1
|
Lazar-Contes I, Arzate-Mejia RG, Tanwar DK, Steg LC, Uzel K, Feudjio OU, Crespo M, Germain PL, Mansuy IM. Dynamics of transcriptional programs and chromatin accessibility in mouse spermatogonial cells from early postnatal to adult life. eLife 2025; 12:RP91528. [PMID: 40231607 PMCID: PMC11999699 DOI: 10.7554/elife.91528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
In mammals, spermatogonial cells (SPGs) are undifferentiated male germ cells in testis that are quiescent until birth and then self-renew and differentiate to produce spermatogenic cells and functional sperm from early postnatal life throughout adulthood. The transcriptome of SPGs is highly dynamic and timely regulated during postnatal development. We examined if such dynamics involves changes in chromatin organization by profiling the transcriptome and chromatin accessibility of SPGs from early postnatal stages to adulthood in mice using deep RNA-seq, ATAC-seq and computational deconvolution analyses. By integrating transcriptomic and epigenomic features, we show that SPGs undergo massive chromatin remodeling during postnatal development that partially correlates with distinct gene expression profiles and transcription factors (TF) motif enrichment. We identify genomic regions with significantly different chromatin accessibility in adult SPGs that are marked by histone modifications associated with enhancers and promoters. Some of the regions with increased accessibility correspond to transposable element subtypes enriched in multiple TFs motifs and close to differentially expressed genes. Our results underscore the dynamics of chromatin organization in developing germ cells and complement existing datasets on SPGs by providing maps of the regulatory genome at high resolution from the same cell populations at early postnatal, late postnatal and adult stages collected from single individuals.
Collapse
Affiliation(s)
- Irina Lazar-Contes
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Rodrigo G Arzate-Mejia
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Deepak K Tanwar
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Leonard C Steg
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Kerem Uzel
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | | | - Marion Crespo
- ADLIN Science, Pépinière «Genopole Entreprises»EvryFrance
| | - Pierre-Luc Germain
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| |
Collapse
|
2
|
Pandey DP, Somyajit K. Oncohistone-sculpted epigenetic mechanisms in pediatric brain cancer. Curr Opin Pharmacol 2025; 81:102505. [PMID: 39874681 DOI: 10.1016/j.coph.2025.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 01/30/2025]
Abstract
Chromatin dynamics, involving reversible changes in chromatin structure, shape key cellular processes and genomic integrity during development and proliferation, with disruptions leading to cancer. Histones, core components of chromatin and substrates for chromatin-modifying enzymes, play crucial roles in oncogenesis when misregulated or mutated. This is particularly pronounced in pediatric hind brain cancers, some of which are driven primarily by the oncohistone H3K27M and the recently identified oncohistone-mimic protein CXorf67/EZHIP. Notably, H3K27M and EZHIP-driven cancers exhibit low mutation burdens, highlighting the enigmatic role of non-mutational epigenetic reprogramming in oncogenesis beyond traditional paradigms of oncogene activation and tumor suppressor loss. Here, we review the impact of H3K27M and EZHIP-driven cancer mechanisms on chromatin and transcriptional dysregulation leading to aberrant cell fate determination, and their potential influence beyond gene activity, affecting broader cellular pathways. Illuminating these mechanisms is crucial for advancing treatment options for pediatric brain cancers, where therapeutic regimens are poorly defined.
Collapse
Affiliation(s)
- Deo Prakash Pandey
- Centre for Embryology and Healthy Development, Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway.
| | - Kumar Somyajit
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| |
Collapse
|
3
|
Kopalli SR, Behl T, Kyada A, Rekha MM, Kundlas M, Rani P, Nathiya D, Satyam Naidu K, Gulati M, Bhise M, Gupta P, Wal P, Fareed M, Ramniwas S, Koppula S, Gasmi A. Synaptic plasticity and neuroprotection: The molecular impact of flavonoids on neurodegenerative disease progression. Neuroscience 2025; 569:161-183. [PMID: 39922366 DOI: 10.1016/j.neuroscience.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Flavonoids are a broad family of polyphenolic chemicals that are present in a wide variety of fruits, vegetables, and medicinal plants. Because of their neuroprotective qualities, flavonoids have attracted a lot of interest. The potential of flavonoids to control synaptic plasticity-a crucial process underlying memory, learning, and cognitive function-is becoming more and more clear. Dysregulation of synaptic plasticity is a feature of neurodegenerative diseases such as amyotrophic lateral sclerosis (0.4 %), Parkinson's (1-2 %), Alzheimer's (5-7 %), and Huntington's ((0.2 %)). This review discusses the molecular mechanisms via which flavonoids influence synaptic plasticity as well as their therapeutic potential in neurodegenerative diseases. Flavonoids modulate key signaling pathways such as MAPK/ERK and PI3K/Akt/mTOR to support neuroprotection, synaptic plasticity, and neuronal health, while also influencing neurotrophic factors (BDNF, NGF) and their receptors (TrkB, TrkA). They regulate neurotransmitter receptors like GABA, AMPA, and NMDA to balance excitatory and inhibitory transmission, and exert antioxidant effects via the Nrf2-ARE pathway and anti-inflammatory actions by inhibiting NF-κB signaling, highlighting their potential for treating neurodegenerative diseases. These varied reactions support the preservation of synapse function and neuronal integrity in the face of neurodegenerative insults. Flavonoids can reduce the symptoms of neurodegeneration, prevent synaptic loss, and enhance cognitive function, according to experimental studies. However, there are still obstacles to using these findings in clinical settings, such as limited bioavailability and the need for consistent dose. The focus of future research should be on improving flavonoid delivery systems and combining them with conventional medications.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006 Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India
| | - Pooja Rani
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | | | | | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy Kanpur UP, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Seema Ramniwas
- University Centre for Research and Development, Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413 Punjab, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France; International Institute of Nutrition and Micronutrient Sciences, Saint-Etienne, France
| |
Collapse
|
4
|
Roy B, Verma AK, Funahashi Y, Dwivedi Y. Deciphering the epigenetic role of long non-coding RNAs in mood disorders: Focus on human brain studies. Clin Transl Med 2025; 15:e70135. [PMID: 40038891 PMCID: PMC11879898 DOI: 10.1002/ctm2.70135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/06/2024] [Accepted: 12/05/2024] [Indexed: 03/06/2025] Open
Abstract
Epigenetics plays a central role in neuropsychiatric disorders, contributing significantly to their complexity and manifestation. Major depressive disorder (MDD) and bipolar disorder (BD) have profound impact on mood, affect and cognition. Emerging evidence suggests that epigenetic modification of genes plays a pivotal role in the pathogenesis of both MDD and BD. Long non-coding RNAs (lncRNA) constitute a heterogeneous class of transcripts and have emerged as crucial regulators of epigenetic processes, offering promising insights into the pathophysiology of various diseases. Despite their limited coding potential, lncRNAs are known to play a critical role in achieving global transcriptomic regulation in a spatiotemporal fashion, especially in complex tissue like the brain. This review aims to discuss the specific dysregulation of lncRNAs so far observed in the brains of MDD and BD patients and understand their mechanistic contributions to the disease pathogenesis. KEY POINTS: Brain-centric lncRNAs regulate gene networks, and their disruption is linked to MDD. In MDD, altered lncRNAs disrupt gene regulation by changing chromatin looping or modifying chromatin accessibility. These changes lead to neuronal dysfunction, affecting neural circuitry and synaptic plasticity. The result is impaired brain function, contributing to the symptoms of MDD.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Psychiatry and Behavioral NeurobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Anuj K. Verma
- Department of Psychiatry and Behavioral NeurobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Yu Funahashi
- Department of Psychiatry and Behavioral NeurobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of Neuropsychiatry, Molecules and FunctionEhime University Graduate School of MedicineToonEhimeJapan
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral NeurobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
5
|
Chmykhalo VK, Deev RV, Tokarev AT, Polunina YA, Xue L, Shidlovskii YV. SWI/SNF Complex Connects Signaling and Epigenetic State in Cells of Nervous System. Mol Neurobiol 2025; 62:1536-1557. [PMID: 39002058 DOI: 10.1007/s12035-024-04355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
SWI/SNF protein complexes are evolutionarily conserved epigenetic regulators described in all eukaryotes. In metameric animals, the complexes are involved in all processes occurring in the nervous system, from neurogenesis to higher brain functions. On the one hand, the range of roles is wide because the SWI/SNF complexes act universally by mobilizing the nucleosomes in a chromatin template at multiple loci throughout the genome. On the other hand, the complexes mediate the action of multiple signaling pathways that control most aspects of neural tissue development and function. The issues are discussed to provide insight into the molecular basis of the multifaceted role of SWI/SNFs in cell cycle regulation, DNA repair, activation of immediate-early genes, neurogenesis, and brain and connectome formation. An overview is additionally provided for the molecular basis of nervous system pathologies associated with the SWI/SNF complexes and their contribution to neuroinflammation and neurodegeneration. Finally, we discuss the idea that SWI/SNFs act as an integration platform to connect multiple signaling and genetic programs.
Collapse
Affiliation(s)
- Victor K Chmykhalo
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia.
| | - Roman V Deev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
| | - Artemiy T Tokarev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
| | - Yulia A Polunina
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
| | - Lei Xue
- School of Life Science and Technology, The First Rehabilitation Hospital of Shanghai, Tongji University, Shanghai, China
| | - Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
- Department of Biology and General Genetics, Sechenov University, Moscow, Russia
| |
Collapse
|
6
|
Arshavsky YI. Autoimmune hypothesis of Alzheimer's disease: unanswered question. J Neurophysiol 2024; 132:929-942. [PMID: 39163023 DOI: 10.1152/jn.00259.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Alzheimer's disease (AD) was described more than a century ago. However, there are still no effective approaches to its treatment, which may suggest that the search for the cure is not being conducted in the most productive direction. AD begins as selective impairments of declarative memory with no deficits in other cognitive functions. Therefore, understanding of the AD pathogenesis has to include the understanding of this selectivity. Currently, the main efforts aimed at prevention and treatment of AD are based on the dominating hypothesis for the AD pathogenesis: the amyloid hypothesis. But this hypothesis does not explain selective memory impairments since β-amyloid accumulates extracellularly and should be toxic to all types of cerebral neurons, not only to "memory engram neurons." To explain selective memory impairment, I propose the autoimmune hypothesis of AD, based on the analysis of risk factors for AD and molecular mechanisms of memory formation. Memory formation is associated with epigenetic modifications of chromatin in memory engram neurons and, therefore, might be accompanied by the expression of memory-specific proteins recognized by the adaptive immune system as "non-self" antigens. Normally, the brain is protected by the blood-brain barrier (BBB). All risk factors for AD provoke BBB disruptions, possibly leading to an autoimmune reaction against memory engram neurons. This reaction would make them selectively sensitive to tauopathy. If this hypothesis is confirmed, the strategies for AD prevention and treatment would be radically changed.
Collapse
Affiliation(s)
- Yuri I Arshavsky
- BioCircuits Institute, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
7
|
Moyung K, Li Y, Hartemink AJ, MacAlpine DM. Genome-wide nucleosome and transcription factor responses to genetic perturbations reveal chromatin-mediated mechanisms of transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595391. [PMID: 38826400 PMCID: PMC11142231 DOI: 10.1101/2024.05.24.595391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Epigenetic mechanisms contribute to gene regulation by altering chromatin accessibility through changes in transcription factor (TF) and nucleosome occupancy throughout the genome. Despite numerous studies focusing on changes in gene expression, the intricate chromatin-mediated regulatory code remains largely unexplored on a comprehensive scale. We address this by employing a factor-agnostic, reverse-genetics approach that uses MNase-seq to capture genome-wide TF and nucleosome occupancies in response to the individual deletion of 201 transcriptional regulators in Saccharomyces cerevisiae, thereby assaying nearly one million mutant-gene interactions. We develop a principled approach to identify and quantify chromatin changes genome-wide, observing differences in TF and nucleosome occupancy that recapitulate well-established pathways identified by gene expression data. We also discover distinct chromatin signatures associated with the up- and downregulation of genes, and use these signatures to reveal regulatory mechanisms previously unexplored in expression-based studies. Finally, we demonstrate that chromatin features are predictive of transcriptional activity and leverage these features to reconstruct chromatin-based transcriptional regulatory networks. Overall, these results illustrate the power of an approach combining genetic perturbation with high-resolution epigenomic profiling; the latter enables a close examination of the interplay between TFs and nucleosomes genome-wide, providing a deeper, more mechanistic understanding of the complex relationship between chromatin organization and transcription.
Collapse
Affiliation(s)
- Kevin Moyung
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Yulong Li
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
- Department of Computer Science, Duke University, Durham, NC 27708
| | - Alexander J. Hartemink
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708
- Department of Computer Science, Duke University, Durham, NC 27708
| | - David M. MacAlpine
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
8
|
Arzate-Mejia RG, Carullo NVN, Mansuy IM. The epigenome under pressure: On regulatory adaptation to chronic stress in the brain. Curr Opin Neurobiol 2024; 84:102832. [PMID: 38141414 DOI: 10.1016/j.conb.2023.102832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Chronic stress (CS) can have long-lasting consequences on behavior and cognition, that are associated with stable changes in gene expression in the brain. Recent work has examined the role of the epigenome in the effects of CS on the brain. This review summarizes experimental evidence in rodents showing that CS can alter the epigenome and the expression of epigenetic modifiers in brain cells, and critically assesses their functional effect on genome function. It discusses the influence of the developmental time of stress exposure on the type of epigenetic changes, and proposes new lines of research that can help clarify these changes and their causal involvement in the impact of CS.
Collapse
Affiliation(s)
- Rodrigo G Arzate-Mejia
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute of Neurosciences, Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Switzerland. https://twitter.com/RodrigoArzt
| | - Nancy V N Carullo
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute of Neurosciences, Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Switzerland. https://twitter.com/DrNancyCarullo
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute of Neurosciences, Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Switzerland.
| |
Collapse
|
9
|
Elhadi K, Daiwile AP, Cadet JL. Modeling methamphetamine use disorder and relapse in animals: short- and long-term epigenetic, transcriptional., and biochemical consequences in the rat brain. Neurosci Biobehav Rev 2023; 155:105440. [PMID: 38707245 PMCID: PMC11068368 DOI: 10.1016/j.neubiorev.2023.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 05/07/2024]
Abstract
Methamphetamine use disorder (MUD) is a neuropsychiatric disorder characterized by binge drug taking episodes, intervals of abstinence, and relapses to drug use even during treatment. MUD has been modeled in rodents and investigators are attempting to identify its molecular bases. Preclinical experiments have shown that different schedules of methamphetamine self-administration can cause diverse transcriptional changes in the dorsal striatum of Sprague-Dawley rats. In the present review, we present data on differentially expressed genes (DEGs) identified in the rat striatum following methamphetamine intake. These include genes involved in transcription regulation, potassium channel function, and neuroinflammation. We then use the striatal data to discuss the potential significance of the molecular changes induced by methamphetamine by reviewing concordant or discordant data from the literature. This review identified potential molecular targets for pharmacological interventions. Nevertheless, there is a need for more research on methamphetamine-induced transcriptional consequences in various brain regions. These data should provide a more detailed neuroanatomical map of methamphetamine-induced changes and should better inform therapeutic interventions against MUD.
Collapse
Affiliation(s)
- Khalid Elhadi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Atul P. Daiwile
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| |
Collapse
|