1
|
Azouz AA, Tohamy MA, Ali FEM, Mahmoud HM. Enhanced eNOS/nitric oxide production by nebivolol interferes with TGF-β1/Smad3 signaling and collagen I deposition in the kidney after prolonged tacrolimus administration. Life Sci 2024; 355:122995. [PMID: 39159720 DOI: 10.1016/j.lfs.2024.122995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
AIMS Tacrolimus is an effective immunosuppressant commonly used post-transplantation and in certain autoimmune diseases. However, its long-term administration is associated with renal fibrosis through transforming growth factor-beta/suppressor of mother against decapentaplegic (TGF-β/Smad) signaling that could be partly attributed to endothelial dysfunction alongside decreased nitric oxide (NO) release. Our study aimed to investigate the prospective renal anti-fibrotic effect of enhanced NO production by nebivolol against tacrolimus-stimulated TGF-β1/Smad3 signaling. MATERIALS AND METHODS To illustrate the proposed mechanism of nebivolol, Nω-nitro-L-arginine methyl ester (L-NAME); nitric oxide synthase inhibitor; was co-administered with nebivolol. Rats were treated for 30 days as control, tacrolimus, tacrolimus/nebivolol, tacrolimus/L-NAME, and tacrolimus/nebivolol/L-NAME groups. KEY FINDINGS Our results revealed that renal NO content was reduced in tacrolimus-treated rats, while treatment with tacrolimus/nebivolol enhanced NO content via up-regulated endothelial nitric oxide synthase (eNOS), but down-regulated inducible nitric oxide synthase (iNOS) expression. That participated in the inhibition of TGF-β1/Smad3 signaling induced by tacrolimus, where the addition of L-NAME abolished the defensive effects of nebivolol. Subsequently, the deposition of collagen I and alpha-smooth muscle actin (α-SMA) was retarded by nebivolol, emphasized by reduced Masson's trichrome staining. In accordance, there was a strong negative correlation between eNOS and both TGF-β1 and collagen I protein expression. The protective effects of nebivolol were further confirmed by the improvement in kidney function biomarkers and histological features. SIGNIFICANCE It can be suggested that treatment with nebivolol along with tacrolimus could effectively suppress renal TGF-β1/Smad3 fibrotic signaling via the enhancement of endothelial NO production, thus curbing renal fibrosis development.
Collapse
Affiliation(s)
- Amany A Azouz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Mohamed A Tohamy
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Heba M Mahmoud
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
2
|
Zhao YC, Sun ZH, Li JK, Liu HY, Zhang BK, Xie XB, Fang CH, Sandaradura I, Peng FH, Yan M. Individualized dosing parameters for tacrolimus in the presence of voriconazole: a real-world PopPK study. Front Pharmacol 2024; 15:1439232. [PMID: 39318775 PMCID: PMC11419969 DOI: 10.3389/fphar.2024.1439232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Objectives Significant increase in tacrolimus exposure was observed during co-administration with voriconazole, and no population pharmacokinetic model exists for tacrolimus in renal transplant recipients receiving voriconazole. To achieve target tacrolimus concentrations, an optimal dosage regimen is required. This study aims to develop individualized dosing parameters through population pharmacokinetic analysis and simulate tacrolimus concentrations under different dosage regimens. Methods We conducted a retrospective study of renal transplant recipients who were hospitalized at the Second Xiangya Hospital of Central South University between January 2016 and March 2021. Subsequently, pharmacokinetic analysis and Monte Carlo simulation were employed for further analysis. Results Nineteen eligible patients receiving tacrolimus and voriconazole co-therapy were included in the study. We collected 167 blood samples and developed a one-compartment model with first-order absorption and elimination to describe the pharmacokinetic properties of tacrolimus. The final typical values for tacrolimus elimination rate constant (Ka), apparent volume of distribution (V/F), and apparent oral clearance (CL/F) were 8.39 h-1, 2690 L, and 42.87 L/h, respectively. Key covariates in the final model included voriconazole concentration and serum creatinine. Patients with higher voriconazole concentration had lower tacrolimus CL/F and V/F. In addition, higher serum creatinine levels were associated with lower tacrolimus CL/F. Conclusion Our findings suggest that clinicians can predict tacrolimus concentration and estimate optimal tacrolimus dosage based on voriconazole concentration and serum creatinine. The effect of voriconazole concentration on tacrolimus concentration was more significant than serum creatinine. These findings may inform clinical decision-making in the management of tacrolimus and voriconazole therapy in solid organ transplant recipients.
Collapse
Affiliation(s)
- Yi-Chang Zhao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Zhi-Hua Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jia-Kai Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Huai-Yuan Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Xu-Biao Xie
- Department of Urological Organ Transplantation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun-Hua Fang
- Department of Urological Organ Transplantation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Indy Sandaradura
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, NSW, Australia
| | - Feng-Hua Peng
- Department of Urological Organ Transplantation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| |
Collapse
|
3
|
Xu X, Zhang H, Liu L, Fu Q, Wu C, Lin X, Tang K, Wang C, Chen P. Pharmacokinetics of nirmatrelvir/ritonavir and the drug-drug interaction with calcineurin inhibitor in renal transplant recipients. Eur J Clin Pharmacol 2024; 80:1219-1227. [PMID: 38691139 DOI: 10.1007/s00228-024-03691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVES To describe the pharmacokinetic (PK) characteristics of nirmatrelvir/ritonavir in renal transplant recipients and explore the potential factors that related to the PK variance of nirmatrelvir/ritonavir and its interaction with calcineurin inhibitor (CNI). METHODS Renal transplant recipients treated with CNI and nirmatrelvir/ritonavir were prospectively enrolled. Steady-state plasma concentrations of nirmatrelvir/ritonavir were determined by high-performance liquid chromatography-tandem mass spectrometry, and the PK parameters were calculated using non-compartmental analysis. Spearman correlation analysis was used for exploring influencing factors. RESULTS A total of eight recipients were enrolled; for nirmatrelvir and ritonavir, AUC/dose was 0.24179 ± 0.14495 and 0.06196 ± 0.03767 μg·h·mL-1·mg-1. Red blood cell (RBC), hematocrit (Ht), hemoglobins (Hb), and creatinine clearance (Ccr) were negatively correlated with AUC/dose of nirmatrelvir, while Ccr, CYP3A5 genotype, and CYP3A4 genotype were related to the AUC/dose of ritonavir. Ccr was negatively correlated with the C0/dose of tacrolimus (TAC) after termination of nirmatrelvir/ritonavir (rs = -0.943, p = 0.008). CONCLUSIONS The PK characteristics of nirmatrelvir/ritonavir vary greatly among renal transplant recipients. Factors including Ccr and CYP3A5 genotype were related to the in vivo exposure of nirmatrelvir/ritonavir. During the whole process before and after nirmatrelvir/ritonavir therapy, it is recommended to adjust the CNI basing on renal function to avoid CNI toxicity exposure.
Collapse
Affiliation(s)
- Xueyin Xu
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou, China
- Institute of Clinical Pharmacology, Sun Yat-sen University, Guangzhou, China
| | - Huanxi Zhang
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou, China
| | - Longshan Liu
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou, China
| | - Qian Fu
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou, China
| | - Chenglin Wu
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou, China
| | - Xiaobin Lin
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou, China
| | - Kejing Tang
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou, China
| | - Changxi Wang
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou, China.
| | - Pan Chen
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou, China.
| |
Collapse
|
4
|
Maslauskiene R, Vaiciuniene R, Radzeviciene A, Tretjakovs P, Gersone G, Stankevicius E, Bumblyte IA. The Influence of Tacrolimus Exposure and Metabolism on the Outcomes of Kidney Transplants. Biomedicines 2024; 12:1125. [PMID: 38791087 PMCID: PMC11117915 DOI: 10.3390/biomedicines12051125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Tacrolimus (TAC) has a narrow therapeutic window and patient-specific pharmacokinetic variability. In our study, we analyzed the association between TAC exposure, metabolism, and kidney graft outcomes (function, rejection, and histological lesions). TAC trough (C0), coefficient of variation (TAC CV), concentration/dose ratio (C/D), and biomarkers related to kidney injury molecule-1 (KIM-1) and neutrophil gelatinase lipocalin (NGAL) were analyzed. We examined 174 patients who were subjected to a triple immunosuppressive regimen and underwent kidney transplantation between 2017 and 2022. Surveillance biopsies were performed at the time of kidney implantation and at three and twelve months after transplantation. We classified patients based on their Tac C/D ratios, classifying them as fast (C/D ratio < 1.05 ng/mL × 1/mg) or slow (C/D ratio ≥ 1.05 ng/mL × 1/mg) metabolizers. TAC exposure/metabolism did not significantly correlate with interstitial fibrosis/tubular atrophy (IF/TA) progression during the first year after kidney transplantation. TAC CV third tertile was associated with a higher chronicity score at one-year biopsy. TAC C/D ratio at three months and Tac C0 at six months were associated with rejection during the first year after transplantation. A fast TAC metabolism at six months was associated with reduced kidney graft function one year (OR: 2.141, 95% CI: 1.044-4.389, p = 0.038) and two years after transplantation (OR: 4.654, 95% CI: 1.197-18.097, p = 0.026), and TAC CV was associated with reduced eGFR at three years. uNGAL correlated with IF/TA and chronicity scores at three months and negatively correlated with TAC C0 and C/D at three months and one year. Conclusion: Calculating the C/D ratio at three and six months after transplantation may help to identify patients at risk of suffering acute rejection and deterioration of graft function.
Collapse
Affiliation(s)
- Rima Maslauskiene
- Department of Nephrology, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (R.V.); (I.A.B.)
| | - Ruta Vaiciuniene
- Department of Nephrology, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (R.V.); (I.A.B.)
| | - Aurelija Radzeviciene
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.R.); (E.S.)
| | - Peteris Tretjakovs
- Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia; (P.T.); (G.G.)
| | - Gita Gersone
- Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia; (P.T.); (G.G.)
| | - Edgaras Stankevicius
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.R.); (E.S.)
| | - Inga Arune Bumblyte
- Department of Nephrology, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (R.V.); (I.A.B.)
| |
Collapse
|
5
|
Abderahmene A, Francke MI, Andrews LM, Hesselink DA, Amor D, Sahtout W, Ajmi M, Mastouri H, Bouslama A, Zellama D, Omezzine A, De Winter BCM. A Population Pharmacokinetic Model to Predict the Individual Starting Dose of Tacrolimus for Tunisian Adults after Renal Transplantation. Ther Drug Monit 2024; 46:57-66. [PMID: 38018879 DOI: 10.1097/ftd.0000000000001147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/23/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Tacrolimus is the most frequently used immunosuppressive drug for preventing renal rejection. However, its use is hampered by its narrow therapeutic index and large intra and interpatient variability in pharmacokinetics. The objective of this study was to externally validate a tacrolimus population pharmacokinetic model developed for the Dutch population and adjust the model for the Tunisian population for use in predicting the starting dose requirement after kidney transplantation. METHODS Data on tacrolimus exposure were obtained from kidney transplant recipients (KTRs) during the first 3 months post-transplantation. External validation of the Dutch model and its adjustment for the Tunisian population was performed using nonlinear mixed-effects modeling. RESULTS In total, 1901 whole-blood predose tacrolimus concentrations from 196 adult KTRs were analyzed. According to a visual predictive check, the Dutch model underestimated the starting dose for the Tunisian adult population. The effects of age, together with the CYP3A5*3 and CYP3A4*22 genotypes on tacrolimus clearance were significantly different in the Tunisian population than in the Dutch population. Based on a bodyweight-based dosing, only 21.9% of tacrolimus concentrations were within the target range, whereas this was estimated to be 54.0% with the newly developed model-based dosing. After adjustment, the model was successfully validated internally in a Tunisian population. CONCLUSIONS A starting-dose population pharmacokinetic model of tacrolimus for Tunisian KTRs was developed based on a previously published Dutch model. Using this starting dose could potentially increase the percentage of patients achieving target tacrolimus concentrations after the initial starting dose.
Collapse
Affiliation(s)
- Amani Abderahmene
- Department of Biochemistry , LR12SP11, Sahloul University Hospital, Sousse, University of Monastir Faculty of Pharmacy of Monastir, Monastir, Tunisia
- Rotterdam Clinical Pharmacometrics Group, Rotterdam, the Netherlands
| | - Marith I Francke
- Rotterdam Clinical Pharmacometrics Group, Rotterdam, the Netherlands
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Rotterdam, the Netherlands
| | - Louise M Andrews
- Department of Hospital Pharmacy, Meander MC, Amersfoort, the Netherlands
| | - Dennis A Hesselink
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Rotterdam, the Netherlands
| | - Dorra Amor
- Department of Biochemistry , LR12SP11, Sahloul University Hospital, Sousse, University of Monastir Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Wissal Sahtout
- Department of Nephrology, Sahloul University Hospital, Sousse, Tunisia; and
| | - Marwa Ajmi
- Department of Biochemistry , LR12SP11, Sahloul University Hospital, Sousse, University of Monastir Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Hayfa Mastouri
- Department of Biochemistry , LR12SP11, Sahloul University Hospital, Sousse, University of Monastir Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Ali Bouslama
- Department of Biochemistry , LR12SP11, Sahloul University Hospital, Sousse, University of Monastir Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Dorsaf Zellama
- Department of Nephrology, Sahloul University Hospital, Sousse, Tunisia; and
| | - Asma Omezzine
- Department of Biochemistry , LR12SP11, Sahloul University Hospital, Sousse, University of Monastir Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Brenda C M De Winter
- Rotterdam Clinical Pharmacometrics Group, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Rotterdam, the Netherlands
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| |
Collapse
|
6
|
Musiał K, Stojanowski J, Miśkiewicz-Bujna J, Kałwak K, Ussowicz M. KIM-1, IL-18, and NGAL, in the Machine Learning Prediction of Kidney Injury among Children Undergoing Hematopoietic Stem Cell Transplantation-A Pilot Study. Int J Mol Sci 2023; 24:15791. [PMID: 37958774 PMCID: PMC10648899 DOI: 10.3390/ijms242115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Children undergoing allogeneic hematopoietic stem cell transplantation (HSCT) are prone to developing acute kidney injury (AKI). Markers of kidney damage: kidney injury molecule (KIM)-1, interleukin (IL)-18, and neutrophil gelatinase-associated lipocalin (NGAL) may ease early diagnosis of AKI. The aim of this study was to assess serum concentrations of KIM-1, IL-18, and NGAL in children undergoing HSCT in relation to classical markers of kidney function (creatinine, cystatin C, estimated glomerular filtration rate (eGFR)) and to analyze their usefulness as predictors of kidney damage with the use of artificial intelligence tools. Serum concentrations of KIM-1, IL-18, NGAL, and cystatin C were assessed by ELISA in 27 children undergoing HSCT before transplantation and up to 4 weeks after the procedure. The data was used to build a Random Forest Classifier (RFC) model of renal injury prediction. The RFC model established on the basis of 3 input variables, KIM-1, IL-18, and NGAL concentrations in the serum of children before HSCT, was able to effectively assess the rate of patients with hyperfiltration, a surrogate marker of kidney injury 4 weeks after the procedure. With the use of the RFC model, serum KIM-1, IL-18, and NGAL may serve as markers of incipient renal dysfunction in children after HSCT.
Collapse
Affiliation(s)
- Kinga Musiał
- Department of Pediatric Nephrology, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland
| | - Jakub Stojanowski
- Department of Nephrology and Transplantation Medicine, Wrocław Medical University, 50-556 Wrocław, Poland
| | - Justyna Miśkiewicz-Bujna
- Clinical Department of Pediatric Oncology and Hematology, Mother and Child Health Center, Karol Marcinkowski University Hospital, 65-046 Zielona Góra, Poland
| | - Krzysztof Kałwak
- Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wrocław Medical University, 50-556 Wrocław, Poland
| | - Marek Ussowicz
- Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wrocław Medical University, 50-556 Wrocław, Poland
| |
Collapse
|
7
|
Elalouf A. Infections after organ transplantation and immune response. Transpl Immunol 2023; 77:101798. [PMID: 36731780 DOI: 10.1016/j.trim.2023.101798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/08/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Organ transplantation has provided another chance of survival for end-stage organ failure patients. Yet, transplant rejection is still a main challenging factor. Immunosuppressive drugs have been used to avoid rejection and suppress the immune response against allografts. Thus, immunosuppressants increase the risk of infection in immunocompromised organ transplant recipients. The infection risk reflects the relationship between the nature and severity of immunosuppression and infectious diseases. Furthermore, immunosuppressants show an immunological impact on the genetics of innate and adaptive immune responses. This effect usually reactivates the post-transplant infection in the donor and recipient tissues since T-cell activation has a substantial role in allograft rejection. Meanwhile, different infections have been found to activate the T-cells into CD4+ helper T-cell subset and CD8+ cytotoxic T-lymphocyte that affect the infection and the allograft. Therefore, the best management and preventive strategies of immunosuppression, antimicrobial prophylaxis, and intensive medical care are required for successful organ transplantation. This review addresses the activation of immune responses against different infections in immunocompromised individuals after organ transplantation.
Collapse
Affiliation(s)
- Amir Elalouf
- Bar-Ilan University, Department of Management, Ramat Gan 5290002, Israel.
| |
Collapse
|
8
|
Chen L, Song M, Yao C. Calcineurin in development and disease. Genes Dis 2022; 9:915-927. [PMID: 35685477 PMCID: PMC9170610 DOI: 10.1016/j.gendis.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/27/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022] Open
Abstract
Calcineurin (CaN) is a unique calcium (Ca2+) and calmodulin (CaM)-dependent serine/threonine phosphatase that becomes activated in the presence of increased intracellular Ca2+ level. CaN then functions to dephosphorylate target substrates including various transcription factors, receptors, and channels. Once activated, the CaN signaling pathway participates in the development of multiple organs as well as the onset and progression of various diseases via regulation of different cellular processes. Here, we review current literature regarding the structural and functional properties of CaN, highlighting its crucial role in the development and pathogenesis of immune system disorders, neurodegenerative diseases, kidney disease, cardiomyopathy and cancer.
Collapse
Affiliation(s)
- Lei Chen
- Department of Blood Transfusion, First Affiliated Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Min Song
- Department of Blood Transfusion, First Affiliated Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Chunyan Yao
- Department of Blood Transfusion, First Affiliated Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| |
Collapse
|
9
|
Chen W, Wang X, Li B, Qin W, Li S, Wang X, Chen W, Zhang X, Li P, Zuo X. Effects Of Voriconazole Exposure on The Pharmacokinetics of Tacrolimus in Lung Transplantation Patients: Based on Therapeutic Drug Monitoring Data. J Clin Pharmacol 2022; 62:1310-1320. [PMID: 35485761 DOI: 10.1002/jcph.2066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/23/2022] [Indexed: 11/07/2022]
Abstract
Tacrolimus and voriconazole are usually used simultaneously in lung transplantations. Voriconazole can increase tacrolimus concentrations by inhibiting the CYP enzyme, which poses a great challenge for dose adjustment. The aim of this study is to clarify the correlation between voriconazole exposure and tacrolimus trough concentrations (C0 ), and to establish a population pharmacokinetic model including voriconazole trough concentrations (VOZ) as a covariate for dose optimization. All data were retrospectively collected from lung transplantation patients who were subjected to the therapeutic drug monitoring of tacrolimus and voriconazole. The correlation between C0 and VOZ or voriconazole daily doses was analyzed by Spearman's correlation. A total of 52 patients accounting for 351 pairs of tacrolimus and voriconazole trough concentrations were included. C0 and C0 /DD had a significant correlation with VOZ (P<0.01) rather than voriconazole daily doses. A linear one-compartment model with first-order absorption and elimination was used as basic model in population pharmacokinetic analysis. The body weight (WT), daily dose of tacrolimus (DD), VOZ, and hematocrit (HCT) were included as covariates in the final model. With the increase in voriconazole concentrations, the apparent total clearance (CL/F) of tacrolimus decreased significantly. The simulation results showed that the highest proportion of C0 within the target range can only reach lower than 50% when optimal initial drug regimen was given. Therefore, both tacrolimus and voriconazole concentrations need to be continuously monitored during treatments in lung transplantation patients, and the tacrolimus dose can be optimized according to VOZ based on the established pharmacokinetic model. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wenqian Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoxue Wang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Bo Li
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Wei Qin
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Shu Li
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoxing Wang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Wenhui Chen
- Department of Lung Transplantation, China-Japan Friendship Hospital, Beijing, China
| | - Xianglin Zhang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Pengmei Li
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Xianbo Zuo
- Clinical Trial Research Center, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
10
|
Cheng X, Jie M, Xu X, Zhang L, Wang X, Wu R. Effect of Wuzhi capsules on cyclosporine A concentration in children with aplastic anemia immunotherapy: a single-center observational study. Expert Rev Clin Pharmacol 2022; 15:365-369. [PMID: 35212597 DOI: 10.1080/17512433.2022.2045193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE This research aimed to assess the effect of Wuzhi capsules (WZC) on the blood concentration of cyclosporine A (CsA) in renal aplastic anemia recipients. METHODS : This observational study was carried out at the Hematology Oncology Center, Beijing Children's Hospital between November 2019 and February 2020. A total of 102 Chinese AA recipients receiving CsA (6mg/kg/d) with or without WZC were included in this study. Baseline data, such as age, therapeutic drug monitoring data, and follow-up information were collected. The promotion concentration of CsA was calculated, and the pharmaceutical economics evaluation with combination of two drugs was also carried out. RESULTS : Dose- and body weight-adjusted trough concentrations (C0/D/W) of CsA in the WZC group were found to be significantly higher than that in the non-WZC group (P<0.01). The average C0 of CsA increased by (63.27±45.81) ng/mL. The incidence of adverse events was also not statistically significant between the two groups (P>0.05). CONCLUSION :WZC can increase CsA concentration without increasing adverse drug reactions. Efficient and convenient immunosuppressive effects on AA recipients can be achieved via immunosuppressant therapy in combination with WZC.
Collapse
Affiliation(s)
- Xiaoling Cheng
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Ma Jie
- Department of Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Xiaolin Xu
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Liqiang Zhang
- Department of Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Xiaoling Wang
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Runhui Wu
- Department of Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| |
Collapse
|
11
|
Hu J, Tan Y, Chen Y, Mo S, Hekking B, Su J, Pu M, Lu A, Symons JD, Yang T. Role of (Pro)Renin Receptor in Cyclosporin A-Induced Nephropathy. Am J Physiol Renal Physiol 2022; 322:F437-F448. [PMID: 35073210 PMCID: PMC9662808 DOI: 10.1152/ajprenal.00332.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcineurin inhibitors (CNIs) such as cyclosporin A (CsA) have been widely used to improve graft survival following solid-organ transplantation. However, the clinical use of CsA is often limited by its nephrotoxicity. The present study tested the hypothesis that activation of (pro)renin receptor (PRR) contributes to CsA-induced nephropathy by activating the renin-angiotensin system (RAS). Renal injury in male Sprague-Dawley rats was induced by a low-salt diet combined with CsA as evidenced by elevated plasma creatinine and BUN levels, decreased creatinine clearance and induced renal inflammation, apoptosis as well as interstitial fibrosis, elevated urinary N-acetyl-β-D-glucosaminidase activity and urinary kidney injury molecular 1 content. Each index of renal injury was attenuated following a 2-wk treatment with a PRR decoy inhibitor PRO20. While CsA rats with kidney injury displayed increased renal sPRR abundance, plasma sPRR, renin activity, Ang II, and heightened urinary total prorenin/renin content; RAS activation was attenuated by PRO20. Exposure of cultured human renal proximal tubular HK-2 cells to CsA induced expression of fibronectin and sPRR production, but the fibrotic response was attenuated by PRO20 and siRNA-mediated PRR knockdown. These findings support the hypothesis that activation of PRR contributes to CsA-induced nephropathy by activating the RAS in rats. Of importance, we provide strong proof of concept that targeting PRR offers a novel therapeutic strategy to limit nephotoxic effects of immunosuppressant drugs.
Collapse
Affiliation(s)
- Jiajia Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yandan Tan
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanting Chen
- Department of Internal Medicine, University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Shiqi Mo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Brittin Hekking
- Department of Internal Medicine, University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Jiahui Su
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Min Pu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Aihua Lu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - J. David Symons
- Department of Nutrition and Integrative Physiology; Division of Endocrinology, Metabolism, and Diabetes, Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| |
Collapse
|
12
|
Significance of Ethnic Factors in Immunosuppressive Therapy Management After Organ Transplantation. Ther Drug Monit 2021; 42:369-380. [PMID: 32091469 DOI: 10.1097/ftd.0000000000000748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinical outcomes after organ transplantation have greatly improved in the past 2 decades with the discovery and development of immunosuppressive drugs such as calcineurin inhibitors, antiproliferative agents, and mammalian target of rapamycin inhibitors. However, individualized dosage regimens have not yet been fully established for these drugs except for therapeutic drug monitoring-based dosage modification because of extensive interindividual variations in immunosuppressive drug pharmacokinetics. The variations in immunosuppressive drug pharmacokinetics are attributed to interindividual variations in the functional activity of cytochrome P450 enzymes, UDP-glucuronosyltransferases, and ATP-binding cassette subfamily B member 1 (known as P-glycoprotein or multidrug resistance 1) in the liver and small intestine. Some genetic variations have been found to be involved to at least some degree in pharmacokinetic variations in post-transplant immunosuppressive therapy. It is well known that the frequencies and effect size of minor alleles vary greatly between different races. Thus, ethnic considerations might provide useful information for optimizing individualized immunosuppressive therapy after organ transplantation. Here, we review ethnic factors affecting the pharmacokinetics of immunosuppressive drugs requiring therapeutic drug monitoring, including tacrolimus, cyclosporine, mycophenolate mofetil, sirolimus, and everolimus.
Collapse
|
13
|
Wang Y, Zheng Y, Wen J, Ren J, Yuan X, Yang T, Hu J. Cyclosporine A-related neurotoxicity after haploidentical hematopoietic stem cell transplantation in children with hematopathy. Ital J Pediatr 2021; 47:83. [PMID: 33794964 PMCID: PMC8017700 DOI: 10.1186/s13052-021-01037-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/23/2021] [Indexed: 12/02/2022] Open
Abstract
Background To evaluate cyclosporine A (CSA)-related neurotoxicity after haploidentical hematopoietic stem cell transplantation (HID-HSCT) in children with hematopathy. Methods This retrospective case series study included children with hematopathy who underwent HID-HSCT at Fujian Medical University Union Hospital between February 2013 and January 2017. Results Fifty-one children (39 males) were included in the study with a median age of 8 (range, 1.1–18) years. Seven patients (13.7%) developed CSA-related neurotoxicity after a median 38 (range, − 3 to 161) days from HID-HSCT. Hypertension (5/7, 71%) was the most common prodrome. Brain magnetic resonance imaging showed posterior reversible encephalopathy syndrome in six patients and atypical abnormalities in one patient. One patient died from grade IV graft-versus-host disease (GvHD) on day + 160, and six patients were alive at the last follow-up. Four patients (71.4%) achieved complete remission, while two patients developed secondary epilepsy and exhibited persistent MRI and electroencephalogram abnormalities at the 5-year follow-up. Hypertension after CSA was more common in patients with CSA-related neurotoxicity than in those without (71% vs. 11%, P = 0.002). Five-year overall survival did not differ significantly between patients with CSA-related neurotoxicity (85.7 ± 13.2%) and those without (65.8 ± 7.2%). Conclusions The incidence of CSA-related neurotoxicity in children with hematopathy undergoing HID-HSCT is relatively high.
Collapse
Affiliation(s)
- Yong Wang
- Department of Pediatric, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Gulou District, Fuzhou City, Fujian Province, China
| | - Yongzhi Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Gulou District, Fuzhou City, Fujian Province, China
| | - Jingjing Wen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Gulou District, Fuzhou City, Fujian Province, China
| | - Jinhua Ren
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Gulou District, Fuzhou City, Fujian Province, China
| | - Xiaohong Yuan
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Gulou District, Fuzhou City, Fujian Province, China
| | - Ting Yang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Gulou District, Fuzhou City, Fujian Province, China.
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Gulou District, Fuzhou City, Fujian Province, China.
| |
Collapse
|
14
|
Fu R, Tajima S, Shigematsu T, Zhang M, Tsuchimoto A, Egashira N, Ieiri I, Masuda S. Establishment of an experimental rat model of tacrolimus-induced kidney injury accompanied by interstitial fibrosis. Toxicol Lett 2021; 341:43-50. [PMID: 33516819 DOI: 10.1016/j.toxlet.2021.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/26/2022]
Abstract
Nephrotoxicity is the major adverse reaction to tacrolimus; however, the underlying mechanisms remain to be fully elucidated. Although several tacrolimus-induced nephrotoxicity animal models have been reported, most renal injury rat models contain factors other than tacrolimus. Here, we report the development of a new nephrotoxicity with interstitial fibrosis rat model induced by tacrolimus administration. Thirty Wistar rats were randomly divided into four groups: sham-operated (Sham), vehicle-treated ischemia reperfusion (I/R) injury (IRI), tacrolimus treated (TAC) and tacrolimus treated I/R injury (TAC + IRI). Rats subjected to IR injury and treated with tacrolimus for 2 weeks showed higher serum creatinine (Scr), blood urea nitrogen (BUN), serum magnesium (Mg) and serum potassium (K), indicating decreased renal function. In addition, tacrolimus treatment combined with IR injury increased histological injury (tubular vacuolation, glomerulosclerosis and interstitial fibrosis), as well as α-smooth muscle actin (α-SMA), transforming growth factor-β (TGF-β), and kidney injury molecule-1 (KIM-1) expression in the renal cortex. In summary, we have developed a tacrolimus-induced kidney injury rat model with interstitial fibrosis within 2 weeks by creating conditions mimicking renal transplantation via tacrolimus administration following ischemia-reperfusion.
Collapse
Affiliation(s)
- Rao Fu
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan
| | | | - Tomohiro Shigematsu
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan; Department of Pharmacy, Kyushu University Hospital, Japan
| | - Mengyu Zhang
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan
| | - Akihiro Tsuchimoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Nobuaki Egashira
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan; Department of Pharmacy, Kyushu University Hospital, Japan
| | - Ichiro Ieiri
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan; Department of Pharmacy, Kyushu University Hospital, Japan
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Japan; Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, International University of Health and Welfare, Japan
| |
Collapse
|
15
|
Cai X, Song H, Jiao Z, Yang H, Zhu M, Wang C, Wei D, Shi L, Wu B, Chen J. Population pharmacokinetics and dosing regimen optimization of tacrolimus in Chinese lung transplant recipients. Eur J Pharm Sci 2020; 152:105448. [PMID: 32621968 DOI: 10.1016/j.ejps.2020.105448] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 01/16/2023]
Abstract
We aimed to (i) develop a population pharmacokinetic model of tacrolimus in Chinese lung transplant recipients and (ii) propose model-based dosing regimens for individualized treatment. We obtained 807 tacrolimus steady-state whole blood concentrations from 52 lung transplant patients and genotyped CYP3A5*3. Population pharmacokinetic analysis was performed using nonlinear mixed-effects modeling. Monte Carlo simulations were employed to determine the initial dosing regimens. Tacrolimus pharmacokinetics was described by a one-compartment model with first-order absorption and elimination processes. In CYP3A5*3/*3 70-kg patients with 30% hematocrit and voriconazole-free therapy, the mean estimated apparent clearance was 13.1 l h-1 with 20.1% between-subject variability, which was lower than that in Caucasian lung transplant patients (17.5-36.5 l h-1). Hematocrit, postoperative days, tacrolimus daily dose, voriconazole concomitant therapy, and CYP3A5*3 genotype were identified as significant covariates for tacrolimus clearance. To achieve target trough concentration (10-15 ng ml-1) on the 8th day post-transplant, a higher initial dosage than the current regimen of 0.04 mg kg-1 every 12 h is recommended for CYP3A5*1/*3 patients without voriconazole concomitant therapy. Given the nonlinear kinetics of tacrolimus and large variability, population pharmacokinetic model should be combined with therapeutic drug monitoring to optimize individualized therapy.
Collapse
Affiliation(s)
- Xiaojun Cai
- Department of Pharmacy, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, PR China; Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Huizhu Song
- Department of Pharmacy, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, PR China
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| | - Hang Yang
- Lung Transplant Center, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, PR China
| | - Min Zhu
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, PR China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Chengyu Wang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Dong Wei
- Lung Transplant Center, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, PR China
| | - Lingzhi Shi
- Lung Transplant Center, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, PR China
| | - Bo Wu
- Lung Transplant Center, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, PR China.
| | - Jingyu Chen
- Lung Transplant Center, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, PR China.
| |
Collapse
|
16
|
Establishment of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Immunosuppressant Levels in the Peripheral Blood Mononuclear Cells of Chinese Renal Transplant Recipients. Ther Drug Monit 2020; 42:686-694. [PMID: 32858576 DOI: 10.1097/ftd.0000000000000765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Monitoring immunosuppressant levels, such as mycophenolic acid (MPA), cyclosporin A (CsA), and tacrolimus (TAC), in peripheral blood mononuclear cells (PBMCs) could be useful in organ transplant patients administered individualized therapy. The authors developed a liquid chromatography-tandem mass spectrometry assay technique to simultaneously determine immunosuppressant levels in PBMCs and assess their pharmacokinetics in Chinese renal allograft recipients. METHODS PBMCs were isolated from the whole blood of 27 Chinese renal transplant patients using Ficoll-Paque Plus solution, and cell number was determined; acetonitrile treatment for protein precipitation, and gradient elution was performed on an Agilent Eclipse XDB-C18 column (3.5 μm, 2.1 × 100 mm) with mobile phase: water and methanol (containing 2 mM ammonium formate); flow rate: 0.3 mL·min. RESULTS The calibration curves of MPA, CsA, and TAC had a linear range (ng·mL): 0.098-39.2 (r = 0.9987), 0.255-102 (r = 0.9969), and 0.028-11.2 (r = 0.9993), respectively. The extraction effects, matrix effects, and mean relative recovery of these immunosuppressants were 70.4%-93.2%, 72.7%-96.5%, and 90.1%-112.4%, respectively. The within-day and between-day coefficients of variation were <15%. The AUC0-12 of MPA in PBMCs correlated well with those in plasma. The level of MPA, CsA, and TAC in PBMCs might be more stable during dosing interval. CONCLUSIONS The derived liquid chromatography-tandem mass spectrometry assay is suitable for simultaneously monitoring different immunosuppressants in PBMCs. Pharmacokinetic of MPA, CsA, and TAC displayed considerable interindividual variability. Intracellular monitoring of immunosuppressants may facilitate individualized therapy for renal allograft recipients.
Collapse
|
17
|
CYP3A5 Genotype as a Potential Pharmacodynamic Biomarker for Tacrolimus Therapy in Ulcerative Colitis in Japanese Patients. Int J Mol Sci 2020; 21:ijms21124347. [PMID: 32570960 PMCID: PMC7352351 DOI: 10.3390/ijms21124347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Tacrolimus has been used to induce remission in patients with steroid-refractory ulcerative colitis. It poses a problem of large individual differences in dosage necessary to attain target blood concentration and, often, this leads to drug inefficacy. We examined the difference in mRNA expression levels of ATP binding cassette transporter B1 (ABCB1) between inflamed and non-inflamed tissues, and the influence of CYP3A5 genotype on tacrolimus therapy. The mRNA expression of CYP3A4 in colonic mucosa and that of cytochrome p450 3A5 (CYP3A5) and ABCB1 in inflamed and non-inflamed areas were examined in 14 subjects. The mRNA expression levels of CYP3A5 were higher than that of CYP3A4. The mRNA expression of ABCB1 was lower in the inflamed than in the non-inflamed mucosa, despite that of CYP3A5 mRNA level being not significantly changed. Hence, the deterioration of the disease is related to the reduction of the barrier in the inflamed mucosa. The relationship between CYP3A5 genotype and blood concentration, dose, and concentration/dose (C/D) ratio of tacrolimus in 15 subjects was studied. The tacrolimus dose to maintain equivalent blood concentrations was lower in CYP3A5*3/*3 than in CYP3A5*1 carriers, and the C/D ratio was significantly higher in the latter. Thus, CYP3A5 polymorphism information played a role in determining the initial dose of tacrolimus. Furthermore, since the effect of tacrolimus appears earlier in CYP3A5*3/*3 than in CYP3A5*1/*1 and *1/*3, it seems necessary to change the evaluation time of therapeutic effect by CYP3A5 genotype. Additionally, the relationship between CYP3A5 genotype and C/D ratio of tacrolimus in colonic mucosa was investigated in 10 subjects. Tacrolimus concentration in the mucosa was two-fold higher in CYP3A5*3/*3 than in CYP3A5*1 carriers, although no significant difference in tacrolimus-blood levels was observed. Therefore, the local concentration of tacrolimus affected by CYP3A5 polymorphism might be related to its therapeutic effect.
Collapse
|
18
|
Zhang M, Tajima S, Shigematsu T, Fu R, Noguchi H, Kaku K, Tsuchimoto A, Okabe Y, Egashira N, Masuda S. Donor CYP3A5 Gene Polymorphism Alone Cannot Predict Tacrolimus Intrarenal Concentration in Renal Transplant Recipients. Int J Mol Sci 2020; 21:ijms21082976. [PMID: 32340188 PMCID: PMC7215698 DOI: 10.3390/ijms21082976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
CYP3A5 gene polymorphism in recipients plays an important role in tacrolimus blood pharmacokinetics after renal transplantation. Even though CYP3A5 protein is expressed in renal tubular cells, little is known about the influence on the tacrolimus intrarenal exposure and hence graft outcome. The aim of our study was to investigate how the tacrolimus intrarenal concentration (Ctissue) could be predicted based on donor CYP3A5 gene polymorphism in renal transplant recipients. A total of 52 Japanese renal transplant patients receiving tacrolimus were enrolled in this study. Seventy-four renal biopsy specimens were obtained at 3 months and 1 year after transplantation to determine the donor CYP3A5 polymorphism and measure the Ctissue by liquid chromatography-tandem mass spectrometry (LC-MS-MS). The tacrolimus Ctissue ranged from 52 to 399 pg/mg tissue (n = 74) and was weak but significantly correlated with tacrolimus trough concentration (C0) at 3 months after transplantation (Spearman, r = 0.3560, p = 0.0096). No significant relationship was observed between the donor CYP3A5 gene polymorphism and Ctissue or Ctissue/C0. These data showed that the tacrolimus systemic level has an impact on tacrolimus renal accumulation after renal transplantation. However, donor CYP3A5 gene polymorphism alone cannot be used to predict tacrolimus intrarenal exposure. This study may be valuable for exploring tacrolimus renal metabolism and toxicology mechanism in renal transplant recipients.
Collapse
Affiliation(s)
- Mengyu Zhang
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.Z.); (T.S.); (R.F.); (N.E.)
| | - Soichiro Tajima
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Tomohiro Shigematsu
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.Z.); (T.S.); (R.F.); (N.E.)
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Rao Fu
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.Z.); (T.S.); (R.F.); (N.E.)
| | - Hiroshi Noguchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (H.N.); (K.K.); (Y.O.)
| | - Keizo Kaku
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (H.N.); (K.K.); (Y.O.)
| | - Akihiro Tsuchimoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Yasuhiro Okabe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (H.N.); (K.K.); (Y.O.)
| | - Nobuaki Egashira
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.Z.); (T.S.); (R.F.); (N.E.)
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Satohiro Masuda
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-0124, Japan
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kita-kanemaru, Otawara 324-8501, Japan
- Correspondence: ; Tel.: +81-476-35-5600
| |
Collapse
|
19
|
Ahya VN. Pharmacological approaches to preserving renal function early after lung transplantation. J Heart Lung Transplant 2020; 39:551-552. [PMID: 32430155 DOI: 10.1016/j.healun.2020.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 10/24/2022] Open
Affiliation(s)
- Vivek N Ahya
- Pulmonary, Allergy & Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
20
|
Nakamura T, Fukuda M, Matsukane R, Suetsugu K, Harada N, Yoshizumi T, Egashira N, Mori M, Masuda S. Influence of POR*28 Polymorphisms on CYP3A5*3-Associated Variations in Tacrolimus Blood Levels at an Early Stage after Liver Transplantation. Int J Mol Sci 2020; 21:ijms21072287. [PMID: 32225074 PMCID: PMC7178010 DOI: 10.3390/ijms21072287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
It is well known that the CYP3A5*3 polymorphism is an important marker that correlates with the tacrolimus dose requirement after organ transplantation. Recently, it has been revealed that the POR*28 polymorphism affects the pharmacokinetics of tacrolimus in renal transplant patients. In this study, we examined whether POR*28 as well as CYP3A5*3 polymorphism in Japanese recipients and donors would be another biomarker for the variation of tacrolimus blood levels in the recipients during the first month after living-donor liver transplantation. We enrolled 65 patients treated with tacrolimus, who underwent liver transplantation between July 2016 and January 2019. Genomic DNA was extracted from whole-blood samples, and genotyping was performed to examine the presence of CYP3A5*3 and POR*28 polymorphisms in the recipients and donors. The CYP3A5*3/*3 genotype (defective CYP3A5) of the recipient (standard partial regression coefficient [median C/D ratio of CYP3A5 expressor vs. CYP3A5 non-expressor, p value]: Pod 1–7, β= −0.389 [1.76 vs. 2.73, p < 0.001]; Pod 8–14, β = −0.345 [2.03 vs. 2.83, p < 0.001]; Pod 15–21, β= −0.417 [1.75 vs. 2.94, p < 0.001]; Pod 22–28, β = −0.627 [1.55 vs. 2.90, p < 0.001]) rather than donor (Pod 1–7, β = n/a [1.88 vs. 2.76]; Pod 8–14, β = n/a [1.99 vs. 2.93]; Pod 15–21, β = −0.175 [1.91 vs. 2.94, p = 0.004]; Pod 22–28, β = n/a [1.61 vs. 2.67]) significantly contributed to the increase in the concentration/dose (C/D) ratio of tacrolimus for at least one month after surgery. We found that the tacrolimus C/D ratio significantly decreased from the third week after transplantation when the recipient carried both CYP3A5*1 (functional CYP3A5) and POR*28 (n = 19 [29.2%], median C/D ratio [inter quartile range] = 1.58 [1.39–2.17]), compared with that in the recipients carrying CYP3A5*1 and POR*1/*1 (n = 8 [12.3%], median C/D ratio [inter quartile range] = 2.23 [2.05–3.06]) (p < 0.001). In conclusion, to our knowledge, this is the first report suggesting that the POR*28 polymorphism is another biomarker for the tacrolimus oral dosage after liver transplantation in patients carrying CYP3A5*1 rather than CYP3A5*3/*3.
Collapse
Affiliation(s)
- Takahiro Nakamura
- Department of Clinical Pharmacology and Biopharmaceutics, The Pharmaceutical College, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Mio Fukuda
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Ryosuke Matsukane
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Kimitaka Suetsugu
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Noboru Harada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.H.); (T.Y.); (M.M.)
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.H.); (T.Y.); (M.M.)
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.H.); (T.Y.); (M.M.)
| | - Satohiro Masuda
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-0124, Japan
- Correspondence: ; Tel.: +81-476-28-1401
| |
Collapse
|
21
|
Hikasa S, Shimabukuro S, Osugi Y, Ikegame K, Kaida K, Fukunaga K, Higami T, Tada M, Tanaka K, Yanai M, Kimura T. Tacrolimus Concentration after Letermovir Initiation in Hematopoietic Stem Cell Transplantation Recipients Receiving Voriconazole: A Retrospective, Observational Study. Int J Med Sci 2020; 17:859-864. [PMID: 32308538 PMCID: PMC7163365 DOI: 10.7150/ijms.42011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Letermovir (LMV) is a new antiviral drug used to prevent cytomegalovirus infection in hematopoietic stem cell transplantation (HSCT) recipients. It has been reported to increase tacrolimus (TAC) exposure and decrease voriconazole (VRCZ) exposure in healthy participants. However, VRCZ inhibits the metabolism of TAC. Thus, the effects of LMV on TAC exposure in patients receiving VRCZ are unknown. This retrospective, observational, single-center study was conducted between May 2018 and April 2019. The TAC concentration/dose (C/D) ratio, VRCZ concentration, and VRCZ C/D ratio for 7 days before and for the first and second 7-day periods after the initiation of LMV administration were evaluated. Fourteen HSCT recipients receiving VRCZ were enrolled. There was no significant difference in the TAC C/D ratio for 7 days before and for the first and second 7-day periods after initiating LMV administration (median: 866 [IQR: 653-953], 842 [IQR: 636-1031], and 906 [IQR: 824-1210] [ng/mL]/[mg/kg], respectively). In contrast, the VRCZ C/D ratio and concentration for the first and second 7-day periods after LMV initiation were significantly lower than those before initiating LMV administration (mean 1.11 ± 0.07, 0.12 ± 0.08, and 0.22 ± 0.12 [μg/mL]/[mg/kg] and 0.7 ± 0.5, 0.8 ± 0.5, and 1.3 ± 0.7 μg/mL, respectively; n = 12). This can be explained by the increase in TAC concentration caused by CYP3A4 inhibition due to LMV and by the decrease in TAC concentration ascribed to the decrease in VRCZ concentration by CYP2C19 induction due to LMV. These results suggest that it is unnecessary to adjust the dose of TAC based on LMV initiation; however, it is necessary to adjust the dose of TAC based on conventional TAC concentration measurements.
Collapse
Affiliation(s)
- Shinichi Hikasa
- Department of Pharmacy, Hyogo College of Medicine College Hospital, Nishinomiya, Hyogo 663-8501, Japan
| | - Shota Shimabukuro
- Department of Pharmacy, Hyogo College of Medicine College Hospital, Nishinomiya, Hyogo 663-8501, Japan
| | - Yuko Osugi
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Kazuhiro Ikegame
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Katsuji Kaida
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Keiko Fukunaga
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Tomoko Higami
- Department of Pharmacy, Hyogo College of Medicine College Hospital, Nishinomiya, Hyogo 663-8501, Japan
| | - Masami Tada
- Department of Pharmacy, Hyogo College of Medicine College Hospital, Nishinomiya, Hyogo 663-8501, Japan
| | - Kuniyoshi Tanaka
- Department of Pharmacy, Hyogo College of Medicine College Hospital, Nishinomiya, Hyogo 663-8501, Japan
| | - Mina Yanai
- Department of Pharmacy, Hyogo College of Medicine College Hospital, Nishinomiya, Hyogo 663-8501, Japan
| | - Takeshi Kimura
- Department of Pharmacy, Hyogo College of Medicine College Hospital, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
22
|
Lionaki S, Liapis G, Boletis JN. Pathogenesis and Management of Acute Kidney Injury in Patients with Nephrotic Syndrome Due to Primary Glomerulopathies. ACTA ACUST UNITED AC 2019; 55:medicina55070365. [PMID: 31336742 PMCID: PMC6681356 DOI: 10.3390/medicina55070365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023]
Abstract
Acute kidney injury in the context of nephrotic syndrome is a serious and alarming clinical problem. Largely, acute kidney injury is a relatively frequent complication among patients with comorbidities while it has been independently associated with an increased risk of adverse outcomes, including death and chronic kidney disease. Nephrotic syndrome, without hematuria or with minimal hematuria, includes a list of certain glomerulopathies; minimal change disease, focal segmental glomerulosclerosis and membranous nephropathy. In the light of primary nephrotic syndrome, pathophysiology of acute kidney injury is differentiated by the nature of the primary disease and the severity of the nephrotic state. This review aims to explore the clinical circumstances and pathogenetic mechanisms of acute kidney injury in patients with nephrotic syndrome due to primary glomerulopathies, focusing on newer perceptions regarding the pathogenesis and management of this complicated condition, for the prompt recognition and timely initiation of appropriate treatment in order to restore renal function to its baseline level. Prompt recognition of the precise cause of acute kidney injury is crucial for renal recovery. Clinical characteristics, laboratory and serological findings along with histopathological findings, if required, will reveal the implicated pathway leading to individualized approach and management.
Collapse
Affiliation(s)
- Sophia Lionaki
- Nephrology Department & Transplantation Unit, Laiko Hospital, Faculty of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece.
| | - George Liapis
- Department of Pathology, Laiko Hospital, Faculty of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece
| | - John N Boletis
- Nephrology Department & Transplantation Unit, Laiko Hospital, Faculty of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
23
|
Fan J, Chen L, Lu X, Li M, Zhu L. The Pharmacokinetic Prediction of Cyclosporin A after Coadministration with Wuzhi Capsule. AAPS PharmSciTech 2019; 20:247. [PMID: 31286321 DOI: 10.1208/s12249-019-1444-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023] Open
Abstract
We aim to describe the influence of principal ingredients of Wuzhi capsule, schisandrin A (SIA) and schisantherin A (STA), on the pharmacokinetics of cyclosporin A (CsA) and to quantify the herb-drug interactions (HDIs) between SIA, STA, and CsA. CsA is a first-line immunosuppressant for anti-rejection therapy after solid organ transplantation, while narrow therapeutic window associated with strong hepatotoxicity largely limited its use. Wuzhi capsule, a liver-protective drug, was approved for coadministration with CsA to reduce the hepatotoxicity. There are few studies exploring HDIs of CsA when coadministered with Wuzhi capsule. The essential adjusted physicochemical data and pharmacokinetic parameters of SIA, STA, and CsA were collected. Then physiologically based pharmacokinetic (PBPK) models of SIA, STA, and CsA were built and verified in healthy subjects using Simcyp respectively. The refined PBPK models were used to estimate potential HDIs between CsA and SIA, STA. The simulated plasma concentration-time curves of CsA, SIA, and STA were in good accordance with the observed profiles respectively. CsA pharmacokinetics were improved after coadministration. After a single dose and multiple doses, the area under the plasma concentration-time curve (AUC) of CsA was increased by 47% and 226% when coadministered with STA, respectively, and by 8% and 36% when coadministered with SIA, respectively. PBPK models sufficiently described the pharmacokinetics of CsA, SIA, and STA. Compared with SIA, STA inhibited CsA metabolism to a greater extent. Our result revealed the dose of CsA can be reduced to maintain similar profile when used concomitantly with Wuzhi capsule.
Collapse
|
24
|
Impact of CYP3A5, POR, and CYP2C19 Polymorphisms on Trough Concentration to Dose Ratio of Tacrolimus in Allogeneic Hematopoietic Stem Cell Transplantation. Int J Mol Sci 2019; 20:ijms20102413. [PMID: 31096684 PMCID: PMC6566597 DOI: 10.3390/ijms20102413] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022] Open
Abstract
Single nucleotide polymorphisms in drug-metabolizing genes may affect tacrolimus pharmacokinetics. Here, we investigated the influence of genotypes of CYP3A5, CYP2C19, and POR on the concentration/dose (C/D) ratio of tacrolimus and episodes of acute graft-versus-host disease (GVHD) in Japanese recipients of allogeneic hematopoietic stem cell transplantation (HSCT). Thirty-six patients receiving the first HSCT using tacrolimus-based GVHD prophylaxis were enrolled with written informed consent. During continuous intravenous infusion, HSCT recipients carrying the CYP3A5*1 allele, particularly those with at least one POR*28 allele, had a significantly lower tacrolimus C/D ratio throughout all three post-HSCT weeks compared to that in recipients with POR*1/*1 (p < 0.05). The CYP3A5*3/*3 genotype and the concomitant use of voriconazole were independent predictors of an increased tacrolimus C/D ratio during the switch from continuous intravenous infusion to oral administration (p < 0.05). In recipients receiving concomitant administration of voriconazole, our results suggest an impact of not only CYP3A5 and CYP2C19 genotypes, but also plasma voriconazole concentration. Although switching from intravenous to oral administration at a ratio of 1:5 was seemingly appropriate in recipients with CYP3A5*1, a lower conversion ratio (1:2-3) was appropriate in recipients with CYP3A5*3/*3. Our results suggest that CYP3A5, POR, and CYP2C19 polymorphisms are useful biomarkers for individualized dosage adjustment of tacrolimus in HSCT recipients.
Collapse
|