1
|
Wu C, Zhai Y, Ji J, Yang X, Ye L, Lu G, Shi X, Zhai G. Advances in tumor stroma-based targeted delivery. Int J Pharm 2024; 664:124580. [PMID: 39142464 DOI: 10.1016/j.ijpharm.2024.124580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The tumor stroma plays a crucial role in tumor progression, and the interactions between the extracellular matrix, tumor cells, and stromal cells collectively influence tumor progression and the efficacy of therapeutic agents. Currently, utilizing components of the tumor stroma for drug delivery is a noteworthy strategy. A number of targeted drug delivery systems designed based on tumor stromal components are entering clinical trials. Therefore, this paper provides a thorough examination of the function of tumor stroma in the advancement of targeted drug delivery systems. One approach is to use tumor stromal components for targeted drug delivery, which includes certain stromal components possessing inherent targeting capabilities like HA, laminin, along with targeting stromal cells homologously. Another method entails directly focusing on tumor stromal components to reshape the tumor stroma and facilitate drug delivery. These drug delivery systems exhibit great potential in more effective cancer therapy strategies, such as precise targeting, enhanced penetration, improved safety profile, and biocompatibility. Ultimately, the deployment of these drug delivery systems can deepen our comprehension of tumor stroma and the advanced development of corresponding drug delivery systems.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
2
|
Zhu X, Xu M, Portal C, Lin Y, Ferdinand A, Peng T, Morrisey EE, Dlugosz AA, Castellano JM, Lee V, Seykora JT, Iomini C, Millar SE. Identification of Meibomian gland stem cell populations and mechanisms of aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607015. [PMID: 39149265 PMCID: PMC11326261 DOI: 10.1101/2024.08.09.607015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Meibomian glands secrete lipid-rich meibum, which prevents tear evaporation. Aging-related Meibomian gland shrinkage may result in part from stem cell exhaustion and is associated with evaporative dry eye disease, a common condition lacking effective treatment. The identities and niche of Meibomian gland stem cells and the signals controlling their activity are poorly defined. Using snRNA-seq, in vivo lineage tracing, ex vivo live imaging, and genetic studies in mice, we identified markers for stem cell populations that maintain distinct regions of the gland and uncovered Hh signaling as a key regulator of stem cell proliferation. Consistent with this, human Meibomian gland carcinoma exhibited increased Hh signaling. Aged glands displayed decreased Hh and EGF signaling, deficient innervation, and loss of collagen I in niche fibroblasts, indicating that alterations in both glandular epithelial cells and their surrounding microenvironment contribute to age-related degeneration. These findings suggest new approaches to treat aging-associated Meibomian gland loss.
Collapse
Affiliation(s)
- Xuming Zhu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mingang Xu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Celine Portal
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Yvonne Lin
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Alyssa Ferdinand
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tien Peng
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Edward E. Morrisey
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrzej A. Dlugosz
- Department of Dermatology and the Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joseph M. Castellano
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vivian Lee
- Department of Ophthalmology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John T. Seykora
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carlo Iomini
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
3
|
Wang M, Zan T, Fan C, Li Z, Wang D, Li Q, Zhang C. Advances in GPCR-targeted drug development in dermatology. Trends Pharmacol Sci 2024; 45:678-690. [PMID: 39060127 DOI: 10.1016/j.tips.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Achieving the efficacy and specificity of G-protein-coupled receptor (GPCR) targeting-drugs in the skin remains challenging. Understanding the molecular mechanism underlying GPCR dysfunction is crucial for developing targeted therapies. Recent advances in genetic, signal transduction, and structural studies have significantly improved our understanding of cutaneous GPCR functions in both normal and pathological states. In this review, we summarize recent discoveries of pathogenic GPCRs in dermal injuries, chronic inflammatory dermatoses, cutaneous malignancies, as well as the development of potent potential drugs. We also discuss targeting of cutaneous GPCR complexes via the transient receptor potential (TRP) channel and structure elucidation, which provide new opportunities for therapeutic targeting of GPCRs involved in skin disorders. These insights are expected to lead to more effective and specific treatments for various skin conditions.
Collapse
Affiliation(s)
- Meng Wang
- Songjiang Research Institute, Songjiang Hospital, affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chengang Fan
- Department of Orthopedics and Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhouxiao Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Chao Zhang
- Department of Orthopedics and Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
4
|
Primary Cilia Are Frequently Present in Small Cell Lung Carcinomas but Not in Non–Small Cell Lung Carcinomas or Lung Carcinoids. J Transl Med 2023; 103:100007. [PMID: 37039149 DOI: 10.1016/j.labinv.2022.100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 01/11/2023] Open
Abstract
Most human malignant neoplasms show loss of primary cilia (PC). However, PC are known to be retained and involved in tumorigenesis in some types of neoplasms. The PC status in lung carcinomas remains largely uninvestigated. In this study, we comprehensively assessed the PC status in lung carcinomas. A total of 492 lung carcinomas, consisting of adenocarcinomas (ACs) (n = 319), squamous cell carcinomas (SCCs) (n = 152), and small cell lung carcinomas (SCLCs) (n = 21), were examined by immunohistochemical analysis using an antibody against ARL13B, a marker of PC. The PC-positive rate was markedly higher in SCLCs (81.0%) than in ACs (1.6%) and SCCs (7.9%). We subsequently performed analyses to characterize the PC-positive lung carcinomas further. PC-positive lung carcinomas were more numerous and had longer PC than normal cells. The presence of PC in these cells was not associated with the phase of the cell cycle. We also found that the PC were retained even in metastases from PC-positive lung carcinomas. Furthermore, the hedgehog signaling pathway was activated in PC-positive lung carcinomas. Because ARL13B immunohistochemistry of lung carcinoids (n = 10) also showed a statistically significantly lower rate (10.0%) of PC positivity than SCLCs, we searched for a gene(s) that might be upregulated in PC-positive SCLCs compared with lung carcinoids, but not in PC-negative carcinomas. This search, and further cell culture experiments, identified HYLS1 as a gene possessing the ability to regulate ciliogenesis in PC-positive lung carcinomas. In conclusion, our findings indicate that PC are frequently present in SCLCs but not in non-SCLCs (ACs and SCCs) or lung carcinoids, and their PC exhibit various specific pathobiological characteristics. This suggests an important link between lung carcinogenesis and PC.
Collapse
|
5
|
Modulation of Hedgehog Signaling for the Treatment of Basal Cell Carcinoma and the Development of Preclinical Models. Biomedicines 2022; 10:biomedicines10102376. [PMID: 36289637 PMCID: PMC9598418 DOI: 10.3390/biomedicines10102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Basal Cell Carcinoma (BCC) is the most commonly diagnosed cancer worldwide. While the survivability of BCC is high, many patients are excluded from clinically available treatments due to health risks or personal choice. Further, patients with advanced or metastatic disease have severely limited treatment options. The dysregulation of the Hedgehog (Hh) signaling cascade drives onset and progression of BCC. As such, the modulation of this pathway has driven advancements in BCC research. In this review, we focus firstly on inhibitors that target the Hh pathway as chemotherapeutics against BCC. Two therapies targeting Hh signaling have been made clinically available for BCC patients, but these treatments suffer from limited initial efficacy and a high rate of chemoresistant tumor recurrence. Herein, we describe more recent developments of chemical scaffolds that have been designed to hopefully improve upon the available therapeutics. We secondly discuss the history and recent efforts involving modulation of the Hh genome as a method of producing in vivo models of BCC for preclinical research. While there are many advancements left to be made towards improving patient outcomes with BCC, it is clear that targeting the Hh pathway will remain at the forefront of research efforts in designing more effective chemotherapeutics as well as relevant preclinical models.
Collapse
|
6
|
Ma C, Hu K, Ullah I, Zheng QK, Zhang N, Sun ZG. Molecular Mechanisms Involving the Sonic Hedgehog Pathway in Lung Cancer Therapy: Recent Advances. Front Oncol 2022; 12:729088. [PMID: 35433472 PMCID: PMC9010822 DOI: 10.3389/fonc.2022.729088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/03/2022] [Indexed: 12/09/2022] Open
Abstract
According to the latest statistics from the International Agency for Research on Cancer (IARC), lung cancer is one of the most lethal malignancies in the world, accounting for approximately 18% of all cancer-associated deaths. Yet, even with aggressive interventions for advanced lung cancer, the five-year survival rate remains low, at around 15%. The hedgehog signaling pathway is highly conserved during embryonic development and is involved in tissue homeostasis as well as organ development. However, studies have documented an increasing prevalence of aberrant activation of HH signaling in lung cancer patients, promoting malignant lung cancer progression with poor prognostic outcomes. Inhibitors targeting the HH pathway have been widely used in tumor therapy, however, they still cannot avoid the occurrence of drug resistance. Interestingly, natural products, either alone or in combination with chemotherapy, have greatly improved overall survival outcomes for lung cancer patients by acting on the HH signaling pathway because of its unique and excellent pharmacological properties. In this review, we elucidate on the underlying molecular mechanisms through which the HH pathway promotes malignant biological behaviors in lung cancer, as well as the potential of inhibitors or natural compounds in targeting HH signaling for clinical applications in lung cancer therapy.
Collapse
Affiliation(s)
- Chao Ma
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Kang Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Irfan Ullah
- Department of Surgery, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Qing-Kang Zheng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Nan Zhang
- Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Zhi-Gang Sun, ; Nan Zhang,
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Zhi-Gang Sun, ; Nan Zhang,
| |
Collapse
|
7
|
Kaushik I, Srivastava SK. GABA A receptor agonist suppresses pediatric medulloblastoma progression by inhibiting PKA-Gli1 signaling axis. Mol Ther 2022; 30:2584-2602. [PMID: 35331907 DOI: 10.1016/j.ymthe.2022.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 01/20/2023] Open
Abstract
The Sonic hedgehog-activated subgroup of medulloblastoma (SHH-MB) is one of the most common malignant pediatric brain tumors. Recent clinical studies and genomic databases indicate that GABAA receptor holds significant clinical relevance as a therapeutic target for pediatric MB. Herein, we report that "moxidectin," a GABAA receptor agonist, inhibits the proliferation of Daoy, UW426, UW228, ONS76, and PFSK1 SHH-MB cells by inducing apoptosis. Immunoblotting and immunofluorescence microscopy demonstrated that moxidectin significantly induced GABAA receptor expression and inhibited cyclic AMP (cAMP)-mediated protein kinase A (PKA)-cAMP response element-binding protein (CREB)-Gli1 signaling in SHH-MB. Gli1 and the downstream effector cancer stem cell (CSC) molecules such as Pax6, Oct4, Sox2, and Nanog were also inhibited by moxidectin treatment. Interestingly, moxidectin also inhibited the expression of MDR1. Mechanistic studies using pharmacological or genetic inhibitors/activators of PKA and Gli1 confirmed that the anti-proliferative and apoptotic effects of moxidectin were mediated through inhibition of PKA-Gli1 signaling. Oral administration of 2.5 mg/kg moxidectin suppressed the growth of SHH-MB tumors by 55%-80% in subcutaneous and intracranial tumor models in mice. Ex vivo analysis of excised tumors confirmed the observations made in the in vitro studies. Moxidectin is an FDA-approved drug with an established safety record, therefore any positive findings from our studies will prompt its further clinical investigation for the treatment of MB patients.
Collapse
Affiliation(s)
- Itishree Kaushik
- Department of Immunotherapeutics and Biotechnology and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
8
|
Nguyen NM, Cho J. Hedgehog Pathway Inhibitors as Targeted Cancer Therapy and Strategies to Overcome Drug Resistance. Int J Mol Sci 2022; 23:ijms23031733. [PMID: 35163655 PMCID: PMC8835893 DOI: 10.3390/ijms23031733] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Hedgehog (Hh) signaling is a highly conserved pathway that plays a vital role during embryonic development. Recently, uncontrolled activation of this pathway has been demonstrated in various types of cancer. Therefore, Hh pathway inhibitors have emerged as an important class of anti-cancer agents. Unfortunately, however, their reputation has been tarnished by the emergence of resistance during therapy, necessitating clarification of mechanisms underlying the drug resistance. In this review, we briefly overview canonical and non-canonical Hh pathways and their inhibitors as targeted cancer therapy. In addition, we summarize the mechanisms of resistance to Smoothened (SMO) inhibitors, including point mutations of the drug binding pocket or downstream molecules of SMO, and non-canonical mechanisms to reinforce Hh pathway output. A distinct mechanism involving loss of primary cilia is also described to maintain GLI activity in resistant tumors. Finally, we address the main strategies to circumvent the drug resistance. These strategies include the development of novel and potent inhibitors targeting different components of the canonical Hh pathway or signaling molecules of the non-canonical pathway. Further studies are necessary to avoid emerging resistance to Hh inhibitors and establish an optimal customized regimen with improved therapeutic efficacy to treat various types of cancer, including basal cell carcinoma.
Collapse
|
9
|
Ray S, Chaturvedi NK, Bhakat KK, Rizzino A, Mahapatra S. Subgroup-Specific Diagnostic, Prognostic, and Predictive Markers Influencing Pediatric Medulloblastoma Treatment. Diagnostics (Basel) 2021; 12:diagnostics12010061. [PMID: 35054230 PMCID: PMC8774967 DOI: 10.3390/diagnostics12010061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/24/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant central nervous system tumor in pediatric patients. Mainstay of therapy remains surgical resection followed by craniospinal radiation and chemotherapy, although limitations to this therapy are applied in the youngest patients. Clinically, tumors are divided into average and high-risk status on the basis of age, metastasis at diagnosis, and extent of surgical resection. However, technological advances in high-throughput screening have facilitated the analysis of large transcriptomic datasets that have been used to generate the current classification system, dividing patients into four primary subgroups, i.e., WNT (wingless), SHH (sonic hedgehog), and the non-SHH/WNT subgroups 3 and 4. Each subgroup can further be subdivided on the basis of a combination of cytogenetic and epigenetic events, some in distinct signaling pathways, that activate specific phenotypes impacting patient prognosis. Here, we delve deeper into the genetic basis for each subgroup by reviewing the extent of cytogenetic events in key genes that trigger neoplastic transformation or that exhibit oncogenic properties. Each of these discussions is further centered on how these genetic aberrations can be exploited to generate novel targeted therapeutics for each subgroup along with a discussion on challenges that are currently faced in generating said therapies. Our future hope is that through better understanding of subgroup-specific cytogenetic events, the field may improve diagnosis, prognosis, and treatment to improve overall quality of life for these patients.
Collapse
Affiliation(s)
- Sutapa Ray
- Department of Pediatrics, University of Nebraska Medical Center, 601 S Saddle Creek Road, Omaha, NE 68198, USA; (S.R.); (N.K.C.)
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, University of Nebraska Medical Center, 601 S Saddle Creek Road, Omaha, NE 68198, USA; (S.R.); (N.K.C.)
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
| | - Kishor K. Bhakat
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Angie Rizzino
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
- Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sidharth Mahapatra
- Department of Pediatrics, University of Nebraska Medical Center, 601 S Saddle Creek Road, Omaha, NE 68198, USA; (S.R.); (N.K.C.)
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: ; Tel.: +1-(402)-599-7754
| |
Collapse
|
10
|
Jain R, Dubey SK, Singhvi G. The Hedgehog pathway and its inhibitors: Emerging therapeutic approaches for basal cell carcinoma. Drug Discov Today 2021; 27:1176-1183. [PMID: 34896624 DOI: 10.1016/j.drudis.2021.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/14/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Basal cell carcinoma (BCC) is the most common non-melanoma skin cancer (NMSC). Although surgery is the first-line treatment, BCC can lead in some cases, to a metastatic or advanced form, requiring targeted combination therapies. The Hedgehog (Hh) signalling pathway is the major pathway associated with the formation of basal carcinoma tumorigenesis, thus, targeting this is a promising therapeutic approach. Some Hh inhibitors have been approved by the US Food and Drug Administration (FDA), such as vismodegib and sonidegib. However, both of these showed limited effectiveness against resistant tumors. Therefore, an essential understanding of the mechanisms involved in the Hh signaling pathway is necessary to improve tumor inhibition.
Collapse
Affiliation(s)
- Rupesh Jain
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | | | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India.
| |
Collapse
|
11
|
Chai JY, Sugumar V, Alshawsh MA, Wong WF, Arya A, Chong PP, Looi CY. The Role of Smoothened-Dependent and -Independent Hedgehog Signaling Pathway in Tumorigenesis. Biomedicines 2021; 9:1188. [PMID: 34572373 PMCID: PMC8466551 DOI: 10.3390/biomedicines9091188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
The Hedgehog (Hh)-glioma-associated oncogene homolog (GLI) signaling pathway is highly conserved among mammals, with crucial roles in regulating embryonic development as well as in cancer initiation and progression. The GLI transcription factors (GLI1, GLI2, and GLI3) are effectors of the Hh pathway and are regulated via Smoothened (SMO)-dependent and SMO-independent mechanisms. The SMO-dependent route involves the common Hh-PTCH-SMO axis, and mutations or transcriptional and epigenetic dysregulation at these levels lead to the constitutive activation of GLI transcription factors. Conversely, the SMO-independent route involves the SMO bypass regulation of GLI transcription factors by external signaling pathways and their interacting proteins or by epigenetic and transcriptional regulation of GLI transcription factors expression. Both routes of GLI activation, when dysregulated, have been heavily implicated in tumorigenesis of many known cancers, making them important targets for cancer treatment. Hence, this review describes the various SMO-dependent and SMO-independent routes of GLI regulation in the tumorigenesis of multiple cancers in order to provide a holistic view of the paradigms of hedgehog signaling networks involving GLI regulation. An in-depth understanding of the complex interplay between GLI and various signaling elements could help inspire new therapeutic breakthroughs for the treatment of Hh-GLI-dependent cancers in the future. Lastly, we have presented an up-to-date summary of the latest findings concerning the use of Hh inhibitors in clinical developmental studies and discussed the challenges, perspectives, and possible directions regarding the use of SMO/GLI inhibitors in clinical settings.
Collapse
Affiliation(s)
- Jian Yi Chai
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
| | - Vaisnevee Sugumar
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia;
| | | | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Aditya Arya
- School of Biosciences, Faculty of Science, Building 184, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| |
Collapse
|
12
|
Zárate AM, Espinosa-Bustos C, Guerrero S, Fierro A, Oyarzún-Ampuero F, Quest AFG, Di Marcotullio L, Loricchio E, Caimano M, Calcaterra A, González-Quiroz M, Aguirre A, Meléndez J, Salas CO. A New Smoothened Antagonist Bearing the Purine Scaffold Shows Antitumour Activity In Vitro and In Vivo. Int J Mol Sci 2021; 22:8372. [PMID: 34445078 PMCID: PMC8395040 DOI: 10.3390/ijms22168372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
The Smoothened (SMO) receptor is the most druggable target in the Hedgehog (HH) pathway for anticancer compounds. However, SMO antagonists such as vismodegib rapidly develop drug resistance. In this study, new SMO antagonists having the versatile purine ring as a scaffold were designed, synthesised, and biologically tested to provide an insight to their mechanism of action. Compound 4s was the most active and the best inhibitor of cell growth and selectively cytotoxic to cancer cells. 4s induced cell cycle arrest, apoptosis, a reduction in colony formation and downregulation of PTCH and GLI1 expression. BODIPY-cyclopamine displacement assays confirmed 4s is a SMO antagonist. In vivo, 4s strongly inhibited tumour relapse and metastasis of melanoma cells in mice. In vitro, 4s was more efficient than vismodegib to induce apoptosis in human cancer cells and that might be attributed to its dual ability to function as a SMO antagonist and apoptosis inducer.
Collapse
Affiliation(s)
- Ana María Zárate
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile; (A.M.Z.); (A.F.)
| | - Christian Espinosa-Bustos
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile;
| | - Simón Guerrero
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380492, Chile; (S.G.); (F.O.-A.); (A.F.G.Q.)
- Instituto de Investigación Interdisciplinar en Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad SEK (I3CBSEK), Fernando Manterola 0789, Providencia, Santiago 7520317, Chile
| | - Angélica Fierro
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile; (A.M.Z.); (A.F.)
| | - Felipe Oyarzún-Ampuero
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380492, Chile; (S.G.); (F.O.-A.); (A.F.G.Q.)
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Andrew F. G. Quest
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380492, Chile; (S.G.); (F.O.-A.); (A.F.G.Q.)
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Program of Cellular and Molecular Biology, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Lucia Di Marcotullio
- Laboratory Affiliated to Insituto Pasteur Italia, Fondazione Cenci Bognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Elena Loricchio
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Miriam Caimano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Matías González-Quiroz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile;
| | - Adam Aguirre
- Laboratorio de Medicina Traslacional, Fundación Arturo López Pérez, Rancagua 878, Lower Fifth Floor, Providencia, Santiago 8320000, Chile;
| | - Jaime Meléndez
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile;
| | - Cristian O. Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile; (A.M.Z.); (A.F.)
| |
Collapse
|
13
|
Hao R, Huang W, Jiu B. Characteristics and the Model of Thermal Evolution and Gas Generation of Late Paleozoic Coal in the Qinshui Basin, Based on Hydrous Pyrolysis. ACS OMEGA 2021; 6:17660-17673. [PMID: 34278151 PMCID: PMC8280706 DOI: 10.1021/acsomega.1c02211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The Qinshui basin is an important coal-accumulating basin in China, and its Late Paleozoic coal is an important source rock of coalbed methane in the basin. Its thermal evolution and gas generation characteristics determined the grade of coalbed methane resources, especially the coal measure free gas resources in the basin. Late Paleozoic coal samples were collected for organic geochemical analysis, a high-volatile bituminous coal was used for hydrous pyrolysis, to propose the thermal evolution characteristics, gas generation characteristics, thermal evolution, and free gas accumulation model, and the Ordos Basin is compared. The results show that the variation trends of various geochemical parameters are different with the increase in R o. Hydrous pyrolysis shows that the gas production potential of coal is excellent. The gases produced consist mainly of CH4, C2-, CO2, and H2. C2- is produced only before the simulated temperature of 550 °C, and oil is produced only before the temperature of 500 °C. The thermal evolution stages can be divided into the immature stage, symbiosis stage, wet gas stage, and dry gas stage, and the symbiosis stage can be divided into the preliminary stage and mainly gas stage. R o, T max, (2+3)MP/(1+9)MP, saturated+arene, V daf, and H/C can be used as indicators of the thermal evolution stages. On the plane, the distribution of thermal evolution stages of the Shanxi Formation and the Taiyuan Formation is very alike. The gas generating strength of the Taiyuan Formation is higher than that of the Shanxi Formation. The gas generating strength in the north of the Taiyuan Formation is higher, while that in the south of the Shanxi Formation is higher. The second gas generation stage has a good spatio-temporal configuration relationship with accumulation factors, and the gas production is large, which is beneficial to the enrichment of the coal measure free gas resources. Relatively, the Ordos Basin has better prospects for exploration and development.
Collapse
|
14
|
Spelling Out CICs: A Multi-Organ Examination of the Contributions of Cancer Initiating Cells' Role in Tumor Progression. Stem Cell Rev Rep 2021; 18:228-240. [PMID: 34244971 DOI: 10.1007/s12015-021-10195-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Tumor invasion and metastasis remain the leading causes of mortality for patients with cancer despite current treatment strategies. In some cancer types, recurrence is considered inevitable due to the lack of effective anti-metastatic therapies. Recent studies across many cancer types demonstrate a close relationship between cancer-initiating cells (CICs) and metastasis, as well as general cancer progression. First, this review describes CICs' contribution to cancer progression. Then we discuss our recent understanding of mechanisms through which CICs promote tumor invasion and metastasis by examining the role of CICs in each stage. Finally, we examine the current understanding of CICs' contribution to therapeutic resistance and recent developments in CIC-targeting drugs. We believe this understanding is key to advancing anti-CIC clinical therapeutics.
Collapse
|
15
|
Fan J, Li H, Kuang L, Zhao Z, He W, Liu C, Wang Y, Cheng SY, Chen W. Identification of a potent antagonist of smoothened in hedgehog signaling. Cell Biosci 2021; 11:46. [PMID: 33653381 PMCID: PMC7923671 DOI: 10.1186/s13578-021-00558-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/16/2021] [Indexed: 12/31/2022] Open
Abstract
Background Hedgehog signaling is essential to the regulation of embryonic development, tissue homeostasis, and stem cell self-renewal, making it a prime target for developing cancer therapeutics. Given the close link between aberrant Hedgehog signaling and cancers, many small molecular compounds have been developed to inhibit Smoothened, a key signal transducer of this pathway, for treating cancer and several such compounds have been approved by the United States Food and Drug Administration (GDC-0449 and LDE-225). However, acquired drug resistance has emerged as an important obstacle to the effective use of these first generation Hedgehog pathway blockers. Thus, new Smoothened inhibitors that can overcome such resistance is an urgent need going forward. Results We established the Smoothened/βarrestin2-GFP high-throughput screening platform based on the mechanistic discovery of Hedgehog signaling pathway, and discovered several active small molecules targeting Smoothened including 0025A. Here we show that 0025A can block the translocation of βarrestin2-GFP to Smoothened, displace Bodipy-cyclopamine binding to wild-type Smoothened or mutant Smoothened-D473H, reduce the accumulation of Smo on primary cilia and the expression of Gli upon Hedgehog stimulation. In addition, we show that 0025A can effectively suppress hair follicle morphogenesis and hair growth in mice. Conclusions Our results demonstrate that 0025A is a potent antagonist targeting Smoothened wild-type and mutant receptors in the Hedgehog signaling pathway and may provide a new therapy for refractory cancers.
Collapse
Affiliation(s)
- Junwan Fan
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Haowen Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Lun Kuang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Zichen Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Wenyan He
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Chen Liu
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China. .,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China.
| | - Steven Y Cheng
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, Jiangsu, China.
| | - Wei Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China. .,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China.
| |
Collapse
|
16
|
Unraveling the Molecular Nexus between GPCRs, ERS, and EMT. Mediators Inflamm 2021; 2021:6655417. [PMID: 33746610 PMCID: PMC7943314 DOI: 10.1155/2021/6655417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent a large family of transmembrane proteins that transduce an external stimulus into a variety of cellular responses. They play a critical role in various pathological conditions in humans, including cancer, by regulating a number of key processes involved in tumor formation and progression. The epithelial-mesenchymal transition (EMT) is a fundamental process in promoting cancer cell invasion and tumor dissemination leading to metastasis, an often intractable state of the disease. Uncontrolled proliferation and persistent metabolism of cancer cells also induce oxidative stress, hypoxia, and depletion of growth factors and nutrients. These disturbances lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER) and induce a cellular condition called ER stress (ERS) which is counteracted by activation of the unfolded protein response (UPR). Many GPCRs modulate ERS and UPR signaling via ERS sensors, IRE1α, PERK, and ATF6, to support cancer cell survival and inhibit cell death. By regulating downstream signaling pathways such as NF-κB, MAPK/ERK, PI3K/AKT, TGF-β, and Wnt/β-catenin, GPCRs also upregulate mesenchymal transcription factors including Snail, ZEB, and Twist superfamilies which regulate cell polarity, cytoskeleton remodeling, migration, and invasion. Likewise, ERS-induced UPR upregulates gene transcription and expression of proteins related to EMT enhancing tumor aggressiveness. Though GPCRs are attractive therapeutic targets in cancer biology, much less is known about their roles in regulating ERS and EMT. Here, we will discuss the interplay in GPCR-ERS linked to the EMT process of cancer cells, with a particular focus on oncogenes and molecular signaling pathways.
Collapse
|
17
|
Barati M, Akhondi M, Mousavi NS, Haghparast N, Ghodsi A, Baharvand H, Ebrahimi M, Hassani SN. Pluripotent Stem Cells: Cancer Study, Therapy, and Vaccination. Stem Cell Rev Rep 2021; 17:1975-1992. [PMID: 34115316 PMCID: PMC8193020 DOI: 10.1007/s12015-021-10199-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Pluripotent stem cells (PSCs) are promising tools for modern regenerative medicine applications because of their stemness properties, which include unlimited self-renewal and the ability to differentiate into all cell types in the body. Evidence suggests that a rare population of cells within a tumor, termed cancer stem cells (CSCs), exhibit stemness and phenotypic plasticity properties that are primarily responsible for resistance to chemotherapy, radiotherapy, metastasis, cancer development, and tumor relapse. Different therapeutic approaches that target CSCs have been developed for tumor eradication. RESULTS AND DISCUSSION In this review, we first provide an overview of different viewpoints about the origin of CSCs. Particular attention has been paid to views believe that CSCs are probably appeared through dysregulation of very small embryonic-like stem cells (VSELs) which reside in various tissues as the main candidate for tissue-specific stem cells. The expression of pluripotency markers in these two types of cells can strengthen the validity of this theory. In this regard, we discuss the common properties of CSCs and PSCs, and highlight the potential of PSCs in cancer studies, therapeutic applications, as well as educating the immune system against CSCs. CONCLUSION In conclusion, the resemblance of CSCs to PSCs can provide an appropriate source of CSC-specific antigens through cultivation of PSCs which brings to light promising ideas for prophylactic and therapeutic cancer vaccine development.
Collapse
Affiliation(s)
- Mojgan Barati
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Akhondi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Narges Sabahi Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Newsha Haghparast
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Asma Ghodsi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
18
|
Garcia-Lopez J, Kumar R, Smith KS, Northcott PA. Deconstructing Sonic Hedgehog Medulloblastoma: Molecular Subtypes, Drivers, and Beyond. Trends Genet 2020; 37:235-250. [PMID: 33272592 DOI: 10.1016/j.tig.2020.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Medulloblastoma (MB) is a highly malignant cerebellar tumor predominantly diagnosed during childhood. Driven by pathogenic activation of sonic hedgehog (SHH) signaling, SHH subgroup MB (SHH-MB) accounts for nearly one-third of diagnoses. Extensive molecular analyses have identified biologically and clinically relevant intertumoral heterogeneity among SHH-MB tumors, prompting the recognition of novel subtypes. Beyond germline and somatic mutations promoting constitutive SHH signaling, driver alterations affect a multitude of pathways and molecular processes, including TP53 signaling, chromatin modulation, and post-transcriptional gene regulation. Here, we review recent advances in the underpinnings of SHH-MB in the context of molecular subtypes, clarify novel somatic and germline drivers, highlight cellular origins and developmental hierarchies, and describe the composition of the tumor microenvironment and its putative role in tumorigenesis.
Collapse
Affiliation(s)
- Jesus Garcia-Lopez
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rahul Kumar
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
19
|
The Role of Smoothened in Cancer. Int J Mol Sci 2020; 21:ijms21186863. [PMID: 32962123 PMCID: PMC7555769 DOI: 10.3390/ijms21186863] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Smoothened (SMO) belongs to the Hedgehog (HH) signaling pathway, which regulates cell growth, migration, invasion and stem cells in cancer. The HH signaling pathway includes both canonical and noncanonical pathways. The canonical HH pathway functions through major HH molecules such as HH ligands, PTCH, SMO and GLI, whereas the noncanonical HH pathway involves the activation of SMO or GLI through other pathways. The role of SMO has been discussed in different types of cancer, including breast, liver, pancreatic and colon cancers. SMO expression correlates with tumor size, invasiveness, metastasis and recurrence. In addition, SMO inhibitors can suppress cancer formation, reduce the proliferation of cancer cells, trigger apoptosis and suppress cancer stem cell activity. A better understanding of the role of SMO in cancer could contribute to the development of novel therapeutic approaches.
Collapse
|
20
|
Franceschi E, Frappaz D, Rudà R, Hau P, Preusser M, Houillier C, Lombardi G, Asioli S, Dehais C, Bielle F, Di Nunno V, van den Bent M, Brandes AA, Idbaih A. Rare Primary Central Nervous System Tumors in Adults: An Overview. Front Oncol 2020; 10:996. [PMID: 32676456 PMCID: PMC7333775 DOI: 10.3389/fonc.2020.00996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Overall, tumors of primary central nervous system (CNS) are quite common in adults with an incidence rate close to 30 new cases/100,000 inhabitants per year. Significant clinical and biological advances have been accomplished in the most common adult primary CNS tumors (i.e., diffuse gliomas). However, most CNS tumor subtypes are rare with an incidence rate below the threshold defining rare disease of 6.0 new cases/100,000 inhabitants per year. Close to 150 entities of primary CNS tumors have now been identified by the novel integrated histomolecular classification published by the World Health Organization (WHO) and its updates by the c-IMPACT NOW consortium (the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy). While these entities can be better classified into smaller groups either by their histomolecular features and/or by their location, assessing their treatment by clinical trials and improving the survival of patients remain challenging. Despite these tumors are rare, research, and advances remain slower compared to diffuse gliomas for instance. In some cases (i.e., ependymoma, medulloblastoma) the understanding is high because single or few driver mutations have been defined. The European Union has launched European Reference Networks (ERNs) dedicated to support advances on the clinical side of rare diseases including rare cancers. The ERN for rare solid adult tumors is termed EURACAN. Within EURACAN, Domain 10 brings together the European patient advocacy groups (ePAGs) and physicians dedicated to improving outcomes in rare primary CNS tumors and also aims at supporting research, care and teaching in the field. In this review, we discuss the relevant biological and clinical characteristics, clinical management of patients, and research directions for the following types of rare primary CNS tumors: medulloblastoma, pineal region tumors, glioneuronal and rare glial tumors, ependymal tumors, grade III meningioma and mesenchymal tumors, primary central nervous system lymphoma, germ cell tumors, spinal cord tumors and rare pituitary tumors.
Collapse
Affiliation(s)
- Enrico Franceschi
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Didier Frappaz
- Department of Neuro-Oncology and Institut d'Hématologie et d'Oncologie Pédiatrique, Centre Léon Bérard, Lyon, France
| | - Roberta Rudà
- Department of Neuro-Oncology, City of Health and Science and University of Turin, Turin, Italy
| | - Peter Hau
- Wilhelm Sander NeuroOncology-Unit, Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Caroline Houillier
- Sorbonne Université, IHU, ICM, Service de Neurologie 2-Mazarin, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Giuseppe Lombardi
- Department of Oncology, Veneto Institute of Oncology-IRCCS, Padua, Italy
| | - Sofia Asioli
- Section of Anatomic Pathology "M. Malpighi", Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, Bologna, Italy
| | - Caroline Dehais
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Franck Bielle
- Department of Neuropathology, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Sorbonne Université, SIRIC Curamus, Paris, France
| | - Vincenzo Di Nunno
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Martin van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Alba A Brandes
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | | |
Collapse
|
21
|
Ren D, Luo J, Li Y, Zhang J, Yang J, Liu J, Zhang X, Cheng N, Xin H. Saikosaponin B2 attenuates kidney fibrosis via inhibiting the Hedgehog Pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153163. [PMID: 31901891 DOI: 10.1016/j.phymed.2019.153163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/11/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Renal interstitial fibrosis is a common pathway through which chronic kidney disease progresses to end-stage renal disease. There are currently no effective drugs available to treat kidney fibrosis, so traditional medicine is likely to be a candidate. The therapeutic potential of saikosaponin B2 (SSB2), a biologically active ingredient of Radix Bupleuri, on renal fibrosis has not been reported. METHODS A unilateral ureteral obstruction (UUO) model was conducted to induce renal interstitial fibrosis in mice. SSB2's effect was valuated by histological staining and exploring the changes in expression of relative proteins and mRNAs. A conditional medium containing sonic hedgehog variant protein stimulating normal rat kidney interstitial fibroblast cells (NRK-49F) was used in an in vitro model to determine the possible mechanism. The molecular target of SSB2 was verified using several mutation plasmids. RESULTS SSB2 administration reduced kidney injury and alleviated interstitial fibrosis by decreasing excessive accumulation of extracellular matrix components in UUO mice. It could also reduce the expression of α-SMA, fibronectin and Gli1, a crucial molecule of the hedgehog (Hh) signaling pathway both in vivo and in vitro. In NIH-3T3 cells simulated by conditional medium containing sonic hedgehog variant protein, SSB2 showed the ability to decrease the expression of Gli1 and Ptch1 mRNA. Using a dual-luciferase reporter assay, SSB2 suppressed the Gli-luciferase reporter activity in NIH-3T3 cells, and the IC50 was 0.49 μM, but had no effect on the TNF-α/NF-κB and Wnt/β-catenin signaling pathways, indicating the inhibition selectivity on the Hh signaling pathway. Furthermore, SSB2 failed to inhibit the Hh pathway activity evoked by ectopic expression of Gli2ΔN and Smo D473H, suggesting that SSB2 might potentially act on smoothened receptors. CONCLUSION SSB2 could attenuate renal fibrosis and decrease fibroblast activation by inhibiting the Hh signaling pathway.
Collapse
Affiliation(s)
- Dadui Ren
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Jia Luo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Yingxue Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Jing Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Jiahong Yang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Junqiu Liu
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Nengneng Cheng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
22
|
Kiseleva AA, Korobeynikov VA, Nikonova AS, Zhang P, Makhov P, Deneka AY, Einarson MB, Serebriiskii IG, Liu H, Peterson JR, Golemis EA. Unexpected Activities in Regulating Ciliation Contribute to Off-target Effects of Targeted Drugs. Clin Cancer Res 2019; 25:4179-4193. [PMID: 30867219 DOI: 10.1158/1078-0432.ccr-18-3535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/14/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE For many tumors, signaling exchanges between cancer cells and other cells in their microenvironment influence overall tumor signaling. Some of these exchanges depend on expression of the primary cilium on nontransformed cell populations, as extracellular ligands including Sonic Hedgehog (SHH), PDGFRα, and others function through receptors spatially localized to cilia. Cell ciliation is regulated by proteins that are themselves therapeutic targets. We investigated whether kinase inhibitors of clinical interest influence ciliation and signaling by proteins with ciliary receptors in cancer and other cilia-relevant disorders, such as polycystic kidney disease (PKD). EXPERIMENTAL DESIGN We screened a library of clinical and preclinical kinase inhibitors, identifying drugs that either prevented or induced ciliary disassembly. Specific bioactive protein targets of the drugs were identified by mRNA depletion. Mechanism of action was defined, and activity of select compounds investigated. RESULTS We identified multiple kinase inhibitors not previously linked to control of ciliation, including sunitinib, erlotinib, and an inhibitor of the innate immune pathway kinase, IRAK4. For all compounds, activity was mediated through regulation of Aurora-A (AURKA) activity. Drugs targeting cilia influenced proximal cellular responses to SHH and PDGFRα. In vivo, sunitinib durably limited ciliation and cilia-related biological activities in renal cells, renal carcinoma cells, and PKD cysts. Extended analysis of IRAK4 defined a subset of innate immune signaling effectors potently affecting ciliation. CONCLUSIONS These results suggest a paradigm by which targeted drugs may have unexpected off-target effects in heterogeneous cell populations in vivo via control of a physical platform for receipt of extracellular ligands.
Collapse
Affiliation(s)
- Anna A Kiseleva
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Russian Federation
| | - Vladislav A Korobeynikov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Anna S Nikonova
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Peishan Zhang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Petr Makhov
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Alexander Y Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Russian Federation
| | - Margret B Einarson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ilya G Serebriiskii
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Russian Federation
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jeffrey R Peterson
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
23
|
Pietrobono S, Stecca B. Targeting the Oncoprotein Smoothened by Small Molecules: Focus on Novel Acylguanidine Derivatives as Potent Smoothened Inhibitors. Cells 2018; 7:cells7120272. [PMID: 30558232 PMCID: PMC6316656 DOI: 10.3390/cells7120272] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
Hedgehog-GLI (HH) signaling was originally identified as a critical morphogenetic pathway in embryonic development. Since its discovery, a multitude of studies have reported that HH signaling also plays key roles in a variety of cancer types and in maintaining tumor-initiating cells. Smoothened (SMO) is the main transducer of HH signaling, and in the last few years, it has emerged as a promising therapeutic target for anticancer therapy. Although vismodegib and sonidegib have demonstrated effectiveness for the treatment of basal cell carcinoma (BCC), their clinical use has been hampered by severe side effects, low selectivity against cancer stem cells, and the onset of mutation-driven drug resistance. Moreover, SMO antagonists are not effective in cancers where HH activation is due to mutations of pathway components downstream of SMO, or in the case of noncanonical, SMO-independent activation of the GLI transcription factors, the final mediators of HH signaling. Here, we review the current and rapidly expanding field of SMO small-molecule inhibitors in experimental and clinical settings, focusing on a class of acylguanidine derivatives. We also discuss various aspects of SMO, including mechanisms of resistance to SMO antagonists.
Collapse
Affiliation(s)
- Silvia Pietrobono
- Tumor Cell Biology Unit⁻Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy.
| | - Barbara Stecca
- Tumor Cell Biology Unit⁻Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy.
| |
Collapse
|
24
|
Hedgehog Signaling in Cancer: A Prospective Therapeutic Target for Eradicating Cancer Stem Cells. Cells 2018; 7:cells7110208. [PMID: 30423843 PMCID: PMC6262325 DOI: 10.3390/cells7110208] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
The Hedgehog (Hh) pathway is a signaling cascade that plays a crucial role in many fundamental processes, including embryonic development and tissue homeostasis. Moreover, emerging evidence has suggested that aberrant activation of Hh is associated with neoplastic transformations, malignant tumors, and drug resistance of a multitude of cancers. At the molecular level, it has been shown that Hh signaling drives the progression of cancers by regulating cancer cell proliferation, malignancy, metastasis, and the expansion of cancer stem cells (CSCs). Thus, a comprehensive understanding of Hh signaling during tumorigenesis and development of chemoresistance is necessary in order to identify potential therapeutic strategies to target various human cancers and their relapse. In this review, we discuss the molecular basis of the Hh signaling pathway and its abnormal activation in several types of human cancers. We also highlight the clinical development of Hh signaling inhibitors for cancer therapy as well as CSC-targeted therapy.
Collapse
|
25
|
Sonic Hedgehog Medulloblastoma Cancer Stem Cells Mirnome and Transcriptome Highlight Novel Functional Networks. Int J Mol Sci 2018; 19:ijms19082326. [PMID: 30096798 PMCID: PMC6121264 DOI: 10.3390/ijms19082326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
Molecular classification has improved the knowledge of medulloblastoma (MB), the most common malignant brain tumour in children, however current treatments cause severe side effects in patients. Cancer stem cells (CSCs) have been described in MB and represent a sub population characterised by self-renewal and the ability to generate tumour cells, thus representing the reservoir of the tumour. To investigate molecular pathways that characterise this sub population, we isolated CSCs from Sonic Hedgehog Medulloblastoma (SHH MB) arisen in Patched 1 (Ptch1) heterozygous mice, and performed miRNA- and mRNA-sequencing. Comparison of the miRNA-sequencing of SHH MB CSCs with that obtained from cerebellar Neural Stem Cells (NSCs), allowed us to obtain a SHH MB CSC miRNA differential signature. Pathway enrichment analysis in SHH MB CSCs mirnome and transcriptome was performed and revealed a series of enriched pathways. We focused on the putative targets of the SHH MB CSC miRNAs that were involved in the enriched pathways of interest, namely pathways in cancer, PI3k-Akt pathway and protein processing in endoplasmic reticulum pathway. In silico analysis was performed in SHH MB patients and identified several genes, whose expression was associated with worse overall survival of SHH MB patients. This study provides novel candidates whose functional role should be further investigated in SHH MB.
Collapse
|