1
|
Gasser B, Escher G, Calin AE, Deppeler M, Marchon M, Kurz J, Mohaupt M. Are steroid hormones and autistic traits affected by metformin? First insights from a pilot. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 16:100196. [PMID: 37577184 PMCID: PMC10415721 DOI: 10.1016/j.cpnec.2023.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
Background Different lines of evidence imply that metformin could alter steroid hormone homeostasis and thereby improve social impairment. Here, we tried to correlate the impact of metformin treatment on alterations in steroid hormones and autism spectrum traits before versus after treatment with metformin. Material & methods Urine steroid hormones were measured using gas chromatography mass spectrometry in 12 male subjects (54.2 ± 9.1 years, 177.3 ± 4.1 cm, 80 ± 10.4 kg) and 7 female subjects (64.14 ± 18.0 years, 162.7 ± 4.1 cm, 76.1 ± 10.4 kg). Furthermore, a questionnaire on autism spectrum traits (Autism Spectrum Questionnaire]) was administered prior to and after metformin treatment. Results Overall, a decrease of steroid hormones were detected, which were most pronounced in the metabolites of corticosterone, deoxycortisol, cortisol, as well as androgens. These remained after Bonferroni correction (three classes: glucocorticoid, mineralocorticoid, androgens). No effect on autism spectrum traits (social skills, attention switching skills, attention to detail skills, communication skills, imagination skills), was identified pre versus post metformin treatment. Discussion The decreased steroid hormone levels are based on different mechanisms; one effect is likely via mitochondria, another effect via activated protein kinase prior to post treatment. The finding on autistic traits must be taxed as negative and do not directly provide an argument for using metformin in the treatment of autism.
Collapse
Affiliation(s)
- Benedikt Gasser
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, University of Basel, Grosse Allee 6, CH-4052, Basel, Switzerland
| | - Genevieve Escher
- Lindenhofgruppe, Teaching Hospital of Internal Medicine, Lindenhofgruppe, 3006, Berne, Switzerland
| | | | - Michael Deppeler
- Lindenhofgruppe, Teaching Hospital of Internal Medicine, Lindenhofgruppe, 3006, Berne, Switzerland
| | - Miriam Marchon
- Lindenhofgruppe, Teaching Hospital of Internal Medicine, Lindenhofgruppe, 3006, Berne, Switzerland
| | - Johann Kurz
- Interscience Research Collaboration, Switzerland
| | - Markus Mohaupt
- Lindenhofgruppe, Teaching Hospital of Internal Medicine, Lindenhofgruppe, 3006, Berne, Switzerland
- Department of Biomedical Research, University Bern, Switzerland
| |
Collapse
|
2
|
Gasser B, Calin AE, Escher G, Kurz J, Emmenegger A, Buerki S, Schmidt-Trucksäss A, Mohaupt M. Light in the Rational Treatment of Autism? Effects of Metformin on Steroid Hormones in a Patient with Polycystic Ovarian Syndrome (PCOS). Life (Basel) 2022; 12:life12111736. [PMID: 36362891 PMCID: PMC9696325 DOI: 10.3390/life12111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Metformin is an effective treatment option for type 2 diabetes mellitus, and it is, to this day, the most prescribed oral antiglycaemic drug. Besides its effects mainly on mitochondrial activity, an off-label use came up as a pharmaceutical for subjects with a diagnosis of polycystic ovarian syndrome (PCOS) along with altered steroid hormone homeostasis. Besides these effects, even an influence on mood and social behavior was described, leading to the aim of this case report to elucidate the effects before versus after treatment with metformin on steroid hormones and social behavior. Methods: A female patient with diagnosed PCOS was analyzed three times for steroid hormone levels. The first analysis was performed before treatment; the second, after a period of 71 days with metformin at 2 × 500 mg; and the third, after a total of 144 days with metformin at 2 × 500 mg. Spot urine probes were taken in the morning for a combined gas chromatography−mass spectrometry (GC-MS), and the steroid levels were adjusted for creatinine excretion. A questionnaire on social behavior (Autism Spectrum Questionnaire) was administered before treatment and after 71 days. Results: A decrease in all the steroid hormones measured was detected after 71 and 144 days of treatment with metformin, being more pronounced after 144 days of treatment and highly significant (p < 0.001). Furthermore, in the untreated state, the class of corticosterone metabolites showed increased values compared to the female reference values for TH-11-DH-corticosterone, TH-corticosterone, and 5a-TH-corticosterone. In the class of estrogen metabolites, increased values compared to the reference values were detected for 17b-estradiol; in the class of 11-deoxycortisol metabolites, an increase in TH-11-deoxycortisol was detected. For the class of cortisol metabolites, increased values compared to the reference values were detected for cortisone, TH-cortisone, a-cortolone, b-cortolone, 20b-dihydrocortisone, cortisol, TH-cortisol, 5a-TH-cortisol, a-cortol, 20b-dihydrocortisol, and 6b-OH-cortisol. No increases in androgen metabolites were detected. Interestingly, weight decreased from 93.4 kg to 91.3 kg after 71 days and fell to 82.7 kg after 144 days of treatment. The skeletal muscle mass was 30.1 kg at the first visit, decreasing to 29.9 kg and to 27.5 kg. No significant difference in the social behavior score from baseline to after 71 days of treatment was detected. Discussion: Metformin improved the steroid hormone profiles from levels above the upper reference values to the middle of the reference values after 71 days and to the lower ends of the reference values after 144 days of treatment. This implies not only that metformin has an effect on steroid hormone levels, but in addition that the efficacy of the pharmaceutical seems to depend on the time interval from intake. To summarize, in this patient, steroid hormones were affected but social behavior was not. If no effect of metformin on social behavior exists, this must be supported by further cases.
Collapse
Affiliation(s)
- Benedikt Gasser
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, University of Basel, Grosse Allee 6, CH-4052 Basel, Switzerland
- Correspondence:
| | - Anca-Elena Calin
- Lindenhofgruppe—Teaching Hospital of Internal Medicine, Lindenhofgruppe, CH-3006 Bern, Switzerland
| | - Genevieve Escher
- Department of Biomedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Johann Kurz
- Interscience Research Collaboration, 8430 Leibnitz, Austria
| | - Aglaia Emmenegger
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, University of Basel, Grosse Allee 6, CH-4052 Basel, Switzerland
| | - Samuel Buerki
- Lindenhofgruppe—Teaching Hospital of Internal Medicine, Lindenhofgruppe, CH-3006 Bern, Switzerland
| | - Arno Schmidt-Trucksäss
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, University of Basel, Grosse Allee 6, CH-4052 Basel, Switzerland
| | - Markus Mohaupt
- Lindenhofgruppe—Teaching Hospital of Internal Medicine, Lindenhofgruppe, CH-3006 Bern, Switzerland
| |
Collapse
|
3
|
Metformin-Treatment Option for Social Impairment? An Open Clinical Trial to Elucidate the Effects of Metformin Treatment on Steroid Hormones and Social Behavior. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070998. [PMID: 35888087 PMCID: PMC9320776 DOI: 10.3390/life12070998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Social behavior is mediated by steroid hormones, whereby various lines of evidence indicate that metformin might improve the symptoms of social withdrawal. This directly yields to the aim of the study to correlate the impact of metformin treatment on the potential alterations in steroid hormone homeostasis, which is ultimately impacting social behavior. Therefore, urinary samples of patients before and after treatment with metformin will be correlated to social behavior to elucidate potential changes in steroid hormone profiles and social behavior. MATERIAL AND METHODS An observational study in healthy adults with a new indication for metformin. Steroid hormone analysis, including the most prominent androgen, estrogen, progesterone, aldosterone, corticosterone, cortisone and cortisol metabolites analyzed with gas chromatography-mass spectrometry and a questionnaire on social behavior (Autism Spectrum Questionnaire (AQ)) will be administered prior to and after around a 12-week phase of metformin treatment. DISCUSSION It is likely that due to different pathophysiological mechanisms such as an effect on the respiratory chain in mitochondria or via AMP-activated protein kinase, a general alteration of steroid hormone levels can be detected prior to post treatment. The encompassing measurement of steroid hormones shall give hints concerning the involvement of specific cascades yielding potential pharmacological targets for future research.
Collapse
|
4
|
Hyperandrogenism? Increased 17, 20-Lyase Activity? A Metanalysis and Systematic Review of Altered Androgens in Boys and Girls with Autism. Int J Mol Sci 2021; 22:ijms222212324. [PMID: 34830216 PMCID: PMC8620117 DOI: 10.3390/ijms222212324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction: There is increasing evidence that steroid hormone levels and, especially, androgen levels are elevated in autism. An overactivity of 17, 20-lyase with a higher production of the testosterone precursors dehydroepiandrosterone (DHEA) and androstenedione/androstenediol seems especially present in autism. Methods: An encompassing literature analysis was performed, searching for altered androgens in children with autism and using preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines. Included were all studies published before 31 March 2021 found using the following electronic databases: PubMed, Google Scholar, Cochrane Library, Scopus, and TRIP. Eight studies with boys and three studies with girls where steroid hormone measurements were performed from either plasma, urine, or saliva were found and analyzed. Analyses were performed for DHEA(-S/-C), androstenedione/androstenediol, and testosterone. Effect sizes were calculated for each parameter between mean concentrations for children with autism versus healthy controls. Results: Higher levels of androgens in autism were detected, with the majority of calculated effect sizes being larger than one. Conclusions: We found higher levels of the main testosterone precursors DHEA, androstenedione, and androstenediol, likely causing an additionally higher level of testosterone, and an increased 17, 20-lyase activity is therefore implied. Medications already used in PCOS such as metformin might be considered to treat hyperandrogenism in autism following further research.
Collapse
|