey Children's NHS Foundation Trust, Liverpool, UK.,Research and Development, NIHR Alder Hey Clinical Research Facility, Liverpool, UK
| | - Daniel B Hawcutt
- Department of Research, NIHR Alder Hey Clinical Research Facility, Liverpool, UK .,Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Wang Z, Liu Y, Zhang J, Lin M, Xiao C, Bai H, Liu C. Mechanical loading alleviated the inhibition of β2-adrenergic receptor agonist terbutaline on bone regeneration. FASEB J 2021; 35:e22033. [PMID: 34739146 DOI: 10.1096/fj.202101045rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022]
Abstract
The long-term use of adrenergic medication in treating various conditions, such as asthma, increases the chances of bone fracture. Dynamic mechanical loading at a specific time is a method for improving bone quality and promoting healing. Therefore, we hypothesized that precisely controlling the mechanical environment can contribute to the alleviation of the negative effects of chronic treatment with the common asthma drug terbutaline, which is a β2-adrenergic receptor agonist that facilitates bone homeostasis and defect repair through its anabolic effect on osteogenic cells. Our in vitro results showed that terbutaline can directly inhibit osteogenesis by impairing osteogenic differentiation and mineralization. Chronic treatment in vivo was simulated by administering terbutaline to C57BL/6J mice for 4 weeks before bone defect surgery and mechanical loading. We utilized a stabilized tibial defect model, which allowed the application of anabolic mechanical loading. During homeostasis, chronic terbutaline treatment reduced the bone formation rate, the fracture toughness of long bones, and the concentrations of bone formation markers in the sera. During defect repair, terbutaline decreased the bone volume, type H vessel, and total blood vessel volume. Terbutaline treatment reduced the number of osteogenic cells. Periostin, which was secreted mainly by Prrx1+ osteoprogenitors and F4/80+ macrophages, was inhibited by treating the bone defect with terbutaline. Interestingly, controlled mechanical loading facilitated the recovery of bone volume and periostin expression and the number of osteogenic cells within the defect. In conclusion, mechanical loading can rescue negative effects on new bone accrual and repair induced by chronic terbutaline treatment.
Collapse
Affiliation(s)
- Ziyan Wang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yang Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jianing Zhang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Minmin Lin
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chufan Xiao
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Haoying Bai
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
5
|
Corlateanu A, Stratan I, Covantev S, Botnaru V, Corlateanu O, Siafakas N. Asthma and stroke: a narrative review. Asthma Res Pract 2021; 7:3. [PMID: 33608061 PMCID: PMC7896413 DOI: 10.1186/s40733-021-00069-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/04/2021] [Indexed: 02/08/2023] Open
Abstract
Asthma is a heterogeneous disease, usually characterized by chronic airway inflammation, bronchial reversible obstruction and hyperresponsiveness to direct or indirect stimuli. It is a severe disease causing approximately half a million deaths every year and thus possessing a significant public health burden. Stroke is the second leading cause of death and a major cause of disability worldwide. Asthma and asthma medications may be a risk factors for developing stroke. Nevertheless, since asthma is associated with a variety of comorbidities, such as cardiovascular, metabolic and respiratory, the increased incidence of stroke in asthma patients may be due to a confounding effect. The purpose of this review is to analyze the complex relationship between asthma and stroke.
Collapse
Affiliation(s)
- A. Corlateanu
- Department of Internal Medicine, Division of Pneumology and Allergology, Nicolae Testemitanu State University of Medicine and Pharmacy, Stefan cel Mare street 165, 2004 Chisinau, Republic of Moldova
| | - Iu Stratan
- Department of Internal Medicine, Division of Pneumology and Allergology, Nicolae Testemitanu State University of Medicine and Pharmacy, Stefan cel Mare street 165, 2004 Chisinau, Republic of Moldova
| | - S. Covantev
- Department of Internal Medicine, Division of Pneumology and Allergology, Nicolae Testemitanu State University of Medicine and Pharmacy, Stefan cel Mare street 165, 2004 Chisinau, Republic of Moldova
| | - V. Botnaru
- Department of Internal Medicine, Division of Pneumology and Allergology, Nicolae Testemitanu State University of Medicine and Pharmacy, Stefan cel Mare street 165, 2004 Chisinau, Republic of Moldova
| | - O. Corlateanu
- Department of Internal Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, Stefan cel Mare street 165, 2004 Chisinau, Republic of Moldova
| | - N. Siafakas
- Department of Thoracic Medicine, University General Hospital, Stavrakia, 71110 Heraklion, Crete, Greece
| |
Collapse
|
6
|
Yilmaz Bayer O, Turktas I, Ertoy Karagol HI, Soysal S, Yapar D. Neuropsychiatric adverse drug reactions induced by montelukast impair the quality of life in children with asthma. J Asthma 2020; 59:580-589. [PMID: 33287615 DOI: 10.1080/02770903.2020.1861626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Montelukast-induced neuropsychiatric adverse drug reactions (ADRs) have been reported in retrospective studies. This study aimed to reveal the neuropsychiatric ADRs triggered in patients taking montelukast due to asthma in real time, and to evaluate the effect of these ADRs on quality of life (QoL). METHODS Patients, ages 3-18 years, taking montelukast for the first time and their parents were included. Ages 3-7 years were defined as the preschool and ages 8-18 years as the school-age group. At the beginning of the study and at the end of the second week of treatment, the neuropsychiatric complaint assessment questionnaire and the KINDL QoL scale were administered to patients and their parents. The effect of ADRs on the decrease in QoL was evaluated by multivariable logistic regression. RESULTS Neuropsychiatric ADRs were reported in 78 (62.4%) of 125 patients, who recovered when the drug was discontinued. Temperamental behavior, nightmares and sleep disorders occurred significantly more often in both groups compared with pretreatment (p < 0.001 for each). In both groups, except in the child-reported family relationships subscale in the school-age group, significant decreases were found in both child and parent proxy-reported QoL total/sub-scores compared with pretreatment (p˂0.001 for each). It was found in the evaluation that the overall QoL of those experiencing ADRs in both age groups was more affected. (Child-reported QoL ORpreschool age=2.66, p = 0.048; ORschool-age=5.95, p = 0.027; parent-proxy QoL ORpreschool age =3.52, p = 0.010, ORschool-age=6.43, p = 0.027). CONCLUSIONS Montelukast-induced neuropsychiatric ADRs are more frequent than reported in the literature and negatively impact children's QoL.
Collapse
Affiliation(s)
- Oznur Yilmaz Bayer
- Department of Pediatrics, Konya Training and Research Hospital, Konya, Turkey
| | - Ipek Turktas
- Department of Pediatric Allergy and Asthma, Gazi University School of Medicine, Ankara, Turkey
| | | | - Sebnem Soysal
- Department of Pediatric Neurology, Gazi University School of Medicine, Ankara, Turkey
| | - Dilek Yapar
- Department of Public Health, Gazi University School of Medicine, Ankara, Turkey
| |
Collapse
|